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Abstract. Using the cubature points based triangular spectral element method and
isoparametric mappings, we provide accuracy results for elliptic problems in non polyg-
onal domains. Two regimes of convergence, associated to the bulk and to the boundary
of the computational domain are clearly discerned and an efficient way to define the
isoparametric mapping is proposed.
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1 Introduction

The present paper extends the study presented in [14], concerned with high order Finite
Element Methods (FEMs) in non polygonal domains, in order (i) to provide a deeper anal-
ysis of the accuracy results and also (ii) to propose a way to improve them. More precise-
ly, in [14] it was pointed out that when isoparametric mappings are used to approximate a
curved boundary, then the convergence of the approximate solution to the exact one, with
respect to the polynomial degree, shows two regimes, the first one being associated to the
bulk of the domain and the other being controlled by the boundary part. Here we want to
clarify this point. Moreover, even if focusing on a particular type of isoparametric map-
ping, a curved boundary can be approximated in many different ways. This paper pro-
vides a way to define the mapping that yields better accuracy results than the way used
in [14].
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As in [14], the study is restricted to isoparametric mappings, i.e., we do not consider
different treatments of curved domains like those involved with transfinite mappings,
with the Isogeometric FEM or with the Nurbs Enhanced FEM, see [15] and references
herein. Despite the fact that isoparametric mappings show some failures, especially in
general an approximate description of the boundary, they indeed remain simple to im-
plement and moreover preserve some important properties of Spectral Element Methods
(SEMs), like the diagonal feature of the mass matrix. Moreover, from results first present-
ed in [12], where different isoparametric mappings are compared, we restrict ourselves to
isoparametric mappings based on the resolution of Partial Differential Equations (PDEs),
namely the Laplace equation (harmonic extension) or the equation of linear elasticity.

With respect to some other high order FEMs developed for triangular elements, e.g.,
the Fekete-Gauss triangular spectral element method (TSEM) [11], the Fekete (resp. Gauss)
points of the triangle being used as interpolation (resp. quadrature) points, as in [14]
here we use the “Cubature TSEM”, i.e., only based on the so-called cubature points,
see [2,4,7,10]. Because with the Cubature TSEM the interpolation and quadrature points
coincide, the mass matrix is diagonal, so that this interesting property of the usual SEM
is recovered. Indeed, in quadrangles the usual SEM makes use of the tensorial product of
Gauss-Lobatto-Legendre (GLL) points both for interpolations and quadratures. This may
be useful, e.g., to address evolution problems with explicit time schemes or to easily de-
fine high order differentiation operators [9]. Indeed, in both cases the required inversion
of the mass matrix can be trivially achieved.

High order FEMs are generally based on a polynomial approximation of total degree
N in each triangular element, the number of degrees of freedom being then equal to (N+
1)(N+2)/2. However, it is known that in the frame of Lagrangian methods one cannot
find a single set of n=(N+1)(N+2)/2 points, with 3N points on the triangle boundary
and (N−1)(N−2)/2 inside, such that an enough powerful quadrature rule exists [5,16].
To overcome this difficulty, as first suggested in [2] one should enrich the space PN(T̂),
of the polynomials of total degree N defined on the reference triangle (master element) T̂,
with bubble functions of degree N′>N, i.e., to make use of the space PNUbPN ′−3 where b
is the unique bubble function of P3(T̂). This allows to increase the number of inner points
up to (N′−1)(N′−2)/2 while keeping equal to 3N the number of boundary points. Up
to now, satisfactory results have been obtained with N′=N+1 for 1<N <5, N′=N+2
for N = 5 and N′ = N+3 for 5< N < 9 [7]. Such values of N′ are those obtained when
requiring that the integrals of polynomials of degree N+N′−2 are exactly computed,
from a theoretical result that traces back to the 70’s [1], but they could be decreased from
the less demanding criterion recently proposed in [3].

Note that when using the so-called “condensation technique”, one first computes the
solution at the nodes located at the sides of the triangular elements and then locally its
inner point values. As a result, the size of the algebraic system increases linearly with
N, rather than in N2. Moreover, the system only shows a O(N) condition number and
using N′>N yields a negligible increase of the computational cost. Although using the
Cubature TSEM, with implementation of the condensation technique, the results of the
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present study are not specific to this approach.
Finally, it should be mentioned that although the present study focuses on the two-

dimensional (2D) case, similar behaviors should be expected in the 3D one.

2 Numerical evidence of the two regimes of spectral convergence

We consider the elliptic equation −∆u+u= f in the star domain introduced in [14]. In
the xy plane, this domain, say Ω, has its boundary Γ parameterized by the polar angle θ,
such that:

x=cosθ

(

1+0.3cos(7θ)
)

,

y=sinθ

(

1+0.2cos(7θ)
)

.

A P1 mesh of this star domain is shown in Figure 1. One notices that domain Ω is espe-
cially interesting as curved domain to carry out an accuracy study, since it shows both
concave and convex parts and moreover cannot be exactly approximated by polynomials.
In Ω , we consider exact solutions of the form uex=cos(ax)cos(ay), where a is a parameter
that allows to control the oscillatory behavior of the solution. The source term f as well
of the boundary conditions, say of Dirichlet u|Γ = g or of Robin type (∂nu+u)|Γ = g, are
defined accordingly. Note that the implementation of Robin as well as non homogeneous
Neumann conditions is not straightforward when using the Cubature TSEM. Indeed, at
the edges of the elements the cubature points do not coincide with Gauss points, so that
a different set of points, e.g., the GLL points, should be used to compute the boundary
integrals, see [13, 14] for details.

Figure 1: P1-mesh of the star shaped computational domain.

Figure 2 shows the max norm of the error versus the polynomial approximation de-
gree for three different values of the coefficient a, i.e. a ∈ {5,10,20}. In Figure 2 (left)
the results obtained (i) with the harmonic extension and (ii) if assuming polygonal the
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Figure 2: For a∈ {5,10,20}, max norm of the error versus the polynomial degree, when using the harmonic
extension isoparametric mapping and for the polygonal domain, with Dirichlet (left) and Robin conditions
(right).

computational domain are compared. The polygonal domain, say Ω1 of boundary Γ1, is
simply defined by the P1 mesh, so that no isoparametric mapping is involved. Critical
values of the polynomial degree are clearly pointed out. For a given, below these val-
ues the convergence curves coincide, meaning that the error is associated to the bulk of
the domain, whereas beyond them the influence of the isoparametric mapping is clearly
pointed out. One observes that the decrease of the error remains exponential but with a
smaller convergence rate. Moreover, more oscillatory is the solution greater is the crit-
ical polynomial degree, say N = 3 (a = 5), N = 5 (a = 10) and N ≥ 8 (a = 20). Indeed, a
smooth exact solution can be easily captured, so that the critical N is low. Beyond it, the
convergence rate is controlled by the boundary fitting.

The influence of the boundary condition is shown in Figure 2 (right), where a Robin
condition is used. The analysis carried out for the Dirichlet case keeps true but the errors
are greater, since additional sources of error are present, e.g., the approximation of the
normal to the boundary.
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Figure 3: For a∈ {5,10,20}, max norm of the error versus the polynomial degree, when using the harmonic
extension and the linear elasticity isoparametric mappings with Dirichlet (left) and Robin conditions (right).



R. Pasquetti / J. Math. Study, 53 (2020), pp. 237-246 241

The present results are not specific to the harmonic extension mapping. Thus, Figure
3 points out that the results obtained with the harmonic extension and with the linear
elasticity mappings compare well, both in the Dirichlet and Robin cases. Recall however
that, differently to the linear elasticity mapping, in some extreme cases the harmonic
extension may fail to define an isoparametric mapping [8].

3 A better choice to define the isoparametric mapping

Let us now investigate a way to improve the accuracy results. For a given type of isopara-
metric mapping, e.g., the harmonic extension, to fully define the mapping one has first
to define the boundary nodes of the curved edges. An implicit definition of the isopara-
metric mapping is thus obtained. In [12, 14], for a given curved triangular element the
boundary nodes on the curved edge are chosen at the intersections of the lines that join
the opposite vertex and the nodes obtained from the linear P1 mesh, see Figure 4 (left).
This is relevant when transfinite mappings are involved, especially the bending proce-
dure that we introduced in [6], but is less justified when PDEs based isoparametric map-
pings are chosen. Indeed, the approximation of the curved boundary at one edge of the
element has not to depend on the localization of the vertex opposite to this edge. Follow-
ing what is generally done for quadratic element, one may define the nodes of the curved
boundary by stating that their orthogonal projections onto the sustaining straight edge
coincide with the nodes that result from the linear P1-mappping, see Figure 4 (right).

Figure 4: Definition of the boundary nodes by the opposite vertex (at left) and by orthogonal projection (at
right).

Using the harmonic extension, let us revisit the elliptic problems previously intro-
duced, again with a= {5,10,20} in the exact solution. The improvement obtained when
defining the boundary nodes by orthogonal projection is shown in Figure 5, for the
Dirichlet (at left) and Robin (at right) problems. For the most oscillating exact solution,
the curves coincide in the Dirichlet case and only slightly differ for the Robin one. This
is however untrue for the less oscillating solutions, i.e., when for large N the error is
controlled by the boundary region.

For a given element T with one edge on the boundary, let us denote by ~x and ~y the
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Figure 5: For a∈{5,10,20} and when using the harmonic extension, max norm of the error with the boundary
nodes defined by the opposite vertex (label V) and by projection (label P), for the Dirichlet problems (at left)
and for the Robin problems (at right).

images of ~X, in the reference element T̂, obtained with the PN and P1 mappings, respec-

tively. Then, with ~d=~x−~y (~d, displacement vector) one has:

~d(~X)=
n

∑
i=1

Li(~X)~di

for any ~X∈T̂, where the Li are the Lagrange polynomials based on the cubature nodes ~Xi,

and with ~di≡ ~d(~Xi). The only Lagrange polynomials that do not cancel on an edge of the

reference element are those associated to this edge. Moreover, at the vertices ~d=~0. Thus,
at the curved edge the sum ∑i resumes to the N−1 inner points and one can substitute
to the 2D Lagrange polynomials Li(~X) the 1D ones, say lj(X), X∈ [−1,1], 0< j< N (for
simplicity, implicit rescaling and renumbering are assumed).

Introduce now the outwards unit vector ~n orthogonal to the edge to be curved and

the outwards unit vectors~nj parallel to the ~dj. Then, with d= |~d|:

~d·~n=∑
j

djlj(X)~nj ·~n .

Defining the boundary nodes by projection means choosing ~nj =~n for any j. Then, in
the local coordinates system associated to the edge, the deformation amplitude d is just a
polynomial of degree N. Thus, for N=2 one obtains a symmetric arc of parabola.

4 Detailed analysis of the accuracy results

Let us introduce the computational domain Ω2 obtained by substituting to the edges
at the boundary symmetric arcs of parabola. As explained previously, see Section 3, if
we define the boundary nodes by projection, then the boundary Γ2 of Ω2 is perfectly
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Figure 6: Top panel: Cubature nodes for the the domain Ω (label PN), as obtained with the harmonic extension
(the boundary nodes being defined by projection). Comparison to those associated the polygonal domain Ω1
(label P1). Central panel: Cubature nodes for the domains Ω (label PN) and Ω2 (label P2-PN), as obtained
with the PN mapping associated to the harmonic extension. For the domain Ω2, the curved boundary is
just a symmetric arc of parabola. Bottom panel: Cubature nodes obtained for the domain Ω2 with the P2-
subparametric mapping (label P2) and with the PN mapping (label P2-PN). Inside the element the nodes differ
but they coincide at the element boundary.
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described. Using Ω2 as computational domain should indicate if the loss of accuracy,
with respect to polygonal domains, comes from the boundary of the domain.

Moreover, for this very specific domain one can also make use of the P2-mapping usu-
ally used for quadratic finite elements. Thus, if we assume that the element A1A2A3 has

its edge A2A3 on the boundary, then the P2-mapping is simply defined by ~d=4hλ2λ3~n,
where h is the distance of the parabola summit to the straight edge and (λ1,λ2,λ3) the
usual barycentric coordinates. If using the former strategy and, e.g., the harmonic exten-
sion, the Jacobian determinant is a polynomial of degree 2N−2, whereas for the latter
one it is of degree 2, independently of N. This should indicate if the source of inaccuracy
comes from a non satisfactory quadrature in the curved triangles. For a specific element,
we show in Figure 6 the various distributions of nodes that can be obtained.

Using the exact solution and parametrization introduced in Section 2, the convergence
curves obtained with the harmonic extension and the P2-mapping are given in Figure 7,
for the Dirichlet (at left) and Robin (at right) problems. The results obtained for the do-
main Ω and for the polygonal domain Ω1 are also presented. Clearly, for the Dirichlet
problem using the P2-subparametric mapping allows to recover an optimal accuracy, at
least till N=7. In the Dirichlet case the loss of accuracy with respect to the polygonal do-
main Ω1 is thus linked to the surface integrals inside the curved elements. For the Robin
problem, that additionally involves boundary integrals, the result is different since one
clearly observes an influence of the boundary region both for the P2 and PN mappings.
Moreover, the curves obtained with the two mappings nearly coincide. Indeed, for the
piece-wise parabolic domain Ω2 the numerical quadratures involved with the P2 and PN

mappings are exactly the same. In the Robin case, the loss of accuracy is thus governed
by the evaluations of the integrals at the edges. Moreover, we have checked that this also
holds (i) in the Neumann case and (ii) for the Poisson equation.

One may then think to enhance the accuracy of the computations of the boundary
integrals. It can be done simply by increasing the number quadrature points, since, as
explained in [13], to compute the boundary integrals we make use of Gauss points rather
than the cubature points located on the edges. We have checked this approach, using
2N+1 rather than N+1 GLL points, without finding any improvement. Indeed, the
failure comes from the polynomial approximation of the kernel of the integral, but this
approximation remains associated to the cubature points.

To summarize, in the Dirichlet case it is required (i) to exactly describe the geom-
etry (like e.g. done with the isogeometric FEM) and additionally (ii) to make use of a
subparametric mapping to recover an optimal accuracy, i.e., to recover the exponential
convergence rate obtained with the polygonal domain Ω1, but this remains insufficient
in the Robin case. This lack of convergence is due to the point-wise evaluation of the
side Jacobian which is not polynomial, except in the particular case where it is constant
(polygonal domain), so that even for the piece-wise parabolic domain Ω2 the convergence
rate remains suboptimal. Thus, with N > 1 one can compute the surface of the domain
Ω2 up to the machine accuracy, but not its perimeter, see Tab. 1.

Finally, for both the Dirichlet and Robin problems one observes that the curves labeled
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Table 1: Relative error in the computation of the surface of Ω2 and of its perimeter when using the harmonic
extension. Similar results are obtained with the P2-mapping.

N 2 4 6 8

Surface 9.6 10−16 4.1 10−16 4.1 10−16 2.4 10−14

Perimeter 5.4 10−4 2.0 10−6 2.0 10−8 2.7 10−10
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Figure 7: Computational domain Ω2, a=5 in the exact solution; Max norm of the error when using the harmonic
extension (label P2-PN) and with the P2-subparametric mapping (label P2) for the Dirichlet problem (at left)
and for the Robin problem (at right). The results obtained for the domain Ω (label PN) and for the polygonal
domain Ω1 (label polygon) are also presented.

PN and P2-PN (obtained for the domains Ω and Ω2, respectively) are close to be parallel,
meaning that when describing exactly the geometry the accuracy is improved but not the
convergence rate.
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