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Abstract
The simulation of the turbulent wake of a classical

car model, the Ahmed body, is addressed. The nu-
merical solver makes use of a multi-domain Fourier -
Chebyshev approximation. The LES capability is im-
plemented through the use a spectral vanishing viscos-
ity technique. Comparisons are provided between re-
sults obtained for two different values of the Reynolds
number,Re = 768000 andRe = 8322.

1 Introduction
The Ahmed body wake flow is a well known

test-case to check the capability of Reynolds Aver-
aged Navier-Stokes (RANS) or Large-Eddy Simula-
tion (LES) approaches, see e.g. Manceau et al. (2000).
This simple car model is essentially parallelepipedic
and exhibit a slant face at the rear, see e.g. Hinter-
berger et al. (2004) for a precise description. As
first shown in Ahmed and Ram (1984), depending on
the inclination of the slant different flows may be ob-
tained: For a slant angle greater than about300 one
has a large detachment of the flow whereas for smaller
angles the flow reattaches on the slant. These different
behaviors of the flow are associated to a drag crisis,
with a sudden decrease of the drag coefficient at the
critical α = 300 value. Generally, RANS and LES
studies focus on the subcritical and supercritical cases,
α = 250 andα = 350, respectively, at the Reynolds
numberRe = Uh/ν = 768000, whereh is the height
of the vehicle,U the upstream velocity andν the kine-
matic viscosity. If RANS approaches provide good re-
sults for the supercritical case, results are poor in the
subcritical situation, see Guilmineau (2007). LES ap-
proaches have provided some encouraging results in
this latter case, but none of them are fully satisfactory
with respect to the experimental data, see e.g. Howard
and Pourquie (2002), Hinterberger et al. (2004), Fares
(2006)... This is why the Ahmed wake flow consti-
tutes a valuable and challenging benchmark for RANS
or LES methodologies.

Here we are interested in a LES computation of the
subcriticalα = 250 case, using a high order spectral
method. The LES capability is implemented thanks to
a Spectral Vanishing Viscosity (SVV) method and the

bluff body is modeled through the use of a ’pseudo-
penalization’ technique. Moreover, computations have
been carried out for the usual ReynoldsRe = 768000
but also for the much smaller valueRe = 8322,
in connection with the experiment of Gillieron and
Chometon (1999), with the aim to check the sensitivity
of the flow to this control parameter. The paper shows
three parts: The numerical modeling is first described,
computational details are then given and some numer-
ical results are finally provided.

2 Numerical Modeling

The modeling is based on the incompressible
Navier-Stokes (NS) equations stabilized with a SVV
term (SVV-LES approach). The geometry is channel
like. At the initial time the fluid is a rest. Free slip
boundary conditions are considered at the upper part
of the channel. No-slip conditions are enforced at the
walls, i.e. at the ground and at the obstacle. A bound-
ary layer profile is enforced at the inlet. At the outlet
one uses a convective type soft outflow boundary con-
dition.

The numerical solver is based on a multidomain
Chebyshev - Fourier method : A domain decompo-
sition is used in the elongated direction of the flow,
in each subdomain one uses a standard collocation
Chebyshev method in thex-streamwise andy-vertical
directions, and Fourier expansions in thez-spanwise
direction which is assumed homogeneous. In time we
use a 3 steps method: (i) an explicit transport step,
based on an OIF (Operator Integration Factor) semi-
Lagrangian method and a RK4 scheme to handle the
advection term, (ii) an implicit diffusion step and (iii) a
projection step, to get a divergence free velocity field.
The time scheme is globally second order accurate.
Details may be found in Cousin and Pasquetti (2004).

A volume penalization method is used to model the
obstacle. However, no penalization term is explicitly
introduced in the momentum equation. This is im-
plicitly done through the time discretized equation, as
suggested in Pasquetti et al. (2007a). Withχ for the
characteristic function of the obstacle andC ≫ 1 a
constant coefficient, the standard volume penalization



method makes use of the penalized NS equations :

Dtu = −∇p + ν∆u − Cχu (1)

∇ · u = 0 (2)

with t for the time,u for the velocity,p for a pres-
sure term and whereDt is the material derivative. In
dimensionless form,ν is the inverse of the Reynolds
number. Clearly, outside the obstacle we recover the
NS equations, whereas inside ifC is infinite then
u = 0.

For the pseudo-penalization method we restart
from the NS equations and assume that the linear dif-
fusive term is treated implicitly and the non-linear
convective term explicitly. Then the following semi-
discrete equations must be solved at each time-step:

ν∆un+1 − α

τ
un+1 −∇pn+1 = fn+1 (3)

∇ · un+1 = 0 (4)

wheren is the time index,τ the time-step andα a
scheme dependent coefficient (α = 3/2 for a second-
order backward finite difference scheme). The pair
(un, pn) is the numerical approximation of (u, p) at
time tn andf

n+1 is an easily identifiable source term,
which also depends on the time scheme. With again
χ for the characteristic function of the obstacle, the
pseudo-penalization method consists of solving:

ν∆un+1 − α

τ
un+1 −∇pn+1 = (1 − χ̄)fn+1(5)

∇ · un+1 = 0 (6)

where χ̄ is a regularized characteristic function, in
practice obtained from local averages of the function
χ. Clearly, inside the obstacle (un+1, pn+1) solves
the steady Stokes equations with aO(1/τ) penaliza-
tion term. Then it appears that inside the obstacle
the velocity approximately vanishes, i.e. is essentially
O(τ) ≪ 1.

The LES capability is implemented through the use
of a SVV technique. The SVV method was first de-
veloped to handle with spectral methods hyperbolic
problems, typically the Burgers equation with initial
data such as a shock develops. Basically, it consists
of introducing some artificial viscosity in the high fre-
quency range of the spectral approximation. This al-
lows to stabilize the computation together with pre-
serving the exponential rate of convergence of spec-
tral methods. Using the SVV technique for LES was
first suggested in Karamanos and Karniadakis (2000)
(see also Kirby and Karniadakis (2002)). For us we
have largely developed the SVV-LES approach in the
frame of variational or collocation methods, see Xu
and Pasquetti (2004) and Pasquetti (2006a), and also
when cylindrical geometries are concerned, see Pas-
quetti et al. (2007b) and Severac and Serre (2007).
Note however that extending the SVV method from
1D Burgers to 3D Navier-Stokes is not trivial and it is

of interest to observe that at the end the algorithms dif-
fer ! In the SVV-LES version of the solver we consider
the following stabilized momentum equation:

Dtu = −∇p + ν∇ · SN(∇u) (7)

with SN a diagonal operator which depends on the
space discretization parameterN :

SN ≡ diag{1 +
ǫNi

ν
Qi

Ni
}i=1,··· ,3 (8)

where the subscripti denotes thei-direction (we use
here xi for x, y and z) and where appear the am-
plitude coefficient and spectral viscosity operator,ǫN

and QN in 1D, as introduced in the periodic case
(Fourier approximation) in Tadmor (1989) and in the
non-periodic case (Legendre approximation) in Maday
et al. (1993). Note thatQN is essentially characterized
by a threshold frequencymN upper which the SVV
acts. Typically,ǫN = O(1/N) andmN = O(

√
N ).

For the Ahmed body problem we use mappings in
the x-streamwise andy-crossflow directions. Since
the polynomial approximation holds in the reference
domain, sayΩ̂, with the mappingf : Ω̂ → Ω, the
operatorSN is defined as follows:

SN (∇u) ≡ SN (∇̂û)G (9)

whereG is the Jacobian matrix off−1 andû = u◦f .
The practical implementation of the operatorSN is

based on the introduction of SVV modified differenti-
ation matrices. From the previous definition ofSN we
indeed have:

[∇ · SN (∇u)]i =
∑

j

∂j(∂̃jui) (10)

where∂̃j = (1 + ν−1ǫNj
Qj

Nj
) ∂j .

As well known, as soon as the Reynolds num-
ber is really high, as it is for the Ahmed body flow
at Re = 768000, the boundary layers cannot be re-
solved properly by the mesh. This has motivated a
lot of researches during the three last decades on Near
Wall Modeling (NWM), see e.g. Piomelli and Balaras
(2002). The problem is especially difficult when the
flow shows large detachments. Several approaches
have been suggested, based on the boundary layer
equations or requiring to resolve joined equations, see
Wang and Moin (2002), patching techniques, DES
(Detached Eddy Simulation) methods, see Menter and
Kuntz (2003)... Such approaches have essentially been
developed for finite volume approximations and it is
not straightforward to implement them in a spectral
solver and when using a penalization type method.

The results presented in this paper have been ob-
tained with a cruder approach but which has allowed
significant improvements : (i) the characteristic func-
tion of the obstacle is not smoothed and (ii) the control
parameters of the SVV technique,ǫN andmN , are re-
laxed in the Near Wall region. This may be formulated



as:

Dtu = −∇p + ν∇ · SN (∇u) − Cχu + fBL (11)

with BL for Boundary Layer and where:

fBL = χBLν∇ · (SBL
N (∇u) − SN (∇u)). (12)

In this expressionχBL is a second characteristic func-
tion used to localize the NW adjustment, whereas the
non-regularized functionχ is used to model the bluff
body via the pseudo-penalization technique. The oper-
atorSBL

N is defined likeSN but makes use of a smaller
value ofǫN and / or a greater value ofmN . In prac-
tice, we have only increased the value ofmN within
the NW region.

3 Computational details
Computations were carried out in the domain

(−7.25, 7.25)× (0, 3.47)× (−2.35, 2.35). The height
of the car model is used as reference length and the
rear part is located atx = 0. The computational do-
main is partitioned in 8 subdomains, the code is par-
allelized and each subdomain is associated to a (vec-
torial) processor. In each one the discretization is
41×191×340, obtained with Chebyshev polynomials
of degreesNx = 40 andNy = 190 and trigonomet-
ric polynomials of degreeNz = 170. Since Gauss-
Lobatto-Chebyshev points naturally accumulate at the
end-points, subdomains interfaces have been located
at the front and rear part of the Ahmed body. In the
vertical direction, non-linear mappings are used to ac-
cumulate grid-points on the upper part of the bluff
body. The mesh, see Fig. 1, makes use of about 21
millions of grid-points.

Figure 1: Visualization of the mesh.

Starting from the fluid at rest, a computation was
first carried out on a rough mesh (discretization is
roughly divided by 2 in each direction) till a turbu-
lent flow is well established, say at the dimensionless
time t = 100 (reference time,h/U ). Then, the solu-
tion was interpolated on a fine mesh and the simulation
was continued tillt = 160. Statistics were only com-
puted during the last 40 time units of the simulation,

in order to avoid any pollution coming from the coarse
mesh computation. The dimensionless time-step was
equal toτ = 2.10−3 and the CPU time to9 s for one
time-step,i.e. approximately9.510−8s per iteration
and degree of freedom on the NEC SX8 computer of
the IDRIS center.

The SVV stabilization is governed by the thresh-
old frequencymN and the SVV amplitudeǫN . In-
dependently of the spatial (x, y, z) direction, out-
side the boundary layer we have usedmN =

√
N

and εN = 1/N . Within the boundary layer,
we have used anisotropic values, i.e.mN =
{2

√
Nx, 5

√

Ny, 4
√

Nz} and againεN = 1/N .

4 Numerical results
Results obtained at the reference Reynolds num-

ber Re = 768000 and comparisons with results ob-
tained atRe = 8322 are provided. Same meshes and
time-steps have been used in the two cases and the val-
ues of the SVV control parameters are the same, both
inside and outside the boundary layers (see previous
Section). However, for computational cost reasons we
only used 12 time units to get the statistical results at
the lower Reynolds number. As described hereafter,
the topology of the two flows are in fact close, show-
ing that the flow is not very sensitive to the Reynolds
number. More details may be found in Minguez et al.
(2008).
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Figure 2: Mean streamlines in the median planez = 0
for Re = 768000 (up) andRe = 8322 (bottom).

In Fig. 2 we compare isolines of the mean stream-



function in the vertical median planez = 0. One
clearly observes three recirculation zones, on the up-
per part of the body, over the slant and behind the ob-
stacle. Moreover, recirculation bubbles similar to the
one in the upper part occur at the lateral walls. De-
spite similar, these recirculation zones appear larger,
i.e. longer and thicker, at the lower Reynolds number.
Behind the obstacle the topology is slightly different :
The recirculation zone shows two contra-rotating re-
circulation bubbles and one observes that the lower
one is less pronounced atRe = 8322, which proba-
bly results from a thicker boundary layer developing
under the body. One should mention that no recircu-
lation regions in the front part are described in the ex-
periments atRe = 768000 of Lienhart et al. (2000).
At this point it of interest to mention the work of Kra-
jnovic and Davidson (2004, 2005), where the Ahmed
body flow at the Reynolds numberRe = 200000 is
addressed. The authors report the occurrence of a re-
circulation bubble on the roof, as well as similar ones
of the lateral sides, discuss the importance of these re-
circulation zones on the downstream development of
the flow, but cannot conclude if at the higher Reynolds
numberRe = 768000 such recirculation bubbles are
still present.
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Figure 3: Transverse velocity field atx = −0.31 for
Re = 768000 (up) andRe = 8322 (bottom).

In Fig. 3 are shown velocity fields in the plane
x = −0.31 for the two values of the Reynolds number.
Clearly, the cone like trailing vortices which escape
from the edge of the slant are similar. Note that for
the reference ReynoldsRe = 768000, comparisons

with the experiments are satisfactory, see Minguez et
al. (2007). However, at the lowRe one clearly ob-
serves additional trailing vortices close to the ground,
on each side of the Ahmed body, and contrarily to our
results such trailing vortices are still present in the ex-
periments of Lienhart et al. (2000).
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Figure 4: Transverse velocity field atx = 1.34 for
Re = 768000 (up) andRe = 8322 (bottom).

A similar visualization downstream, atx = 1.34,
is shown in Fig. 4. For the lower Reynolds number
the vortices appear (i) slightly more distant and (ii) are
located lower.

We compare in Fig. 5 mean streamwise velocity
and turbulent kinetic energy profiles. Under the body
one observes that the flow is nearly laminar for the low
Re simulation : a parabolic like profile is obtained
and the turbulent kinetic energy is close to 0. This
is not very surprising, since the local Reynolds num-
ber based on the distance from the body to the ground
equals 1445. Over the slant, one recovers the conclu-
sion inferred by the mean streamlines that the reattach-
ment is delayed.

For the higherRe comparisons with the exper-
iments of Lienhart et al. (2000) are provided in
Minguez et al. (2007), but to be self contained we
present in Fig. 6 such comparisons, for the mean
streamwise velocity and for the turbulent kinetic en-
ergy. We also point out the influence of the NW cor-
rection. Even if the SVV-LES profiles compare rather
well with the experimental data, one observes at the
beginning of the slant a deficit of streamwise veloc-
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Figure 5: Mean streamwise velocity (up) and turbulent
kinetic energy atz = 0 for Re = 8322 and Re =
768000.
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Figure 6: Mean streamwise velocity (up) and turbulent
kinetic energy atz = 0 for Re = 768000. Compar-
isons with the experiment of Lienhart et al. (2000).
Numerical results with (SVV-NW) and without relax-
ation of SVV in near wall region.

ity associated to an overestimation of the turbulent ki-
netic. The phenomenon is in fact confined in the me-
dian region, say for−0.5 < z < 0.5 and develops
from the front part of the body, downstream of the
recirculation bubble localized on the upper part, see
Fig. 2. Such a recirculation bubble is not obtained
in the simulations of Hinterberger et al. (2004) and
it is not not known if it was observed in the experi-
ments of Lienhart et al. (2000). As previously dis-
cussed, such recirculation regions are however men-
tioned in Krajnovic and Davidson (2004, 2005) where
the Ahmed body flow at the lower Reynolds number
Re = 200000 is addressed.

Of course, the results obtained here at the lower
value of the Reynolds number are certainly more reli-
able, since the SVV stabilization plays here a less im-
portant role. This may be visualized by computing the
dissipation rate of the turbulent kinetic energy. In the
frame of the present SVV-LES formulation it reads,
see Pasquetti (2006b) :

ε ≈ 2ν(< S : S̃ > − < S >:< S̃ >) . (13)

In this expressionS is the usual strain rate tensor andS̃
a similar tensor but computed with the SVV modified
differentiation matrices :

Sij = (∂iuj + ∂jui)/2 , S̃ij = (∂̃iuj + ∂̃jui)/2 . (14)
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Figure 7: Dissipation rate and its viscous component
at x = 1.51, z = 0.

In Fig. 7 we show the profile ofε in the vertical
median plane atx = 1.51. The viscous part is also
presented. As can be seen, the global (SVV) dissipa-
tion and its viscous part are roughly in a ratio 2. On
the contrary, forRe = 768000 the SVV dissipation is
two order of magnitude greater than its viscous part.

5 Conclusions
The basics of the SVV-LES approach used to com-

pute the Ahmed body flow have been summarized : a
spectral solver is used, the obstacle is modeled with a
pseudo-penalization technique and the LES capability



is implemented thanks to the Spectral Vanishing Vis-
cosity method. Our NW treatment is based on a relax-
ation of the SVV threshold frequency and the charac-
teristic function of the obstacle is not smoothed.

Results have been presented for both the reference
Reynolds numberRe = 768000 and the much lower
one,Re = 8322. Despite the similarity of the two
flows, some differences were observed: The recircula-
tion regions are larger at low Reynold and additional
trailing vortices occur on the lateral parts. More details
are provided in Minguez et al. (2008). For the high
Reynolds flow we have outlined that the numerical re-
sults are in fairly agreement with the experiments, de-
spite the fact that some discrepancies remain above the
slant, probably associated to the occurrence of a recir-
culation zone in the front part of the car model.
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