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Abstract 

In the numerical computation of incompressible flows using the Navier-Stokes equations, the main task generally lies in the 
solution of a Stokes type problem. In this paper, we focus on this key point, when using (i) a spectral method, (ii) the 
vorticity-vector potential formulation of the 3D Navier-Stokes equations and (iii) a cylindrical geometry. At the end we 
conclude with a numerical test of our Stokes solver in the framework of Rayleigh-BCnard natural convection. 

1. Introduction 

For incompressible three-dimensional flows, it is well known that the classical velocity-pressure 
formulation of the Navier-Stokes equations involves difficult problems for the treatment of the pressure 
and continuity equation, specially when using spectral methods. Although a number of efficient 
procedures have been suggested to overcome these problems, it is also possible to use other approaches 
and among them the one based on the vorticity-vector potential formulation. This formulation, which 
is now well understood from the theoretical point of view [l-5], is a continuation in 3D of the classical 
vorticity-stream function formulation widely used in 2D problems. 

The main task in the solution of the stationary or transient Navier-Stokes equations generally lies in 
the solution of a stokes type problem. In this paper, our purpose is to focus on this key point, specially 
when multiple resolutions are needed, i.e. when considering the transient Navier-Stokes equations. In 
Section 2 we introduce the Stokes problem for confined and simply connected geometries when using 
the vorticity-vector potential formulation. 

In order to get high precision in the calculations, the numerical method used in this work is of 
spectral type. The geometry under consideration is cylindrical, i.e. simple enough to use such methods, 
but nevertheless more complicated than the usual Cartesian geometries. The advantage of the 
cylindrical geometry (p, 8, l) is clearly that the natural 2n-periodicity along the polar angle 0 can be 
used in a very efficient way; the Fourier analysis permits the substitution of a set of 2D complex 
problems in the (p, S) planes to the initial 3D; these 2D problems are then solved by using Chebyshev 
polynomials. The drawbacks come from the cylindrical coordinate system, for which the operators are 
more complicated and pseudo-singular and for which it is necessary to ensure some conditions of 
regularity at the axis. In Section 3 (and Appendix A), we describe the basic step which consists of the 
resolution of the Helmholtz vectorial equation, when using a Fourier-Chebyshev spectral method. 

A major difficulty of the Stokes problem, in the vorticity-vector potential formulation, comes from 

* Corresponding author. 

0045~7825/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved 
SSDI 0045-7825(93)E0229-2 



72 R. Pasquetti, R. Bwemba I Comput. Methods Appl. Mech. Engrg. 117 (1994) 71 -YO 

the boundary conditions. For a set of six scalar equations, which correspond to the components of the 
vorticity and vector potential, we have five boundary conditions for the vector potential and only one 
for the vorticity vector. Moreover, among these conditions, some are not simply of Dirichlet or 
Neumann type, or combinations of such boundary conditions. So, in order to obtain the standard 
situation of two vectorial Helmholtz equations with classical boundary conditions, for both equations 
we utilize an influence matrix technique which permits the substitution of Dirichlet boundary conditions 
for those difficult to handle. A difficult point here is that the influence matrices can be singular in 
multi-dimensional geometries. This part of our algorithm is described in Section 4. 

In order to check our Stokes solver in a realistic framework, we use a numerical experiment of 
Rayleigh-Benard natural convection; the solution of a Stokes problem, the force term of which 
includes the non-linear convective term and the buoyancy term, is thus needed at each time-step. Such 
a numerical experiment points out some drawbacks that we essentially attribute to the differences 
between the properties of the continuous and discrete spectral operators that appear in the governing 
equations. To overcome these difficulties we complete our resolutions algorithm with an additive step, 
the ‘vorticity correction step’, which gives an efficient numerical solution as shown in Section 5. 

2. Stokes problem in vorticity-vector potential formulation 

The computations of various problems of fluid dynamics, in both stationary or transient cases, need 
the numerical solution of a Stokes type problem. Considering a confined domain R of boundary r, in 
vorticity-vector potential formulation it consists of the determination of the vectors w and $ such that 
in 0, 

v*o - m3 = w ) 

v=* + w = 0 ) 

with appropriate boundary conditions on ZY Eq. (1) derives from the vorticity transport equation, which 
is obtained by taking the curl of the momentum equation. The vector w is thus a divergence-free force 
term, i.e. V. w = 0, which is problem dependent. It can include the non-linear convective term of the 
vorticity transport equation, some terms calculated at previous time steps for transient problems as well 
as terms already known, e.g. by solving at first a coupled equation such as the energy equation. The uw 
term appears in transient problems and the coefficient CT (>O) is then associated with the finite 
difference approximation of the time derivative. The vector w is the vorticity that we define from the 
velocity field u by 

w=VXv. 

The vector potential 4, assumed to be divergence free, i.e. V. I,!J = 0, is such that 

v=Vx~, 

By taking the curl of Eq. (4) and then using the well known vectorial relation, 

(3) 

(4) 

vxvx*=v(v~*)-v=~, 

one obtains the Poisson equation (2). 

(5) 

The basic interest of the vorticity-vector potential formulation is that from Eq. (4) the resulting 
velocity field u automatically satisfies the continuity equation V. u = 0. Nevertheless, the vorticity- 
vector potential formulation exhibits six unknowns (the components of the w and 9 vectors) instead of 
four in the velocity-pressure formulation (the components of u and the pressure). This remark is 
probably the main reason for the rare employment of the formulation, but the major implication is the 
non-uniqueness of the vector IJ and consequently the possibility of various boundary conditions for this 
vectorial field. 

The boundary conditions which have to be imposed on w and 9 derive partially from those imposed 
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on the velocity; in a confined geometry, when assuming Dirichlet boundary conditions, they are written 
as 

(6) 

where the subscripts n and t refer to the normal and tangential components of the velocity u and where 
Gt is given. 

Concerning the vector potential 9, for the confined and simply connected geometries considered in 
this paper, both theoricians and numericians consider that the following boundary conditions are well 
suited [l-4]: 

where the vector ICI, is the projection of I,!I on the tangential plane to r. Condition (8) implies that the 
normal velocity is zero, as required by Eq. (6), and condition (9) that ((I is divergence free if o is 
divergence free (as shown below). Now, from Eq. (7) one has the additive vectorial boundary condition 

(10) 
Concerning the vorticity o, the boundary conditions for the velocity only imply the scalar boundary 
condition (from Eq. (7)): 

w”(r =v x fit , (11) 

Consequently the vorticity-vector potential formulation of the Stokes problem exhibits only the 
boundary condition (11) for o and five conditions for +!I: the scalar condition (9) and the two vectorial 
(8) and (10) ( eat one equivalent to two scalar). h 

It may be surprising that from the boundary condition (7), equivalent to two scalar conditions, one 
can deduce (10) and (11) which stand for three scalar conditions; thus, a lot of papers criticize the use 
of (11) and suggest using (see e.g. [6,7]) 

Vwlr=O. (12) 

Nevertheless, when assuming sufficient regularity properties, one can easily demonstrate that the 
boundary conditions (11) and (12) are equivalent, in the sense that when associating them with the 
conditions (8), (9) and (lo), the solution of the Stokes problem (l), (2) is, as required, such that 

o=vxvx*. (13) 

(a) Stokes problem (l), (2) with boundary conditions (8), (9), (10) and (12): Taking the divergence of 
both members of (1) and using the commutativity property of the operators divergence and Laplacian, 
we have 

A(V.w)-uV.w=O, (14) 

where A is the scalar Laplacian operator. This homogeneous scalar Helmholtz equation with the 
homogeneous boundary condition (12) has for unique solution V. o = 0. Then, by taking the divergence 
of (2), one obtains in the same way 

A(V.$)+V.w=O. (15) 

This Laplace equation (since V. o = 0) with the homogeneous boundary condition (9) has for unique 
solution V. Cc, = 0. By eliminating V*I,/I from (5) and (2) and knowing that if V* J, = 0, then V(V* I,!P) = 0, 
one obtains the desired result (13). 

(b) Stokes problem (l), (2) with boundary conditions (8), (9), (10) and (11): Taking (2) into 
account, Eq. (5) can be written as 
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v(v~J/)-vxvxl)+o=o. (16) 

Along r this vectorial equation can be projected on the unitary normal vector n to the boundary; with 
the condition (10) we have 

a,(V* $) - (V x v;)” + W”lj- = 0 (17) 

and from the condition (1 l), 

%(V* @I, = 0. (18) 

Eqs. (14) and (15), associated with the boundary conditions (9) and (18) constitute a homogeneous 
scalar Stokes problem for which it is well known that the only solution is V- o = 0 and V* J/ = 0. As in 
(a), one can now obtain the desired result (13) from Eqs. (2) and (5). 

In the discrete framework, the previous demonstrations are generally no longer valid, because of the 
loss of the commutativity property of the divergence and Laplacian operators. This is the case with 
spectral methods, for which it seems that the desired result (13) can only be obtained in an 
approximative way from the Stokes problem (l), (2). Our numerical experiments have led us to choose 
the ‘classical’ boundary condition (12) instead of (ll), because (11) implies some specific problems 
when using the influence matrix technique. 

For simplification, the no-slip boundary condition will now be assumed. Thus, the Stokes problem 
which is considered in the following is written as 

v20 - 0-W = w > (1’) 

v2*+w=o, (2’) 

V*wJ,=O, wI,=o, *A-=o> P x +),I, = 0 7 (19) 

where the vector w is solenoidal (V. w = 0). 

3. Spectral solution of the vectorial Helmholtz type equation iu cylindrical coordinates 

In Cartesian coordinates, the vectorial Helmholtz equation splits into three scalar Helmholtz 
equations which can be solved using the standard procedures of the tau or collocation spectral method 
[S]. On the contrary, the cylindrical coordinate system (p, 8, l) induces the following drawbacks: 
- the Laplacian operator exhibits a pseudosingularity at the axis, 
- the vectorial Laplacian is not diagonal, in the sense that a coupling occurs between its first two 

components, 
-some conditions of regularity must be forced at the axis. 
In this section it is shown how to solve the vectorial Helmholtz equation when using a pseudospectral 
method. To this aim, in the Stokes problem (l), (2), (19), we consider Eq. (l), for o. Temporarly, we 
make no assumptions concerning the boundary conditions to be associated with this vectorial Helmholtz 
equation, but this point is discussed at the end of this section. 

The difficulty comes at first from the V2 operator which is not diagonal: 

with 

A = app + $ a, + 1 de0 + a,, 
P 

(20) 

and where oi, W, and o, are the p, 8 and 5-components in the cylindrical basis (e,, e2, e3). An efficient 
way to diagonalize V2 is the transformation [9]: 

0, = w1 + io, , w_ = w1 - iw, (i’ = -1) (21) 
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so that in the basis (e,, e_, e,), 

75 

(22) 

The complex form of this operator is not a source of difficulty, since in the Fourier analysis that the 
natural periodicity in 8 induces us to use, the operator d, is simply equal to ik (k is the mode number); 
specifying with a ‘A’ the variables in Fourier space, one obtains 

%= [Ak+&+]e+ + [A,&_]e_ + [A,Lj3]e3 , (23) 

where 

Ak+ 

4 

4 1 = a, + $ aP + ars - 4 

(k + 1)2 

[ 1 (k-1)2 . 
P k2 

Then, from the 3D Helmholtz equation (1) one obtains in Fourier spectral space the set of 2D complex 
uncoupled equations: 

(A,’ - G+(P, 5; k) = ++(P, G k) 3 (24) 

(A, - u)h_ (p, 5; k) = G_ (p, 5; k) , 0 s k s K (K is the number of modes) . (2% 

(4 - G&(P, 5; W = +(P, 5; k) , (26) 

To go further in the analysis, we have to define precisely the geometrical support of the different 
variables. The natural approach is to assume 0 s p s R (R is the cylinder radius) and 0 s 8 s 21r, but the 
default in this case is (i) the non-natural necessity in the Fourier spectral space of a boundary condition 
at the c axis (see e.g. [lo]), and (ii) the difficulty of forcing satisfying properties of regularity at p = 0. A 
most suitable approach is to assume -R s p s R and 0 s 8 6 27~, but in this case some constraints of 
coherency must be considered; in physical space they are written as 

QP, 075) = -w,(-P, 0 + n, 5) 7 c1 = 192 9 f%(P, 0,5> = w3(-P, 0 + n, 4-I (27) 

which with straightforward induction in Fourier spectral space, gives 

Qp, 5; k) = (-I)‘+* &J-P, 6; k), P = 172, &(P, 6; k) = (-l)k&(-~, 5; k) . (28) 

Moreover, some properties of regularity are needed at the axis, specially the uniqueness of w for 
p = 0. The uniqueness property obviously requires wj to be independent on the polar angle and for w1 
and w2 to exhibit a sinusoidal variation; in Fourier spectral space, one obtains 

G,(p=O,{;k#l)=O, p=1,2, G3(p = 0, 5; k # 0) = 0, (29) 

More generally, to be physical a variable must be infinitely differentiable; in Fourier spectral space and 
in the (e,, e_, e,) basis, which is a good framework for this study of regularity, one can show that the 
constraint of analyticity at the axis can be written as 

&+(P, 5; k) = P~+‘&+(P, 5; k) , c;_(p, C; k) = ~‘~-%(p, 5; k) , 

4h S; k) = P~“;~(P, 5; k) , (30) 

where the function O+, c;i_ and 6, are even in p and finite at p = 0. Taking (21) into account, the 
constraints of uniqueness (29) are clearly included in the constraints of regularity (30). Constraints (?O) 
can be demonstrated [ll, 121, by using in Fourier spectral space the standard polynomial basis pill, i, 

j 3 0, and imposing V2’w to be not singular at p = 0 for 1 b 0. 
In order to take into account the constraints of analyticity, the natural idea is to use the changes of 

variables defined by (30) and to solve in G+ , ii_ and GS rather than in &+ , & and A,. But numerical 
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difficulties arise for high values of the mode number k. That is the reason why we suggest the following 
algorithm which forces the p exponent to be smaller or equal to an integer M: 

d+(,, C; k) =pmclG+(p, C; k) , 4-h l; k) = P “%i-(p, 5; k) , 

4(~, 5; k) = P”~(P, 4’; k) , (31) 

with 

m+s=k+c,e={l,-l,O}, ifk+&cM, 

m+e=M, ifk+e>M,k+sandMofsameparity, 

m+&=M-1, if k + E > M, k + E and M of inverse parity. 

Such an algorithm only imposes Vzlo, 0 s I < (M - 1)/2, to be not singular; one can note that the 
weaker condition, which requires that all the usual operators are not singular, is obtained for M equal 
to 3. Let us mention that in spherical geometry, an approach similar to ours can be found in [13]. After 
the change of variables (31), one obtains the set of equations 

(Gn - ~)W+(P, 5; k) = G+(P, 5; k) , (32) 

(A;,-c+)w_(p,5;k)=~_(p,5;k), OcksK, (33) 

(Ak,m - -t 

with 

and where G+, G_ and G)3 are the corresponding values of G+, G_ and G3, by transformations (31). 
Eqs. (32)-(34) form a set of uncoupled 2D complex equations that we solve by using a Chebyshev- 

Chebyshev collocation method. In Appendix A we describe this technical part of the work, by focusing 
on the governing equation (34) of the & component. 

Now, let us come back to the boundary conditions which can be associated with the vectorial 
Helmholtz equation, when following the approach described in this section. 

A large class of linear boundary conditions can be supported for the l-component; They may read 

where a, is the normal derivative operator, f3 a space dependent function defined on r and where (Ye 
and & are parameters that do not depend on the polar angle 0, in order to permit the Fourier analysis. 
In Appendix A, due to the use of the Chebyschev-Chebyschev collocation method, these coefficients 
are also supposed constant on each part of the cylinder surface. 

For the p and 0 components, it can be easily observed that the boundary conditions must be of the 
same kind; they may read 

(%% + P, d”%)l, =f, 7 

(%% + P, ~“%h =.A 3 (36) 

where fi and f2 are space dependent functions defined on r and where (Y, and /3* do not depend on the 
polar angle 8. This yields, in the (e,, e_, e3) basis, the following boundary conditions which can be 
handled in a classical way (see Appendix A): 

(%W+ + P-t d,@+)l, =f+ > 

@,w + p, a”@_)[, =f_ , (37) 

with f+ = fi + if2 and f_ = fi - if2. 
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Clearly, for boundary conditions different from (35) (36), one has to expect some difficulties. This is 
the case for the Stokes problem (l), (2), (19). As shown in the following section, we use the influence 
matrix technique to recover the admissible boundary conditions which have just been defined. 

4. Solution of the Stokes problem in cylindrical coordinates 

Let us now consider the Stokes problem defined by the vectorial equations (l), (2) associated with 
the boundary conditions (19). The Poisson equation (2) is a particular case of a Helmholtz equation and 
so, after Section 3, it is now clear that the difficulties come from the conditions (19). In this section, for 
each variable I,/J and o, we suggest using an influence matrix technique which permits us to substitute 
Dirichlet boundary conditions for the conditions which are difficult to handle. The algorithm that we 
suggest is an extension in 3D of [14,X5] in 2D, where w and Ji are scalar; it is specially suited in 
time-dependent situations for which the Stokes problem must be solved at each time step. 

4.1. Vector potential equation 

For the vector potential one has to impose the scalar and vectorial boundary conditions, 

WI,=07 *Jr = 0 7 (38) 

and the difficulty clearly comes from the scalar one which is not simply of Dirichlet type. In cylindrical 
coordinates and in the physical basis (e, , e,, e3), one has 

This yields, in Fourier spectral space, 

v. +cp, c; k) = a,& + f & + $ i4 + a,43 . 

Taking into account for $ the change of basis defined for o by Eqs. (21), one obtains in the (e, , e- , e3) 
basis. 

(41) 

By using the superscripts 1, -1 and 0 for the upper, lower and lateral parts of the (p - 5) domain, the 
boundary conditions (38) can be written as 

&+lrlu+ = 0, S-I yl”j--l = 0 ) a,$31rlur-l = 0, i&0=0, (424 
I\ 
V**~ro=O, 9+lro = 3-L-o 7 (42b) 

with 

cJro =J. 2 a,<$+ + 9-I ++ S+b (R is the cylinder radius) . 

In the approach described in Section 3 for solving the Helmholtz vectorial equation, the boundary 
conditions have been considered as expressed by Eqs. (35), (36). This hypothesis is fully satisfied for 
the $3 component, with the homogeneous Dirichlet and Neumann boundary conditions (42a). 
Concerning the I$+ and $_ components, conditions (42a) are admissible but not (42b). Clearly, if no 
coupling occurs between the equations for 4, and (?I_, the coupling now occurs through the boundary 
conditions. To overcome this difficulty and thus avoid the simultaneous resolution of the two equations, 
we use an algorithm specially attractive when multiple resolutions are needed. 
n &I Fouriehfpectral space and with & given, let us consider for the + and - components, the solutions 

I(, and + of the problems P1 and PZ such that 
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problem P, : 

A;$jl’+ &+ =O, A;tj”‘+&=O, 

$(:)I, = 0 ) lj!yr = 0 ; 

problem P2 : 

(43) 

Ak+$y)=O, A;$‘2’=0, 

lj(:)lrlur-l = 0 ) lj”‘l yl”r-1 = 0 ) 

tjj2)lro = t$‘Z’lro such that?+’ + 6$2)lr” = 0 , (44) 

in such a way that 4, = 4’:’ + $y’, &_ = $I” + I$!!’ are solution of the complete problem. 
In transient situations, the advantage of splitting the complete problem into problems P, and Pz is 

that the time dependent vorticity is considered in problem P, , which can easily be solved. The boundary 
conditions of the problem P2 can now be computed by using the influence matrix technique. 

The basic idea is to compute once a set of elementary solutions which will be linearly combined, as 
often as needed, in order to constitute the solution of problem P2. More precp2yly, after discretization of 
the (p-5) plane (see Appendix A), the values along r” of a function as $+ , which is for continuity 
reasons equal to zero in the corners, i.e. at Z” fl Z” and r” fl Z-l, is entirely defined by (Z - 1) values 
for the real or imaginary part of each mode number k (the collocation point number in 5 is equal to 
Z + 1). If one considers the corresponding vector space of dimension I - 1, there exists a linear operator 
IF, associated with problem P2 and the definition of the divergence in the (e,, e_ , e3) basis such that 

Re{6$)[,.~} = [F,[Re{ &~‘l,~}] , Im{G$(2)l,0} = F,[Im{ $‘:‘[,0}] . (45) 

The existence of this operator results from: (i) the linearity of the Poisson vectorial equation; (ii) the 
real character of the vectorial Laplacian and divergence operators in the (e, , e_ , e3) basis; and (iii) the 
equality $‘Z’/,U = $(2) + lyO. Such an operator can be easily produced by computing the canonical basis of 
the vector space under consideration. 

Assuming that the operator [F, is regular (numerically confirmed) the inverse operator FL’ exists. 
Using the results of problem P, , it enables the computation of the boundary conditions of problem P2, 
as well as those of the complete problem, 

Re{$+l,o} = [F,‘[Re{ -G1)lro}], Im{$+lrO} = lF,‘[Im{-6$“/,.0}]. (46) 

The discretized form of the [F, operator is the influence matrix, of dimension I - 1 x I - 1. 

4.2. Vorficity equation 

The boundary conditions that must be considered for determining the vorticity are 

V*6&=0, u,(r = 0. (47) 

Let us recall first the expression of the velocity, as the curl of the vector potential, in the basis 

(e,, e2, e3): 

e, + (e,& - J#3)e2 + 
i 
ape2 +-$I2 -f Wl (48) 

This yields, in Fourier spectral space, 

qp, 3; k)= ($ (2; -@2) e, +(a,&- d,&)e, + a,$2 +f 42 -if $1 

and in the (e,, e_, e3) basis, 
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c=i K )e+ + (a& + % & - a,$-)e- 

-- :(a,t9+-9)+~((k+l)j,+(k-l)~-))e,]. (50) 

Knowing that along the boundary r the normal component of the velocity vanishes, the boundary 
condition (47) for its tangential component can be written as 

fi+l, = 0 7 d_l,l,,-1 = 0 ) r&J = 0 ) (51) 

where again we split Z into Z-l, r’ and Z”. 
Such boundary conditions are clearly not admissible since they do not involve the vorticity directly 

but the derivatives of the vector potential; so, we again suggest the use of an influence matrix 
technique, in order to obtain Dirichlet boundary conditions on the vorticity. Moreover, it has been 
shown in the previous section that it is not easy to ensure the homogeneous divergence condition on the 
circular part of the cylinder. In the approach that we describe now the influence matrix technique 
permits us to handle all the non-admissible boundary conditions. 

Once again, using the linearity property of the complete problem, we split it into two problems P, 
and P2 such as: 

problem P, : 

Al&J” - cr;l’) = ,++ , 

A; G(l) _ -&j(‘L$_, 

A,;j” _ &jil) = G3 , 

&I_‘)jr = 0, ;?)I, = 0 ; CS)lrlur-, = a&)lrlur-l = 0 

problem P2 : 

3 &jS1)lro = 0 ; (52) 

A;;lf’-&j(:)=(j, 

4; ;I” _ &j(*) = 0 7 

A/P, 
-V)_ 3 &j(2) = 0 > 

-$3)1 j-l”r-1 = 0 ; &y)lr, &!?I,, G~)(,-o such that 

v+ A(*) + ;I-‘$ = 0 ; IT’ + rplr’“r-l = 0 ; ;y + tplp = 0 ; C(2) +cP)lrll = 0. 

(53) 

As previously for the vector potential the resolution of the problem P, can be achieved easily and for 
the problem P2 the influence matrix technique is employed. 

After the discretization in space, taking into account that the no slip boundary condition induces cj+ , 
S- and G3 to be equal to zero in the corners, for the real or imaginary part of each Fourier mode k the 
number of unknown values of & along r is 4.Z’ + 3(Z - 1) (J + 1 is the collocation point number until 
the axis, see Appendix A). Considering the vector space of same dimension, for each mode number k 
one can exhibit a linear operator W,, such that 

[Im{Li~‘(,., O(z)lrlur-,, r?y)],-o}, Re{c(z)]rO}] = W,[Re{G!,!)],, &?)I,-, &y)lrO}] (54a) 

[Re{-Oy)],., -ti(2)(r1ur-~, -Oj2)],+}, Im{c(*)],-o)] = W,[Im{t(,2)(,, &?)I,-, &j42)lro}] (54b) 

The existence of this operator results from: (i) the linearity of the Helmholtz and Poisson vectorial 
equations; (ii) the linearity of the curl and divergence operators; and (iii) in the (e, , e_ , e3) basis, from 
the imaginary character of the curl operator and the real character of the other operators. One can 
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notice in (54b) the sign inversion of the velocity components, due to the imaginary character of the curl 
operator. 

As previously, the most efficient way to define the operator W, is to compute the image of the 
canonical basis of the vector space which has been introduced. 

In order to determine the boundary conditions on & for problem PZ starting from the results of 
problem Pi, one has to invert the W, operators. The difficulty comes here from the mode number k = 0 

for which W, is not regular, with a kernel of dimension 2. 
The non-regular character of W, for k = 0 can be understood by analyzing the implications in the 

corners of the velocity field properties. For problem P2, as well as for all the elementary solutions of the 
influence matrix, the expression of the velocity as the curl of a vector field perpendicular to the 
boundary induces in the corners Ci(r’ tl r”) and C-‘(r-l fl r”) is 

6(,*)1,, = r$)Icp = 0) /_L = -1,1 (55) 

and, as a result of the solenoidal character of the velocity field, the so-called ‘compatibility equations’ 
are 

For k = 0, these ‘compatibility equations’ imply that tii” along r’ and r-l, and 61”’ along r” are 
dependent. In the discretized framework, their spectral approximations produce two linear relations 
between the collocation point values; for example if the collocation point values of fir’ along r” are 
given, then a linear relations occurs between the collocation point values of OF’ along r’ and a similar 
one for u ̂i2’ along r-l. The kernel of the operator W,=, is then at least of dimension 2. 

One way to proceed with the singular character of the operator U-l,=, is to produce a regular operator 
We=, close to W,=,. Considering the matrix associated with E-U,=, and the equations associated with each 
line of this matrix, such a goal can be achieved by the suppression of two equations and their 
replacement. The previous analysis suggests suppressing one equation relative to the value of tit*’ at a 
collocation point of r’ and another one for the value of fi!” at a collocation point of r -’ . Thus, in the 

(e+, e_ , e3) basis, we have suppressed the equations relative to 6:’ along r’ and r-’ at the collocation 
points nearest to the corners C’ and C-‘. In order to recover a square matrix one has to produce two 
new equations; using Lagrange interpolation polynomials we force the spectral approximations of &+ 
along r’ and r-’ to be of the lowest degree. 

One can now control that W;=, is really close to W,=, in the sense that the no slip boundary condition 
is well imposed at all the collocation points, including the collocation points of r’ and Y*, the nearest 
to the corners. In Fourier spectral space, for the mode number k = 0, the real character of the velocity 
field induces 

Re( 6,) = Re( v^_) = tY1 , Im(r?+)=-Im(d_)=z?,. (57) 

Then, using the influence matrix technique, when one imposes at all the collocation points of r’ and 
r-1, 

fi”’ + ($3 = 0 
> (58) 

one also imposes along r’ and r-’ the set of equations, 

~J’)+~J2’=(), (59) 

which includes the two equations which have been taken out. Thus, as expected, the tangential 
components of the velocity are well null at all the collocation points of r’ and r-‘. 

5. Vorticity correction algorithm and numerical test 

The first numerical tests of the Stokes solver developed on the bases of the previous sections have 
been disappointing; if the solutions, o and I(I, of the Stokes problem are not 2D axisymmetric or 3D 
analytic polynomial, then some drawbacks occur that we can summarize as follows: 
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- the basic equation (13) is not exactly verified, specially in the vicinity of the corners C’ and C-‘; in 
our vorticity-vector potential approach, this results in the coherency problem where the computed 
vorticity is not exactly the curl of the computed velocity; 

- w and J/ are not solenoidal; V. w and V. J, show oscillating values with amplitudes increasing in the 
vicinity of the corners; 

- the boundary values of the normal component of w show weak oscillations, specially near the corners, 
instead of being equal to zero; 

- the boundary values of the tangential component of o are very unregular near the corners, specially 
along r’ and r-l; a spectral analysis of the influence matrices has shown us that this point is not 
problem dependent; the influence matrices U-U, are ill conditioned and exhibit small eigenvalues 
associated with eigenvectors which geometrically relate to the collocation points near the corners. 
These drawbacks can be attributed to (i) a regularity failure of the vorticity at the corners or (ii) to 

the loss of some basic properties of the continuous equations through their spectral approximation. 
Concerning point (i), it is known [16] that in a two-dimensional 7r/2 angle, the vorticity exhibits an 
infinity of oscillations; in Section 5.1.) we focus on point (ii) and suggest a ‘vorticity correction 
algorithm’ in order to produce more satisfying solutions. In Section 5.2. our Stokes solver is tested in a 
3D Rayleigh-BCnard convective problem. 

5.1. Vorticity correction algorithm 

As shown in Section 2, the basic equation (13) results from the Stokes problem (l), (2), (19) due to 
Eqs. (14) and (15) and to the identity (5). In the discretized framework, such equations are no longer 
valid, due to (i) the cylindrical coordinate system and to (ii) the collocation spectral method itself. 

Due to the p-* term in the curl and vectorial laplacian operators, the discretized form of the identity 
(5) becomes approximate; for the same reason, the commutativity property of the divergence and 
Laplacian operator, used to obtain Eqs. (14) and (15), is no longer absolutely right. Without going into 
the details, but in order to clearly mention these difficulties, one may observe that the identity 

(60) 

is not exact when using the spectral formulation of the ~9~ operator (see Appendix A), except where w1 
is a polynomial with degree small enough considering the number of collocation points. Such an 
approximation is even less accurate when using coordinate transforms or the change of variable 
introduced in Section 3. 

Eqs. (14) and (15) are also altered by another error due to the fact that the discretized equations are 
not expressed on the boundary, when using the collocation method (see Appendix A). Such an error 
can be clearly pointed out by introducing a T vector term, null everywhere except at the collocation 
points of the boundary, and writing, e.g. for the vorticity equation: 

v20-crCIJ=w+7, (61) 

with V2 the discretized form of the Laplacian operator. By using now the discretized divergence 
operator and neglecting the approximation due to the cylindrical coordinate system, one obtains 

v2(v~o)-cr(v~o)=v~7. (62) 

The solution V* o of this non-homogeneous Helmholtz equation, associated with homogeneous 
boundary conditions, is not null; the solenoidal character of w is thus no longer imposed. 

When using the velocity pressure formulation, solutions have been introduced, first in 1D [17] and 
later in 2 and 3D [12]. The basic ideas are (i) to start from the discretized form of the momemtum 
equation, (ii) to constitute for the pressure an equation in which the r term is involved and (ii) to use 
an extended influence matrix technique in order to anticipate the 7 values. Unfortunately, such an 
approach is not possible in the vorticity-vector potential formulation for which all the vector fields are 
implicitly solenoidal, in contrast to the velocity-pressure formulation for which a degree of freedom, 
the pressure, is associated with the continuity equation. Nevertheless, in order to make the tau error 
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smaller, an approach similar to the one introduced in [18] is possible; it consists of imposing at the 
boundary not only the boundary condition but a linear combination of this condition and of the partial 
derivative equation itself; although promising in different contexts the first results we have obtained 
seem disappointing. 

The vorticity correction we suggest to overcome these difficulties is specially interesting for time 
dependent problems, in order to avoid possible error cumulations; it consists of substituting for o, from 
the resolution of the Stokes problem, a vectorial field w’ equal to the vorticity definition (3). Neglecting 
again the approximations due to the cylindrical coordinate system, one can write 

“‘-w=vxvx*+v2*=v(vyq. (63) 

The drawback is that the vorticity equation is no longer exactly verified, but such an approximation is 
not so unusual. For example, with the velocity-pressure formulation, the momentum equation cannot 
be longer perfectly verified when using a basis of divergence free functions for the velocity, in order to 
impose the continuity equation [19]. Another example, very close to our problem, can be found when 
considering the Maxwell equations for which the electric and magnetic fields are implicitly divergence 
free; in [20,21] Lagrange multipliers, looking like electric and magnetic correcting potentials or some 
pressures in fluid mechanics, are introduced in the governing equations in order to consider explicitly 
the divergence free constraints. This last approach must be rejected in our case, since the vorticity- 
vector potential formulation is essentially chosen in order to avoid the treatment of the pressure and 
continuity equation. 

5.2. Numerical test 

Beyond the elementary tests of the informatical implementation of our Stokes solver, it was 
interesting to control the quality of our results in the framework of a physical problem. To this end, we 
come back to a numerical experiment of Rayleigh-Benard convection in a vertical cylinder [22], using 
the Boussinesq approximation. Let us recall [22] that the Stokes problem which has to be solved at each 
time-step results from the use of an implicit three level approximation of the time derivative, a full 
implicit evaluation of the diffusive term and an explicit Adams-Bashforth extrapolation for the 
non-linear convective term, i.e. V x (w x u) by using the conservative form. The force term w of the 
vorticity equation also involves in an implicit manner the buoyancy term Ra (V x Te,), where Ra is the 
Rayleigh number and T the temperature. For the temperature equation, solved at each time-step 

Fig. 1. Evolution 

0.0 0.1 0.2 0.3 

Time 

of the azimuthal component of the vorticity at p = 0.362, 8=0, {=O. 
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before solving the Stokes problem, the same approximations are used, both for the linear terms and for 
the non-linear term u *VT. 

Let us now describe the numerical experiment: 
- Boundary conditions: for temperature, Dirichlet conditions at the bottom and at the top of the 

cylinder (1 and 0 in dimensionless form), homogeneous Neumann conditions on the lateral wall; for 
velocity, no slip condition everywhere; 

- Initial condition: conductive state, i.e. linear variation of the temperature along 5; 
- Fluid: Prandtl number Pr = 6.7 (water); 
- Aspect ratio (ratio of the cylinder diameter to its height) Ar = 1. 

As usual in natural convection, the Rayleigh number Ra is the leading parameter of the convective 
flow. With Ar = 1, as predicted by the linear stability theory, the critical Ra is about 3800 and beyond 
the only stationary solution is 3D and constituted with one roll around a horizontal axis (e.g. 0 = n/2, 

(4 
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_,\\\ \ 
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Fig. 2. (a) Velocity in the Pl plane; maximum value = 36.168. (b) Tangential component of the velocity in the P2 plane; maximum 
value = 9.032. (c) Normal component of the velocity in the P2 plane; -28.676 s u2 c 28.676. 
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Fig. 3. (a) Temperature in the Pl plane: 0 s T c 1. (b) Temperature in the P2 plane: 0 S T s 1. 

5 = 0) and corresponds essentially 
solution obtained with Ra = 17500 
discretizations have been used: 

to the mode k = 1. As in [23], we have computed the 3D stationary 
(see also [24] for similar calculations). The following time and space 

- time step (dimensionless form using the thermal diffusivity): 10e3 
- collocation point number: 17 in p (0 G p < 0.5, J = 16), 25 in [(-OS s 5 s 0.5, I = 24) and 16 in 8. 

In Fig. 1 is presented the evolution of the vorticity (azimuthal component 02) in the plane of 
symmetry 8 = 0, IT at the particular point where p = 0.362, 5 = 0. The results are presented in Figs. 2-5 
for the 3D stationary state, obtained approximately at t = 0.3. For each of the unknowns, we give 
visualizations in the two perpendicular planes Pl: 8 = 0, rr and P2: 8 = rr/2, 3n/2. 

In Fig. 2(a) is shown the velocity in the symmetry plane Pl, for which the normal component u2 is 
null. In the perpendicular plane P2, the tangential component is given in Fig. 2(b) and the normal 
component in Fig. 2(c). As expected, the flow is essentially constituted with a roll around a horizontal 
axis, but one can observe, as in 1231, the superimposition in the plane P2 of a secondary flow consisting 
of four symmetric rolls. 

In Fig. 3(a) and (b) is shown the temperature in the planes Pl and P2. The primary flow induces a 
distortion of the isotherms clearly pointed out in Fig. 3(a); in Fig. 3(b) one observes that this distortion 
decreases with the distance to the circular wall of the cylinder. 

The results obtained for the vorticity are presented in Fig. 4. In Fig. 4(a) is shown the w2 component 
in the symmetry plane Pl, for which the tangential component is null; the results obtained in the plane 
P2 are given in Fig. 4(b), for the tangential component of the vorticity, and 4(c), for its normal 
component. One can notice in Fig. 4(b) that, as expected, the vorticity field is tangential to the walls. 

Similar results are presented in Fig. 5 for the vector potential. In Fig. 5(a) is shown the t/t2 component 
in the plane Pl, for which I,!J, and I& are null, and the results obtained in the plane P2 are given in Fig. 
5(b), for the tangential component, and Fig. 5(c), for the normal component. In contrast to the vorticity 
field, the vector potential field is clearly normal to the walls, as shown in Fig. 5(b). 

The present results have been obtained using the vorticity correction algorithm. As already 
mentioned, this correction induces that the vorticity equation is not accurately verified. In order to test 
if the correction algorithm does not have a drastic effect on the results, we have compared the solutions 
obtained with and without this correction. Quantitative results are proposed in Table 1, corresponding 
to time t = 0.3. In this table are given for the two solutions and for their deviation, the mean quadratic 
value, the maximum and minimum values of the different scalar and vector fields (for which the 
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(a) (W 

,_ _... _ -.. . . . . ..__. 

Fig. 4. (a) Vorticity in the Pl plane; -456.22 c w2 s 257.60. (b) Tangential component of the vorticity in the P2 plane; maximum 
value = 386.34. (c) Normal component of the vorticity in the P2 plane; -118.05 s o2 c 118.05. 

modulus are considered) and their localization inside the cylinder (1 G z index c Z - 1 = 23, 16 r 
index G J’ = 16, 0 c 8 index < 2 K - 1 = 31, see Eqs. (A.3) in Appendix A). Such results appear 
satisfying: 
-the relative deviations are less than 10m3 for the velocity and temperature; 
- the localizations of all the significative maxima and minima are not altered. 

6. Conclusion 

A spectral algorithm to solve the Stokes problem in vorticity-vector potential formulation and 
cylindrical geometry has been proposed. For all the non-trivial tasks: 



86 R. Pasquetti. R. Bwemba I Cmnput. Methods Appl. Md~. /+grg. ! I7 (IY’N) 7/- 00 

(4 

I 
-. 

_ . . . . . . . . . . . . . . . . ..~._ . . . . . 

i . . . . . . . . ______. __-----~., , _ I... 

r”“‘ _ _ _ _ _ _ - - _ _ - - - - - -- . _ ___ 

I________------ -_- --_______. _ 

i--------- 
_----_-__-______ 

I---- ~--------------------~ 
-_---_----_--___--__-___-A 

--_~--_-------_-_---_--~~ 

-_.---------_A______ ____ __ 

_ ____---- A___________ ____- 

-0--e- - - - - - - - - - - - _ _ - _ _-____- 

L--..- - - - - - - _ _ _ _ _ _ _ _ _ _ _______ 

J 

(b) 

Fig. 5. (a) Vector potential in the Pl plane; -0.082 s I& s 8.021. (b) Tangential component of the vector potential in the P2 
plane; maximum value-8.040. Normal component of the vector potential in the P2 plane; -0.816 G I& =S 0.816. 

- inherent to the cylindrical coordinate system, 
- involved by the use of influence matrices for the boundary conditions, 
-due to the solenoidal character of all the vectorial fields, our procedures have been described with 

going into the details. 
A numerical test of this Stokes solver has been proposed, in the framework of a 3D Rayleigh-Benard 

convection problem. In particular, it has been pointed out that the discretized forms of the equations 
induce specific problems that the use of a vorticity correction algorithm permits us to overcome in a 
satisfactory way. 

Let us also mention that the numerical method has already been employed for less academic 
problems, specially for simulations of thermal plumes and double diffusive convection, for which fine 
meshes and coordinate transforms are required [2.5,26]. 
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Table 1 
Comparison of the results obtained with and without the vorticity correction algorithm 

With correction (t = 0.3) Without correction (t = 0.3) Deviation (t = 0.3) 

OMEGA OMEGA DEV OMEGA 
MEAN: 0.17347E + 03 MEAN: 0.17347E + 03 MEAN: 0.29732E + 00 
MAX: 0.44862E + 03 (11, 1.0) MAX: 0.44862E + 03 (11, 1,O) MAX: 0.24029E + 01 (1, 1, 12) 
MIN:O.11565E+00(1,1,8) MIN: 0.74459E - 01 (1, l(8) MIN: 0.50043E - 04 (16. 1.8) 

PSI 
MEAN: 0.29028E + 01 
MAX: 0.80398E + 01 (12, 16,4) 
MIN: 0.10925E - 03 (23, 1,8) 

PSI 
MEAN: 0.29028E + 01 
MAX: 0.80396E + 01(12, 16,4) 
MIN: 0.10930E - 0.3 (23,1,8) 

DEV PSI 
MEAN: 0.14153E - 03 
MAX: 0.26631E - 03 (1, 10.12) 
MIN: 0.46641E-07 (23,1,8) 

VELOCITY VELOCITY DEV VELOCITY 
MEAN: 0.15265E + 02 MEAN: 0.15265E + 02 MEAN: 0.12604E - 03 
MAX: 0.36168E + 02 (12,9,0) MAX: 0.36169E + 02 (12,9,0) MAX: 0.28361E - 03 (13,12,4) 
MIN:K57284E-03(1,1.8) MIN: 0.57944E - 03 (1,1,8) MIN: 0.73227E - 08 (12, 1,4) 

TEMPERATURE TEMPERATURE DEV TEMPERATURE 
MEAN: 0.57841E + 00 MEAN: OS7841E + 00 MEAN: 0.63961E - 06 
MAX: 0.99674E + 00 (23,1,8) MAX: 0.99674E + 00 (23.1.8) MAX: 0.18108E - 05 (15,5,5) 
MIN: 0.32598E - 02 (1. 1,O) MIN: 0.32598E - 02 (1, 1,O) MIN: -0.18233E - 05 (9,5,3) 
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Appendix A 

Here the Chebyschev-Chebyschev collocation method that we use for solving the Helmholtz 
equation (34) in cylindrical geometry is described. 

First, let us recall that Chebyshev collocation points are not arbitrary: (cos jr/J, cos irr/Z), 0 s i S I, 
0 s j < .Z for the Gauss-Lobatto points in the (p, l) plane. If such a mapping is not suitable, it is 
necessary to use a scaling, or more generally coordinates transforms. With (r, z) defined on [-1, l]‘, 
assuming that r(p) and z(S) are two functions twice derivable and that r(p) is even in p, one can 
express the operators a,, d, and a,, with respect to a,,, a,, a, and azz; Then, Eq. (34) yields 

@L - (T)og(r,~;k)=~;3(r,~;k), OsksK, (A-1) 

with 

The coordinate transforms, as well as the change of variables (31), also act on the boundary 
conditions. In Fourier spectral space, with the superscripts 1, - 1 and 0 for the upper (z = l), lower 
(z = -1) and lateral (r= 1) part of the (p - 5) domain, from Eq. (35) we have 

&(r,z=p;k)=f”I(r;k), /.L=-l,l, O<ksK, 

W3(r=1,z;k)=f”(:(z;k), OsksK. (A.4 
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One can now proceed to the discretization of the (r, z) plane and look for the discretized form of the 
problem (A.l), (A.2). Due to the fact that W3 and r(p) are even in p, OS is even in r and so it is only 
necessary to consider the collocation points such as r 2 0. Moreover, the pseudo-singularity of the 
Laplacian implies that no collocation point can occur at the z axis (r = 0). The classical Gauss-Lobatto 
mapping has to be restricted to 

zi=cos~ z ’ 
OCiSI, 

rj=cosT 
J ’ 

OsjcJ’= 7 (J odd) . (A.3) 

The collocation method consists of expressing all the derivatives as linear combinations of the values 
at the collocation points. In z, the usual approximations of the first or second order derivatives yield 
[14], e.g. for the first order, 

f3,C;;,(i, j; k) = 2 dF,i.G3(i’, j; k) . 
j’=O 

In the r direction one takes advantage of the parity of & by writing 

(A.4) 

a,&(& j; k) = i (cII+~. + dI,,_js)03(i, j’; k) . (A.5) 
j’=O 

Such relations permit us first to express the boundary conditions (A.2); straightforward calculations 
yield equations expressing the boundary values as linear combinations of internal values: 

_ I-/d 
w3 ( 

I 

2 ’ 
j; k 

> 
= E yF(k)G3(i’, j; k) + yI(j; k) , p = -1,1 , 

i ’ = * 

W3(i, 0; k) = iii1 y,9(k)G,(i, i’; k) + yi(i; k) , 64.6) 

where the multiplicative coefficients depend on the parameters og and p3 of Eq. (A.2) and where the 
additive coefficients depend on the function f3. 

Then, the collocation method expresses that at each internal collocation point, Eq. (A.l) is exactly 
verified. Using the expressions (A.6), which permit us to take out the boundary values, for each 
harmonic k, one obtains the matrix equation 

AU+UB-uU=S. (A-7) 

The matrix U (dimension Z - 1, J’) contains all the values of i&(k) at the internal collocation points; 
A (dimension Z - 1, Z - 1) and B (dimension J’, J’) are square matrices associated with the derivative 
operators in z and r, respectively. Let us notice that matrix A does not depend on the mode number k, 
in contrast to matrix B. Both of them are real, and so the real and imaginary parts of U are solved 
independently. 

In order to solve Eq. (A.7) it is interesting to use the ‘diagonalization method’ (see e.g. [14]), 
especially for transient problems, when the solutions must be computed at each time step. Nevertheless, 
the derivative matrices usually exhibit real eigenvalues, because they are associated with the Laplacian 
operator. In Eq. (A.7), matrix B may exhibit complex eigenvalues, because it is associated with the 
operator app '+ (2~2 + l)a,/p. 

Let us suppose first that all the eigenvalues of the matrices A and B are real. With AA and A, the 
diagonal matrices of the eigenvalues, MA and MB the matrices of the eigenvectors, knowing that 
(iA = MAlAM*, A, = MB*BMB, we obtain. 

l&U! + U’A, - CTU’ = S’ ) 

with U’ = M,‘UM, and S’ = Mi’SM,. 

(A-8) 
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This matrix equation yields a set of uncoupled scalar equations which permits the calculation of U’. 
Then, one can compute U = ~~U~~~‘. 

Let us suppose now that two of the eigenvalues of B are conjugate complex, e.g. h,,i and him2, as 
well as the two associated eigenvectors “;.=1 and y:.=* of MB. Introducing the following partition of A, 
and M,: 

one can easily demonstrate that the real matrices JB and PB, 

PLz=[Pf$ (1) M’,2’] P(r) = [Re(V ) 7 B 1 -Im(V )] 1 7 (A. 10) 

are such that 

BPB=PBJB< 

Starting from the equality, 

[: ii] J(B1) = pi,” [k i] , (i’ = -I), 

(A.11) 

(A.12) 

and multiplying on the right the matrix equation, 

BM,=M,A, (A.13) 

by the complex matrix C such that, 

C= [‘i’ ~1, ~(l’=L[l i ] 
2 1 -i 

(I is the identity matrix), (A. 14) 

one obtains the result (A.ll). 
Such an approach can be extended to more than one couple of conjugate eigenvalues; each couple 

has to be replaced by a real 2 x 2 matrix to constitute the matrix JB, and the associated eigenvectors by 
their real and imaginary parts to constitute the matrix PB. Now, foilowing an approach similar to the 
classical one, one obtains 

AA,,’ + U’YB - UU” = S” , 

with U”= MAIUP, and S”= MAISPB. 

(A. 15) 

Such a matrix equation can be easily solved because it yields a set of scalar equations, uncoupled or 
at most coupled two by two. 

REMARK. In the general case, for which both A and B may have complex eigenvalues, a similar 
approach is still possible by introducing matrices JA and PA, * then, the scalar equations are uncoupled, 
coupled two by two, three by three or at most four by four. 
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