Nice Weak Kam Methods in Nice
 2-7 FEBRUARY 2009

Andrei Sobolevskii

Independent University of Moscow, Russia

Efficient Optimal Transport on the Circle

(joint work with Julie Delon (Télécom Paris) and Julien Salomon (Université Paris-Dauphine/CEREMADE))

Abstract

Consider the problem of optimally matching two measures on the circle, or equivalently two periodic measures on \mathbf{R}, where the cost $c(x, y)$ of matching two points x, y satisfies the Monge condition: $c(p, q)+$ $c(r, s)<c(p, s)+c(r, q)$ whenever $p<r$ and $q<s$. Motivated by the weak KAM theory, we introduce a notion of locally optimal transport plan and show that all locally optimal transport plans are conjugate to shifts. The theory is applied to a transportation problem arising in image processing: for two sets of point masses, both of which have the same total mass, find an optimal transport plan with respect to a given cost function that satisfies the Monge condition. For the case of N real-valued point masses we present an $O(N \log \epsilon)$ algorithm that approximates the optimal cost within ϵ; when all masses are integer multiples of $1 / M$, the algorithm gives an exact solution in $O(N \log M)$ operations.

