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Abstract. This paper addresses the well-known dispersion effect that mass lumping induces when solving
transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The
method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent
mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the
method are also discussed.
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1. Introduction. Lumping the mass matrix is a routine procedure in the finite element commu-
nity when solving the heat equation, the wave equation and the time-dependent transport equation.
This technique consists of replacing the consistent mass matrix by a diagonal surrogate usually
referred to as the lumped mass matrix. This process avoids having to invoke sophisticated linear
algebra arguments to invert the consistent mass matrix at each time step. The mantra in the litera-
ture dedicated to mass lumping is that mass lumping produces explicit algorithms for the transport
and the wave equations that are algebra-free.

The lumped mass matrix is generally obtained by using a quadrature formula instead of exact
integration. It is usually believed that lumping is a benign operation since it does not affect the
overall accuracy of the method provided the quadrature is accurate enough. For instance, it is
known that using quadrature formulas that are exact for P2k−2 polynomials is sufficient to preserve
the overall accuracy of the Galerkin method when solving the wave equation or some eigenvalue
problems on simplex meshes, [1, 7, 12, 11, 20]. Although it is convenient numerically, it is well-
known that lumping the mass matrix induces dispersion errors that have adverse effects when solving
transport-like equations, see e.g., [5, 6, 14, 22]. The objectives of the present work are as follows:

i We propose a simple correction technique based on the lumped mass matrix that does not involve
sophisticated linear algebra and that has the same anti-dispersive effects as the consistent mass
matrix. Although this correction technique relies on a matrix series, we show theoretically and
numerically that only considering the first term in this series is enough to correct the dominating
dispersion error.

ii We introduce a novel quasi-lumping technique for P2 finite elements, where the new P2 quasi-
lumped mass matrix is triangular. We show also that the proposed mass correction technique is
efficient when using this P2 quasi-lumped mass matrix.

iii We investigate higher-order extensions of the correction method and demonstrate satisfactory
results for the P3 approximation.

To the best of our knowledge, the correction technique and the quasi-lumping technique for P2 finite
elements are original.

This paper is organized as follows. The anti-dispersive effects of the consistent P1 mass matrix on
the transport equation are analyzed in §2. We focus in this section on the linear transport equation
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in one space dimension. Most of the material therein is standard. A mass correction technique based
on the lumped mass matrix is presented in §3. The method has the same algebraic complexity as
when using the lumped mass matrix. It is also proved for P1 elements in one space dimension that
using one correction term only is enough to obtain the same anti-dispersive effect as when using the
consistent mass matrix. The mass correction method is further evaluated numerically in two space
dimension on P1 finite elements in §4. A new P2 quasi-lumping technique is introduced in §5. To
the best of our knowledge, the P2 quasi-lumping technique presented in §5.3 and §5.4 and the mass
correction technique introduced in §3 are original. Higher-order suboptimal variants of the method
are considered in §6. Conclusions are reported in §7.

2. One-dimensional heuristics. The objective of this section is to analyze in details the
effects of mass lumping in one space dimension for the linear transport equation using piece-wise
linear finite elements. The material herein is certainly not new, see e.g., [6, 14, 17, 22], but it is
useful to comprehend the rest of the paper. Let us consider the following one-dimensional transport
equation in the domain Ω = (a, b)

(2.1) ∂tu + β∂xu = 0, u(x, 0) = u0(x), (x, t) ∈ (a, b)× R+,

equipped with periodic boundary conditions. The velocity field β is assumed to be constant to
simplify the presentation.

2.1. Galerkin linear approximation. Let us partition Ω = (a, b) into N intervals [xi, xi+1],
i = 0, . . . , N − 1. Let hi+ 1

2
:= |xi+1 − xi| be the diameter of the cell [xi, xi+1]. We introduce

the family {ψ0, . . . , ψN} composed of continuous and piecewise linear Lagrange functions associated
with the nodes {x0, . . . , xN}, and we define the P1 finite element space

(2.2) Xh = {v ∈ C0
#(Ω;R), v|[xi,xi+1] ∈ P1, i = 0, . . . , N − 1} = span(ψ0, . . . , ψN ),

where C0
#(Ω;R) denotes the space of the real-valued functions that are periodic and continuous

over Ω. Let u0 be a reasonable approximation of u0, say the Lagrange interpolate or L2-projection
thereof. An approximate solution to (2.1) is constructed by means of the Galerkin technique. We
seek u ∈ C1((0, T );Xh) so that u(0) = u0 and

(2.3)

∫
Ω

(∂tu+ β∂xu)v dx = 0, ∀v ∈ Xh.

The approximate solution u(x, t) is expanded with respect to the basis {ψ0, . . . , ψN} as follows:

u(x, t) =
∑N
j=0 uj(t)ψj(x). A system of ordinary differential equations is obtained by testing (2.3)

with the members of the basis {ψ0, . . . , ψN}.
Upon testing (2.3) with ψi, i = 0, . . . , N , the term involving the time derivative gives

(2.4)

∫
Ω

∂tu(x, t)ψi(x) dx =

N∑
j=0

Mij∂tuj(t),

where the coefficients of the so-called mass matrix are

(2.5) Mij :=

∫ xi+1

xi−1

ψi(x)ψj(x) dx =


1
6hi± 1

2
if j = i± 1

1
3 (hi− 1

2
+ hi+ 1

2
) if j = i

0 otherwise
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with the convention that h− 1
2

= hN− 1
2

and hN+ 1
2

= h 1
2
. The transport term in (2.3) is handled as

follows: ∫
Ω

ψi(x)β∂xu(x, t) dx = −
∫ xi+1

xi−1

βu(x, t)∂xψi(x) dx

=
β

2
(ui+1(t) + ui(t))−

β

2
(ui(t) + ui−1(t)),(2.6)

giving

(2.7)

∫
Ω

ψi(x)β∂xu(x, t) dx = β
1

2
(ui+1(t)− ui−1(t)),

with the convention u−1(t) = uN−1(t) and uN+1(t) = u1(t).
Recalling that we are looking for a periodic solution, the above computation shows that the

vector (u0(t), . . . , uN−1(t))T ∈ RN solves the following system of ordinary differential equations:

(2.8)

i+1∑
j=i−1

Mij∂tuj(t) = −β 1

2
(ui+1(t)− ui−1(t)), 0 ≤ i, j < N,

where uN (t) = u0(t) and u−1(t) = uN−1(t). The above system can be written in matrix form as
follows:

(2.9) M∂tU(t) = F (U(t)),

with U(t) := (u0(t), . . . , uN−1(t))T , and the entries of F are defined by Fi(U) := −β 1
2 (ui+1− ui−1),

0 ≤ i < N , and where M is the consistent mass matrix defined in (2.5) taking into account the
periodicity in the first and last lines.

2.2. Dispersion and mass lumping. It is common in the literature to approximate (2.9)
in time by means of explicit time stepping. To avoid having to solve linear systems involving the
mass matrix at each time step, it also common to simplify (2.8) by lumping the mass matrix. Mass
lumping can be shown in one space dimension to be equivalent to approximate the consistent mass
matrix by using the following trapezoidal quadrature rule:

(2.10)

∫ s

r

f(x) dx ≈ (s− r)1

2
(f(r) + f(s)).

This quadrature is exact for linear polynomials. Using this quadrature, the mass matrix coefficients
can be approximated as follows:

(2.11)

∫ xi+1

xi−1

ψi(x)ψj(x) dx ≈ 1

2
(hi− 1

2
+ hi+ 1

2
)δij =: M ij ,

where δij is the Kronecker symbol. The so-called lumped mass matrix M thus computed is diagonal.
Upon denoting hi := 1

2 (hi− 1
2

+ hi+ 1
2
) and replacing the consistent mass matrix by the lumped mass

matrix, we obtain a new approximate form of transport equation as follows:

(2.12) ∂tũi(t) + β
ũi+1 − ũi−1

2hi
= 0.

The approximation thus constructed is second-order accurate. More precisely, the consistency error
of (2.12) is characterized by the following
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Proposition 2.1. Provided the mesh is uniform, of mesh size h, the dominating term in the

consistency error of (2.12) at the grid points {xi}0≤i≤N is dispersive and is equal to β h
2

6 ∂xxxu(xi, t).
Proof. Using xi±1 = xi±h and upon using the Taylor expansion u(xi±h, t) = u(xi)±h∂xu(x, t)+

1
2h

2∂xxu(xi, t)± 1
6h

3∂xxxu(xi, t) + 1
24h

4∂xxxxu(xi, t) +O(h5), we infer that

∂tu(xi, t) + β
u(xi+1, t)− u(xi−1, t)

2h
= (∂tu + β∂xu)(xi, t) + β

h2

6
∂xxxu(xi, t) +O(h4).

This proves the statement of the proposition and proves also in passing that the equivalent limit
equation is

(2.13) ∂tũ+ β∂xũ+ β
h2

6
∂xxxũ = 0,

which is clearly dispersive.
Remark 2.1. The key observation here is that the consistency error induced by mass lumping is

second-order and dispersive.
Remark 2.2. The approximation (2.12) is exactly what a finite volume and a second-order finite

difference approximation would give on a uniform mesh.

2.3. Anti-dispersive effect of the mass matrix. Let us now consider (2.8) where the mass
matrix is not approximated, and let us redo the consistency analysis for this discrete system.

Proposition 2.2. Provided the mesh is uniform, of mesh size h, the dominating term in the

consistency error of (2.8) at the grid points {xi}0≤i≤N is equal to β h4

180∂xxxxxu(xi, t).
Proof. Using the definition of the mass matrix (2.5), the discrete system (2.8) can be re-written

as follows:

1

h

i+1∑
j=i−1

Mij∂tuj = ∂tui +
1

6
(∂tui−1 − 2∂tui + ∂tui+1).

Using Taylor expansions at xi we obtain

1

h

i+1∑
j=i−1

Mij∂tu(xj , t) = ∂tu(xi, t) +
h2

6
∂txxu(xi, t) +

h4

72
∂txxxxu(xi, t) +O(h6)

= ∂tu(xi, t)− β
h2

6
∂xxxu(xi, t)− β

h4

72
∂xxxxxu(xi, t) +O(h6).

By proceeding again as in the proof of Proposition 2.1 and using u(xi ± h, t) = u(xi)± h∂xu(x, t) +
1
2h

2∂xxu(xi, t)± 1
6h

3∂xxxu(xi, t) + 1
24h

4∂xxxxu(xi, t)± 1
120h

5∂xxxxxu(xi, t) +O(h6), we infer that

(2.14)
1

h

i+1∑
j=i−1

Mij∂tu(xj , t) + β
u(xi+1, t)− u(xi−1, t)

2h

= ∂tu(xi, t) + β∂xu(xi, t)− β
1

180
h4∂xxxxxu(xi, t) +O(h6),

thereby proving the statement. This also prove in passing that the equivalent limit equation is

(2.15) ∂tũ+ β∂xũ− β
h4

180
∂xxxxxũ = 0,

which is again dispersive. Note however that the dispersion error is now forth-order whereas it is
second-order in (2.13).

When comparing Proposition 2.1 and Proposition 2.2 we now understand that accounting prop-
erly for the mass matrix limits the dispersion error of the centered approximation.
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Remark 2.3. It is remarkable that the result of Proposition 2.2 holds in higher-space dimension.
For instance, it is shown in the appendix A that the result holds on quadrangular grids with Q1

elements, independently of the transport direction.
Remark 2.4. The consistent mass matrix does not have anti-dispersive effect on the wave equa-

tion ∂ttu − c2∂xxu = 0, however, a simple computation as above shows that using 1
2 (M + M) is

the right combination to do the job with P1 finite elements on uniform grids. See [5] and references
therein for other details.

2.4. Fourier analysis. Fourier analysis is useful to evaluate numerical dispersion, and the
purpose of this section is to revisit the statements of Proposition 2.1 and Proposition 2.2 from the
Fourier analysis perspective. Let k be a real number and assume that u0(x) = αeikx, i2 = −1, then
the exact solution to (2.1) is u(x, t) = αeik(x−βt). Let us now compare this solution to what (2.8)
and (2.12) give, respectively.

Proposition 2.3. If the initial data to (2.8) and (2.12) is {αeikxi}0≤i≤N , the solution to (2.8)
and (2.12) is {αeik(xi−c1(k)t)}0≤i≤N and {αeik(xi−c2(k)t)}0≤i≤N , respectively, where

(2.16) c1(k) = 3β
sin(kh)

kh(2 + cos(kh))
, c2(k) = β

sin(kh)

kh
.

Proof. This result is not new (see e.g., [14, p. 136]), but we give the proof for the sake of
completeness. Let us assume that the solution to (2.8) is given by {αeik(xi−c1(k)t)}0≤i≤N , where
c1(k) is yet to be determined. Then by inserting this expression into the following equivalent form
of (2.8)

∂tui +
1

6
(∂tui−1 − 2∂tui + ∂tui+1) + β

ui+1 − ui−1

2h
= 0,

we infer that the following must hold:

0 = −ikc1(k)(1 +
1

6
(eikh − 2 + e−ikh)) + β

1

2h
(eikh − e−ikh))

= −ikc1(k)
1

3
(2 + cos(kh)) + iβ

1

h
sin(kh),

which is equivalent to the expression of c1(k) in (2.16). The same argument gives c2(k).

Figure 2.1. Phase velocities

The graph of the phase velocities c1(k)/β and c2(k)/β for k ∈ [0, π/h] are shown in Figure 2.1.
This figure shows that phase velocity c2(k)/β is closer to the perfect value 1 than c1(k)/β, i.e., (2.8)
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transports the high frequencies better than (2.12), thereby confirming again that the consistent
mass matrix has anti-dispersive properties. The anti-dispersive effect of the consistent mass matrix
is illustrated numerically on the one-dimensional linear transport equation in the Appendix B.1.

3. Mass matrix corrections. Since solving the mass matrix at each time step may be per-
ceived as a drawback of the finite element method, we describe in this section a technique that has
the same anti-dispersive effect as the consistent mass matrix but whose complexity is nearly the
same as when using the lumped mass matrix.

3.1. An abstract result. The generic form of the system (2.9) can be re-written as follows:

(3.1) ∂tU +M−1FU = 0,

and our goal in this section is to approximate M−1 efficiently. To this end we set M = M +M −M ,
where we assume that M is easy to invert, e.g., M can be the lumped mass matrix. At this point
one may factorize M on the left, right, or symmetrically as follows:

M = M(I +M
−1

(M −M)),(3.2)

M = (I + (M −M)M
−1

)M,(3.3)

M = M
1/2

(I +M
−1/2

(M −M)M
−1/2

)M
1/2
.(3.4)

Note that the symmetric factorization is legitimate provided M is symmetric and non-negative, and

it of interest only if M is diagonal, since M
1/2

is easy to compute in this case. Depending on
factorization which is chosen we introduce the following matrices:

(3.5) Ar = M
−1

(M −M), As = M
−1/2

(M −M)M
−1/2

, or Al = (M −M)M
−1
.

We then obtain the following three possible representations for M−1:

M−1 = (I +Ar +A2
r + · · · )M−1

,(3.6)

M−1 = M
−1/2

(I +As +A2
s + · · · )M−1/2

,(3.7)

M−1 = M
−1

(I +Al +A2
l + · · · ).(3.8)

Of course these representations are valid only if the series are convergent, which is the case if and
only if the spectral radius of A is less than 1.

Lemma 3.1. The spectra of Ar, As (provided M is symmetric and non-negative) and Al are
identical.

Proof. That the spectra of Ar and Al are identical is the consequence of the standard result
that the spectra of CD and DC are identical for all square matrices C, D. Let us now assume
that M is symmetric and non-negative, then As is symmetric, thus diagonalizable. Let Λs and Vs
be the matrices of the eigenvalues and eigenvectors of As, respectively. Then using the definition
AsVs = VsΛs we infer that

M
−1/2

AsM
1/2
M
−1/2

Vs = M
−1/2

VsΛs

which in turn implies ArM
−1/2

Vs = M
−1/2

VsΛs, thereby proving that the spectra of Ar and As are
identical.

One of the key results of this paper is that the P1 lumped mass matrix in one space dimension
and in higher dimensions is such that the above series are convergent, and that using only one term
in the series, i.e., 1 + A, is enough to compensate exactly the dominating dispersive effects of mass
lumping.
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3.2. One-dimensional argumentation. We show in this section that using (1 + A)M
−1

is
enough to correct the dispersive effects of mass lumping in one space dimension with P1 elements.
Note that in one space dimension and with P1 finite elements Ar = As = Al when the mesh is
uniform.

Proposition 3.2. Provided the mesh is uniform, of meshsize h, the dominating term of the
consistency error at the grid points {xi}0≤i≤N is O(h4) when using only one correction in (3.6).

Proof. Observe that M = hI and Ar = I − h−1M . This implies that (I +Ar)M
−1

= h−1(2I −
h−1M). The approximation equation is

∂tui +
β

2h

i+1∑
j=i−1

[
2δij − h−1Mij

]
(uj+1 − uj−1) = 0,

giving

∂tui +
β

2h

(
1

6
(ui−2 − ui+2) +

4

3
(ui+1 − ui−1)

)
= 0.

Using Taylor expansions at xi, we obtain that

∂tu(xi, t) +
β

2h

(
1

6
(u(xi−2, t)− u(xi+2, t)) +

4

3
(u(xi+1, t)− u(xi−1, t))

)
= ∂tu(xi, t) + β∂xu(xi, t) +O(h4),

which completes the proof. Note that this result is similar to what has been obtained in (2.14) when
using the consistent mass matrix.

The above result is illustrated in the Appendix B.2 in one space dimension.

4. Application to P1 finite elements. We show in this section that the observations made
in one space dimension generalize to two space dimensions. We restrict ourselves to two space
dimensions for the sake of simplicity, but most of what is said hereafter generalizes to higher space
dimensions.

4.1. The lumped P1 mass matrix. Let Ω be a two-dimensional polygonal domain and con-
sider an affine finite element mesh Th of Ω composed of simplices. Consider a cell in the mesh,
K ∈ Th, and let S1,S2,S3 be the three vertices of K and φ1, φ2, φ3 be the associated local nodal
shape functions. The local mass matrix MK associated to K is defined to be

(4.1) MK
ij :=

∫
K

φi(x)φj(x) dx = |K|ΦTi WΦj ,

where {Φ1,Φ2,Φ3} is the canonical basis of R3 and the matrix W is given by

(4.2) W =

 1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

 .
Once MK is computed for all K ∈ Th, the mass matrix M is obtained by the so-called assembling
procedure.

The standard mass lumping process advocated in the literature consists of using the following
approximate quadrature rule:

(4.3)

∫
K

f(x) dx = |K|(1

3
f(S1) +

1

3
f(S2) +

1

3
f(S3)), ∀f ∈ P1,
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to approximate
∫
K
φi(x)φj(x) dx. The local lumped matrix M

K
obtained by this technique is

(4.4) M
K

ij := |K|ΦTi WΦj ,

where the matrix W , computed by means of the above quadrature rule is

(4.5) W =

 1
3 0 0

0 1
3 0

0 0 1
3

 .
Of course, since W is diagonal, M

K
is diagonal and the assembled matrix M is also diagonal.

The popularity of the lumped P1 mass matrix, M , comes from the fact that it can be shown
to be a satisfactory alternative of the consistent mass matrix, M , in terms of approximation and
convergence rate, at least for the heat and the wave equation, [1, 7, 20]. That the matrix W is
indeed a good approximation of W is also expressed in the following

Proposition 4.1. The three eigenvalues of W
−1

(W −W ) are (0, 3
4 ,

3
4 ).

4.2. Numerical illustrations. We illustrate the efficiency of the correction algorithm in this
section. We show in particular that using one term in the correction series is sufficient to remove
the dominating dispersion error. Let us consider the scalar transport equation

(4.6) ∂tu + β·∇u = 0, u(x, 0) = u0(x),

in the unit disk Ω = {(x, y) ∈ R2,
√
x2 + y2 < 1}. The velocity field is a solid rotation of angular

velocity 2π, i.e., β = 2π(−y, x). The initial field u0 is defined by

(4.7) u0(x) =
1

2

(
1− tanh

(
(x− x0)2 + y2

a2
− 1

))
, x0 = 0.4, a = 0.3.

We solve (4.6) with the Galerkin method with P1 finite elements on a mesh composed of 6293
P1 nodes. The time stepping is done with the standard RK4 method (RK3 and RK4 techniques
are known to be stable under a CFL condition for the linear transport equation, see e.g., [16]); this
ensures that the error induced by the time approximation is small compared to the spatial error.
The solution is computed at T = 2, i.e., after two revolutions.

The results are shown in Figure 4.1. The solution obtained with mass lumping is shown in
4.1(a). The dispersive effect is clear and needs not be commented. We show in Figure 4.1(b) and

(a) 1 (b) 1 +A (c) 1 +A+A2 +A3 +A4

Figure 4.1. Mass matrix corrections on a 2D Delaunay triangulation, P1 finite elements, h ≈ 0.025 (6293 P1

nodes), T = 2.

4.1(c) the solutions obtained by replacing the inverse of the lumped mass matrix by (1 + A)M
−1
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and (1 + A + A2 + A3 + A4)M
−1

, respectively, where A := M
−1

(M −M). The effect of applying
only one correction to the lumped mass matrix is spectacular, the dispersive waves have completely
disappeared.

h Consist. Mass 4 corrections 1 correction 0 correction

0.1000 9.653E-2 1.003E-1 1.488E-1 4.444E-1
0.0500 1.990E-2 1.999E-2 3.191E-2 1.827E-1
0.0250 5.790E-3 5.706E-3 6.460E-3 6.369E-2
0.0125 2.120E-3 2.046E-3 1.186E-3 1.747E-2
0.0100 1.644E-3 1.576E-3 7.644E-4 1.124E-2

Table 4.1
L2-norm of error, P1 finite elements, T = 1. Computations done with the consistent mass matrix, the lumped

mass matrix corrected four times, and with the lumped mass matrix with no correction.

We have verified in tests not reported here that the solution obtained with four corrections is
visually indistinguishable from that obtained by inverting exactly the consistent mass matrix. To
make this statement more precise, we solve the above linear transport problem on various grids (h =
0.1, 0.05, 0.025, 0.0125, 0.01) and we compute the L2-norm of the error at T = 1. The convergence
results are reported in Table 4.1. For all practical purposes, the errors obtained by using the
consistent mass matrix and by applying four corrections to the lumped mass matrix are identical.
This series of tests clearly shows that correcting the lumped mass matrix four times is enough to
obtain results that cannot be distinguished from those computed with the consistent mass matrix.

Let us finish this section by justifying the convergence of the Neumann expansion in (3.6). This
is done by evaluating the spectral radius of the mass correction.

Proposition 4.2. The spectral radius of A := M
−1

(M −M)) is less than 3
4 .

Proof. Let (Y, λ) be an eigenpair of M
−1

(M−M)), i.e., Y T (M−M)Y = λY TMY . Then, using
the fact that the mesh is affine, we infer

|Y T (M −M)Y | = |
∑
K∈Th

Y TK (M
K −MK)YK | ≤

∑
K∈Th

|K|‖YK‖‖W −W‖‖YK‖,

where YK is the vector of the three components of Y that are associated to the vertices of the
triangle K and where ‖ · ‖ denotes the Euclidian norm. Owing to Proposition 4.1 we infer that
‖W −W‖ ≤ 1

4 , which in turns implies

|Y T (M −M)Y | ≤ 3

4

∑
K∈Th

1

3
|K|‖YK‖2 =

3

4

∑
K∈Th

|K|Y TKM
K
YK =

3

4
Y TMY.

In conclusion |Y T (M −M)Y | = |λ|Y TMY ≤ 3
4Y

TMY , which concludes the proof.

Table 4.2 shows the largest eigenvalue of A := M
−1

(M −M)) on the five Delaunay grids used
in the convergence tests above. This table confirm that the spectral radius of A is indeed uniformly
bounded by 0.75.

h 0.1 0.2 0.025 0.0125 0.01

ρ(A) 0.7428 0.7472 0.7488 0.7496 0.7497
Table 4.2

Spectral radius of A := M
−1

(M −M)) vs. h
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5. P2 finite elements. We now extend the above considerations to higher-order finite-elements.
We particularly focus our attention in this section on the P2 mass matrix.

5.1. Terminology. The terminology “mass lumping” comes from the operation that consists
of replacing the consistent mass matrix by a diagonal matrix whose entry in row i is the sum of
all the entries of the consistent mass matrix in row i. When using Lagrange finite elements, this
operation is equivalent to choosing an approximate quadrature based on the interpolation points to
compute the diagonal surrogate. This statement is made more precise in the following

Proposition 5.1. Mass lumping and using the interpolation points as quadrature points to
approximate the mass matrix give the same diagonal matrix.

Proof. This result is standard, but we give the proof for completeness. Clearly, the proposition

holds for the assembled matrices M and M if it holds for the local matrices MK and M
K

. Let us
then focus on the local matrices.

Let K̂ be the reference finite element and let Â1, . . . ÂL be the Lagrange nodes on K̂ and
φ̂1, . . . φ̂L be the corresponding nodal shape functions. The following quadrature rule holds

(5.1)

∫
K̂

f̂(x̂) dx̂ = |K̂|
L∑
i=1

ωif̂(Âi) := IK̂(f̂), ∀f̂ ∈ span(φ̂1, . . . , φ̂L),

provided the weights are defined as follows:

ωi =
1

|K̂|

∫
K̂

φ̂i(x̂) dx̂, ∀i ∈ {1, . . . , L}.

Let MK be the local mass matrix associated to element K; then, the sum of the entries of MK

in row i is computed as follows:

L∑
l=1

MK
il =

L∑
l=1

∫
K

φi(x)φl(x) dx =

∫
K

φi(x)

L∑
l=1

φl(x) dx =
|K|
|K̂|

∫
K̂

φ̂i(x̂) dx̂ = |K|ωi.

where we used
∑L
l=1 φl(x) = 1. Now let us use the quadrature (5.1) defined above to approximate

the entries of MK ; in other words, with obvious notations let us evaluate IK(φiφj):

(5.2) IK(φiφj) =
|K|
|K̂|
IK̂(φ̂iφ̂j) = δij |K|ωi.

In conclusion we have δij
∑L
j=1M

K
ij = IK(φiφj) for all element K ∈ Th, which in turns implies that

the result holds also for assembled matrices M and M . This concludes the proof.
In the remainder of this paper we are going to use approximate quadratures to construct ap-

proximations of the consistent mass matrix. Some of these quadratures do not satisfy (5.1) and
consequently the techniques that we are going to introduce are not mass lumping in the sense of
Proposition 5.1. We are nevertheless going to make an abuse of language by referring to these
alternative approaches as quasi-lumping.

5.2. The P̃k construction. The above mass lumping technique is known to work properly
only for the P1 finite element in the class of the simplicial finite elements with the Lagrange nodes
equally distributed on a uniform lattice on the reference elements, see §4. For instance mass lumping
fails for P2 finite elements in two space dimensions. Although the argumentation is standard, let us
recall why mass lumping fails for the P2 finite elements. H1-conformity and elementary symmetry
considerations impose that there is a unique choice for the Lagrange nodes of the P2 finite element;
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Figure 5.1. P2 Lagrange finite element in two space dimensions

this unique set of nodes is shown in Figure 5.1. The interpolation points are the vertices {S1,S2,S3}
and the mid-edges {M1,M2,M3}.

The quadrature based on this set of nodes is the following:

(5.3)

∫
K

f(x) dx =
|K|
3

(f(M1) + f(M2) + f(M3)), ∀f ∈ P2.

By virtue of Proposition 5.1 it immediately follows that the lumped mass matrix is singular since
the weights at the vertices are zero. A similar result holds in three space dimensions.

Following the work of [8], it is now well understood that the mass lumping method can be
salvaged by selecting the Lagrange nodes on a non-uniform lattice on the reference element and by
augmenting the polynomial space Pk with extra degrees of freedoms so that the resulting augmented
space P̃k produces a quadrature with positive weights. For instance, it is shown in [4, 9, 10] that the
following space P̃2 := P2⊕span(b) is suitable for this purpose, where b(x) := λ1(x)λ2(x)λ3(x) is the
bubble function and λ1(x), λ2(x), λ3(x) are the barycentric coordinates over K. The quadrature
associated with this polynomial space is as follows:

(5.4)

∫
K

f(x) dx = |K|( 1

20
(f(S1) + f(S2) + f(S3))

+
2

15
(f(M1) + f(M2) + f(M3)) +

9

20
f(G)), ∀f ∈ P4,

where G is the barycenter of K. Higher-order versions of these ideas are proposed in [4, 9, 13, 19].
We propose in the next two sections two quasi-lumping techniques for P2 finite elements that

do not require the extra barycentric degree of freedom invoked by P̃2.

5.3. Construction of a diagonal P2 quasi-lumped mass matrix. We present in this
section a first attempt at quasi-lumping the mass matrix based on the standard Lagrange P2 nodes,
see Figure 5.1, and using a diagonal matrix.

Again, the local mass matrix MK is given by the expression

(5.5) MK
ij :=

∫
K

φi(x)φj(x) dx = |K|ΦTi WΦj ,

where (Φ1, . . . ,Φ6) is the canonical basis of R6 and the matrix W is given by

(5.6) W =



1
30 − 1

180 − 1
180 − 1

45 0 0

− 1
180

1
30 − 1

180 0 − 1
45 0

− 1
180 − 1

180
1
30 0 0 − 1

45

− 1
45 0 0 8

45
4
45

4
45

0 − 1
45 0 4

45
8
45

4
45

0 0 − 1
45

4
45

4
45

8
45


.
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The coefficients of W are equal to |K|−1
∫
K
φi(x)φj(x) dx, 1 ≤ i, j ≤ 6, where φ1, . . . , φ6 are the

local nodal shape functions.
Since we have seen above that (5.3) is the only possible quadrature that is exact for P2 poly-

nomials, we propose to lower our expectations by constructing a convex combination between (4.3)
and (5.3) as follows:

(5.7)

∫
K

f(x) dx = γ
|K|
3

(f(S1) + f(S2) + f(S3)) + (1− γ)
|K|
3

(f(M1) + f(M2) + f(M3)).

This gives a family of integration rules parameterized by γ that are exact only in P1 for all γ ∈ (0, 1).
Since there are polynomials in P2 that are not integrated exactly with these rules, this choice
certainly forbids any hope that the resulting method can be optimal in terms of approximation, but
we nevertheless persists in this direction. The quasi-lumped local mass matrix that results from this
strategy is the following:

(5.8) M
K

ij := |K|ΦTi WΦj ,

where

(5.9) W :=

[
1
3γI3 0

0 1
3 (1− γ)I3

]
,

where I3 is the 3×3 identity matrix.
Our goal is to use W to approximate the matrix W defined in (5.6). The matrix W is a good

approximation of W if the spectral radius of W
−1

(W −W ) is smaller than 1. The spectral radius of

W
−1

(W −W ) can be computed exactly with the help of Maple. We show in Figure 5.2 the spectral

radius of W
−1

(W −W ) as a function of γ in the range 0.01 ≤ γ ≤ 0.79. The minimum is reached
for γ ≈ 1

5 and the largest eigenvalue has a modulus less than 0.875 in the range γ ∈ [0.08, 0.25]. In
conclusion, any value of γ in the range [0.08, 0.25] gives a quasi-lumped mass matrix for which all
the Neumann series (3.6)–(3.8) converge. We have observed numerically that γ = 1

12 gives the best
performance.

Figure 5.2. Spectral radius of W
−1

(W −W ).

Since the quadrature rule (5.7) is not exact in P2, we cannot expect the mass correction method
introduced in §3 to converge optimally with a fixed number of corrections. We illustrate this state-
ment by performing the converge tests on the linear transport equation described in §4.2. We solve
the linear transport problem on various grids (h = 0.2, 0.1, 0.05, 0.025, 0.0125) using γ = 1

12 , and we
compute the L2-norm of the error at T = 1. The results are reported in Table 5.1.
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h Consist. Mass var. corrections 4 corrections

0.2 5.053E-2 5.536E-2 2 3.846E-2
0.1 1.522E-2 1.226E-2 4 1.226E-2
0.05 2.676E-3 2.773E-3 6 4.966E-3
0.025 5.589E-4 5.865E-4 8 3.577E-3
0.0125 1.446E-4 1.486E-4 10 3.448E-3

Table 5.1
L2-norm of error at T = 1, P2 finite elements. Computations done with the consistent mass matrix, the quasi-

lumped mass matrix corrected a variable number of times, and the quasi-lumped mass matrix corrected four times.

In conclusion, although the proposed quasi-lumped mass matrix does not give an optimally con-
vergent method when corrected a fixed number of times, we claim that the matrix M is nevertheless
a good preconditioner of M and can certainly be used as such within any Krylov-based iterative

technique. This claim in confirmed by Table 5.2 where we report the condition number of M
−1
M

as a function of the mesh size h for the five grids used in the above convergence tests and for two
values of γ.

h 0.2 0.1 0.05 0.025 0.0125

Cond(M
−1
M)

γ = 1
12 5.910 5.952 5.995 6.015 6.022

γ = 1
5 5.342 5.384 5.420 5.435 5.440

Table 5.2
Condition number of M

−1
M vs. h

5.4. Construction of a triangular P2 quasi-lumped mass matrix. Since it does not
seem to be possible to construct a diagonal quasi-lumped P2 mass matrix with optimal convergence
properties, see §5.3, we propose to consider the next best alternative which is to construct a triangular
approximate mass matrix. Recall that triangular matrices are as easy to invert as diagonal matrices.
This possibility has never been explored yet, to the best of our knowledge.

We propose to consider the following non-symmetric bilinear quadrature rule

(5.10)

∫
K

u(x)v(x) dx ≈ |K|UTWV.

where the matrix W is defined by

(5.11) W :=


α 0 0 γ δ δ
0 α 0 δ γ δ
0 0 α δ δ γ
0 0 0 β 0 0
0 0 0 0 β 0
0 0 0 0 0 β

 ,

and with

UT := (u(S1), u(S2), u(S3), u(M1), u(M2), u(M3),(5.12)

V T := (v(S1), v(S2), v(S3), v(M1), v(M2), v(M3).(5.13)

We now try to make this formula as accurate as possible. Let φ1, φ2, φ3 be the P2 nodal
shape functions associated with the vertices S1,S2,S3, and φ4, φ5, φ6 be the nodal shape functions
associated with the mid-edges M1,M2,M3.
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Lemma 5.2. The formula (5.10) is exact for all (u, v) ∈ P2×P0 ∪ P0×P1 provided the following
holds:

(5.14) α+ γ + 2δ = 0, β =
1

3
, ∀γ, δ ∈ R.

(i) (5.10) is also exact for all (u, v) ∈ span(φ1, φ2, φ3)×P1 if (5.14) holds and

(5.15) δ + γ = − 1

30
, ∀γ ∈ R.

(ii) (5.10) is exact for all (u, v) ∈ P1×P1 if (5.14) holds and

(5.16) δ + γ = 0, ∀γ ∈ R.

Proof. (1) The condition
∫
K
φi(x)1 dx = 0, i = 1, 2, 3 implies α + γ + 2δ = 0. The condition∫

K
φi(x)1 dx = 1

3 |K|, i = 4, 5, 6 implies β = 1
3 . In conclusion (5.10) holds for all (u, v) ∈ P2×P0

provided α + γ + 2δ = 0 and β = 1
3 . Moreover one easily verifies that

∫
K

1λi(x) dx = 1
3 |K| is

computed exactly if α+ β + γ + 2δ = 1
3 , which with β = 1

3 gives again α+ γ + 2δ = 0. This implies
that (5.10) holds also for all (u, v) ∈ P0×P1. Note that these identities hold for the (singular) lumped
mass matrix for which α = γ = δ = 0 and β = 1

3 .
(2) The condition

∫
K
φi(x)λi(x) dx = 1

30 |K|, i = 1, 2, 3 implies α+ 1
2δ+ 1

2δ = 1
30 . In conclusion

we have

α+ γ + 2δ = 0, α+ δ =
1

30
, β =

1

3
,

which is clearly equivalent to (5.14)-(5.15). Let i ∈ {1, 2, 3} and let {j1, j2} = {1, 2, 3}\{i}, then
let us show that (5.10) evaluates exactly

∫
K
φi(x)λj1(x) dx and

∫
K
φi(x)λj2(x) dx, which will con-

clude the proof of (i). Since the symmetries of the triangle K imply that
∫
K
φi(x)λj1(x) dx equals∫

K
φi(x)λj2(x) dx, we have∫

K

φi(x)λj1(x) dx =
1

2

∫
K

φi(x)(λj1(x) + λj2(x)) dx

=
1

2

∫
K

φi(x)(λi(x) + λj1(x) + λj2(x)) dx− 1

2

∫
K

φi(x)λi(x) dx

= −1

2

∫
K

φi(x)λi(x) dx.

The conclusion follows readily owing to the fact that (5.10) satisfies all the symmetries used above
and (5.10) evaluates exactly

∫
K
φi(x)1 dx and

∫
K
φi(x)λj(x) dx, i, j = 1, 2, 3.

(3) The proof of (ii) is similar. We observe first that (5.10) evaluates exactly
∫
K
λi(x)λi(x) dx,

i ∈ {1, 2, 3} provided

α+ δ +
1

2
β =

1

6
,

which together with the results of step (1) imply (5.14)-(5.16). Proving then that (5.10) evaluates
exactly

∫
K
λi(x)λj(x) dx for j = {1, 2, 3}\{i} can be done by using the symmetry properties of the

quadrature as above.
We now have two families of bilinear integration rules parameterized by γ. Our goal is to use W

to approximate the matrix W defined in (5.6). We expect W to be a good approximation of W if



CONSISTENT VS. LUMPED MASS MATRIX 15

(a) Quadrature family (5.14)-(5.15) (b) Quadrature family (5.14)-(5.16)

Figure 5.3. Spectral radius of W
−1

(W −W ) as a function of γ.

the spectral radius of W
−1

(W −W ) is smaller than 1. We show in Figure 5.3(a) the spectral radius

of W
−1

(W −W ) as a function of γ in the range −0.06 ≤ γ ≤ 0.01 for the integration rule defined by
(5.14)-(5.15). The minimum is reached for γ ≈ − 1

21 and the range γ ∈ [−0.042,−0.03] is acceptable.

The particular value γ = − 1
30 has the advantage of simplifying the expression of W since δ = 0 for

this value. We have found numerically that indeed the choice γ = − 1
30 works very well. We show in

Figure 5.3(b) the spectral radius of W
−1

(W −W ) as a function of γ in the range 0.015 ≤ γ ≤ 0.15
for the integration rule defined in (5.14)-(5.16). The minimum is reached for γ ≈ 1

41 and the range
γ ∈ [0.03, 0.07] is acceptable. We have found numerically that the pair γ = 1

30 works well for the
integration rule (5.14)-(5.16).

Another important property to consider is to make sure that the quasi-lumped mass matrix is
definite positive. This property holds as soon as the elementary matrix W is definite positive. We

verify that W is definite positive by inspecting the smallest eigenvalue of 1
2 (W +W

T
).

Proposition 5.3. (i) With the choice of parameters (5.14)-(5.15), the smallest eigenvalues of
1
2 (W +W

T
) is

(5.17) min

(
1

5
+

1

2
γ − 1

30

√
17− 90γ + 450γ2,

1

5
+

1

2
γ − 1

60

√
65− 360γ + 4500γ2

)
(ii) With the choice of parameters (5.14)-(5.16), the smallest eigenvalues of 1

2 (W +W
T

) is

(5.18)
1

6
+

1

2
γ − 1

6

√
1− 6γ + 45γ2.

One can verify that matrix W is definite positive for the two choices (5.14)-(5.15) and (5.14)-(5.16)
in the ranges considered above, γ ∈ [−0.042,−0.03] and γ ∈ [0.03, 0.07], respectively.

Remark 5.1. The mass matrix M preserves the block structure of the local mass matrices M
K

.
For instance M is upper triangular if the vertices of the mesh are enumerated before the mid-edges.

Remark 5.2. The idea of using non-diagonal matrices to represent a quadrature rule can be
traced back to [24, p.5] and [18, (A.2)]. The novelty of the technique presented here is that we are
using a triangular matrix to represent a quadrature rule involving the product of two functions. The
resulting bilinear form is obviously not a scalar product.

Remark 5.3. Instead of considering the bilinear quadrature rule defined by (5.11), one may
think of using the transpose of the matrix W thus giving a lower triangular quadrature rule. The
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counterpart of Lemma 5.2 follows immediately by permuting the polynomial spaces. One can then
define another quasi-lumped mass matrix. This leads to two quasi-lumped matrices, say M l and
Mu, where subscripts l and u are for lower or upper triangular. Let us then define the matrix

M = ( 1
2M

−1

l + 1
2M

−1

u )−1. This new matrixM is clearly symmetric and can be used as a quasi-lumped

mass matrix: the matrix vector product M
−1
y is realized by solving Muzu = y and M lzl = y and

by setting M
−1
y = 1

2 (zu+zl). The resulting algorithm is of course a little more time consuming, but
the quasi-lumped mass matrix is now symmetric. This route has been investigated, but the results
are somewhat disappointing. It seems that M l is not nearly as effective as Mu when applying
the dispersion correction formula with one term only. The two matrices give similar results after
four corrections though. This phenomenon is not yet well understood. We conjecture that it is
important to associate the largest polynomial space with the test functions in the quadrature rule
(5.11); the quadrature associated with M l is exact in P0×P2, where P0 is the test space and P2 the
trial space, whereas the quadrature associated with Mu is exact in P2×P0. Note finally that there

is no local counterpart to the matrix M = ( 1
2M

−1

l + 1
2M

−1

u )−1 that defines a bilinear quadrature
with properties similar to those mentioned in Lemma 5.2.

5.5. Numerical illustrations/Galerkin. We illustrate the efficiency of the construction pro-
posed above by testing it on the linear transport equation (4.6)-(4.7) with the quadrature rule (5.14)-
(5.15) using γ = − 1

30 , (i.e., α = 1
30 , β = 1

3 , δ = 0). Note in passing that the value γ = − 1
30 is such

that the three smallest eigenvalues of 1
2 (W +W

T
) are equal (see (5.17)). In this case we have

(5.19) W =

[
1
30I3 − 1

30I3
0 1

3I3

]
The space approximation is done by using the Galerkin method on a mesh composed of 6293 P2

nodes. The time stepping is done with the standard RK4 method to ascertain that the error in time
is negligible with respect to the spatial error. The solution is computed at T = 2, i.e., after two
revolutions. The results are shown in Figure 5.4. The solution obtained with quasi-lumping is shown
in 5.4(a). The dispersive effect associated with quasi-lumping is clear. We show in Figure 4.1(b) and

(a) 1 (b) 1 +A (c) 1 +A+A2 +A3 +A4

Figure 5.4. Mass matrix corrections on 2D Delaunay triangulation, P2 finite elements, h ≈ 0.05 (6293 P2

nodes), T = 2.

4.1(c) the solutions obtained by replacing the inverse of the quasi-lumped mass matrix by (1+A)M
−1

and (1 + A + A2 + A3 + A4)M
−1

, respectively, where A := M
−1

(M −M). The conclusion is the
same as for P1 finite elements: Applying one correction to the quasi-lumped mass matrix is enough
to correct the dispersion effect.

We finish this section by performing convergence tests on the linear transport problem (4.6)-
(4.7). The space approximation is done by using the Galerkin method on various grids (h =
0.2, 0.1, 0.05, 0.025, 0.0125). The time stepping is done with RK4 with CFL = 0.7. The L2-norm
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h Consist. Mass 4 corrections 1 correction 0 correction

0.2 5.053E-2 3.726E-2 9.744E-2 3.045E-1
0.1 1.522E-2 1.159E-2 2.171E-2 1.467E-1
0.05 2.676E-3 2.231E-3 4.076E-3 4.610E-2
0.025 5.589E-4 4.658E-4 1.465E-3 1.233E-2
0.0125 1.446E-4 1.091E-4 2.756E-4 3.094E-3

Table 5.3
L2-norm of error at T = 1, P2 finite elements. Computations done with the consistent mass matrix, the

quasi-lumped mass matrix corrected four times, and the quasi-lumped mass matrix with no correction.

of the error is computed at T = 1. The results are reported in Table 5.3. It is remarkable that
the technique using the uncorrected quasi-lumped mass matrix is second-order convergent. To the
best of our knowledge, the technique presented here is the first convergent quasi-lumping technique
for P2 finite elements using only the standard Lagrangian nodes. It is also remarkable that for all
practical purposes, the results obtained by using the consistent mass matrix and by applying four
mass corrections to the quasi-lumped mass matrix are identical. This test confirms the observations
already made with P1 finite elements.

5.6. Numerical illustrations/Galerkin+Stabilization. Since it is known that the Galerkin
method is suboptimal for linear first-order PDE’s, we now investigate the performance of the mass
correction when used jointly with stabilization techniques.

We consider first the so-called edge stabilization technique, [3]. Edge stabilization consists of
augmenting the Galerkin formulation with a penalty term acting on the jump of the normal derivative
of the unknown across all the internal faces of the mesh. Upon denoting Xh the finite element space,
the edge stabilization technique consists of seeking u ∈ C1((0, T );Xh) so that

(5.20)

∫
Ω

(∂tu+ β·∇u)v dx+ χ
∑
F∈Fi

h

h2
F ‖β‖L∞(∆F )

∫
F

[[∂nu]][[∂nv]] dx = 0, ∀v ∈ Xh,

where F ih is the collection of the internal faces, hF is the diameter of F , and ∆F is the union of the
two elements sharing the interface F . The coefficient χ is user-dependent; we have chosen χ = 0.01
in the computations reported below. The time stepping is again explicit and done using RK4. The
edge stabilization bilinear form is made explicit. The resulting scheme is known to be stable under
the usual CFL condition in [2]. We used CFL = 0.7 in the computations reported in Table 5.4. By

h Consist. Mass 4 corrections 1 correction 0 correction

0.2 2.904E-2 2.809E-2 8.269E-2 2.927E-1
0.1 5.633E-3 5.078E-3 1.523E-2 1.429E-1
0.05 5.707E-4 5.694E-4 2.417E-3 4.473E-2
0.025 8.421E-5 9.582E-5 6.911E-4 1.178E-2
0.0125 1.338E-5 1.764E-5 2.161E-4 2.918E-3

Table 5.4
L2-norm of error at T = 1, P2 finite elements with edge stabilization.

comparing Table 5.3 and Table 5.4, we observe that, as expected, the edge-stabilized technique is
more accurate than the Galerkin technique. The results from Table 5.4 show that the technique
with the quasi-lumped mass matrix corrected four times has roughly the same convergence rate as
the technique using the consistent mass matrix.



18 J.L. GUERMOND, R. PASQUETTI

We now consider the so-called entropy viscosity technique introduced in [15]. The method
consists of adding a nonlinear dissipation to the Galerkin formulation to stabilize the method:

(5.21)

∫
Ω

(∂tu+ β·∇u)v dx+
∑
K∈Th

∫
K

νh(u)∇u·∇v dx = 0, ∀v ∈ Xh,

The nonlinear viscosity is proportional to an entropy residual and is at most equal to c1‖β‖L∞(K)hK/k,
where hK is the diameter of K, k is the polynomial degree of approximation, and c1 = 1/4k. We
solve the linear transport equation (4.6)-(4.7) with the initial data u0(x) = 1 if ‖x − x0‖ ≤ a and
u0(x) = 0 otherwise. We use the quadrature rule (5.14)-(5.15) with γ = − 1

30 to evaluate the quasi-
lumped mass matrix. Again, the mesh is composed of 6293 P2 nodes, the time stepping is done with
the standard RK4, and the solution is computed at T = 2. The results are shown in Figure 5.5.
We observe that using one mass matrix correction only is enough to remove most of the dispersion
effect induced by the quasi-mass lumping.

(a) 1 (b) 1 +A (c) 1 +A+A2 +A3 +A4

Figure 5.5. Mass matrix corrections on 2D Delaunay triangulation, P2 finite elements with entropy viscosity
stabilization, h ≈ 0.05 (6293 P2 nodes), T = 2.

We have also performed tests with the quadrature (5.14)-(5.16) using γ = 1
30 , (i.e., α = 1

30 ,
β = 1

3 , δ = − 1
30 ). The performance of the method is similar to what has been described above. We

do not report these tests here for the sake of brevity.
The tests shown in this section confirm that the mass correction method is robust with respect

to both the edge stabilization and the entropy viscosity technique.

6. PN extensions. We finish this paper by exploring mass lumping for higher-order simplicial
Lagrange finite elements in two space dimensions. We are going to restrict ourselves to PN finite
elements, N ≥ 3, and investigate whether it is possible to find lattices on the reference simplex that
give lumped mass matrices with positive weights and determine whether the mass matrix correction
from §3 can be applied. Of course the quadrature associated with mass lumping in PN is exact
in PN only, which is suboptimal since quadratures must be exact in P2N−2 to yield optimal error
estimates in the energy norm, [1, 7, 20, 11].

6.1. P3 approximation. We begin with the P3 approximation. As generally advocated in
the spectral element literature, the interpolation points for P3 Lagrange finite elements must be
the images, by appropriate mappings, of the four one-dimensional Gauss-Lobatto Legendre points
{−1,−1/

√
5, 1/
√

5, 1} on the edges of the triangle and the center of gravity of the triangle. The
quadrature associated with these points is exact in P3 only, but since all the weights are positive
(suboptimal) mass lumping is possible for this finite element. Furthermore we have verified numer-

ically that the spectral radius of the local matrix W
−1

(W −W ) approximately equals 0.702 < 1,
thereby confirming that the mass matrix correction algorithm proposed in §3 is convergent.
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Let us now illustrate the mass correction algorithm on the two-dimensional transport problem
defined in §4.2. We have performed computations on four grids (h = 0.157, 0.0753, 0.0575, 0.039)
with the consistent mass matrix, the lumped mass matrix, and the lumped mass matrix corrected
up to 8 times. The computations have been done with the symmetric form of the mass correction
matrix A, see (3.7), but this particular choice does not affect the spectral radius of A as shown in
Lemma 3.1. The results are reported in Table 6.1.

h Consist. Mass 8 correct. 4 correct. 2 correct. 1 correct. no correct.

0.157 5.1078E-2 5.0866E-2 4.9149E-2 5.5802E-2 1.2791E-1 1.1185E-1
0.0753 5.7404E-3 5.7940E-3 7.4701E-3 1.7421E-2 4.8163E-2 4.2324E-2
0.0575 1.6734E-3 1.6168E-3 2.3904E-3 8.2706E-3 2.9825E-2 2.2364E-2
0.039 4.5458E-4 4.3058E-4 1.0650E-3 4.2248E-3 1.5986E-2 1.5216E-2

Table 6.1
L2-norm of error at T = 1, P3 finite elements.

As can be observed in Table 6.1, the convergence rate obtained with the standard mass lumping
is less than second-order (as expected), whereas it is close to fourth-order with the consistent mass
matrix. One observes significant improvements with the mass correction algorithm. This is remark-
able since the quadrature based on the interpolation points is exact in P3 and is not in P2N−2=4.
Moreover, as already observed for the P2 approximation, the mass correction algorithm gives slightly
better accuracy than when using the consistent mass matrix when the number of mass corrections
is larger enough. This seems to indicate that the convergence of the Neumann series (3.7) always
occurs from below.

6.2. Higher-order variants. Let us now consider higher-order polynomials, i.e., N ∈ {4, 5, 6}.
For N ∈ {4, 5} we consider the interpolation points given by the “warp & blend ” technique from
[23] and, for N = 6, we use the so-called Fekete points. The list of the Fekete points in the reference
triangle for N ∈ {3, 6, · · · , 18} can be found in [21]. For both these families, the interpolation
nodes coincide with the Gauss-Lobatto-Legendre points on the edges of the reference triangle. The
Lebesgue constant for both these families is small; for instance, it is less than 10 for polynomial of
degrees at most 12.

The first difficulty we encounter when computing the weights of the quadrature associated with
the warp & blend points is that the weights at the vertices are negative for N = 4. The second
problem is that the spectral radius of the local matrix A grows with N and is larger than 1 for
N ≥ 4 as shown in Table 6.2 for N ∈ {3, 4, 5, 6}.

N 3 4 5 6
ρ(A) 0.702 1.36 6.33 12.33

Table 6.2
Spectral radius of the local matrix A.

The above negative results show that standard mass-lumping fails for N > 3 in two space
dimensions for standard Lagrange elements. This situation can be fixed by using the augmented
spaces P̃N mentioned in §5.2. This idea has been shown to work up to N = 6 in two space dimensions
and up to N = 4 in three space dimensions in [4]. We think however that the quasi-lumping technique
that we developed for P2 finite elements in §5.4 can be extended to higher-order polynomial degree.
We think in particular that it should be possible in principle to construct triangular quasi-lumped
mass matrices as alternatives to the P̃N construction.
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7. Conclusions. A new mass correction technique has been introduced to correct the disper-
sion error of mass lumping. The method has been shown to have the same anti-dispersive effect as
when working with the consistent mass matrix. Two quasi-lumping techniques for P2 finite elements
have been introduced. The P2 quasi-lumping technique based on the idea of using a triangular
lumped mass matrix, as presented in §5.4, is new to the best of our knowledge. The mass cor-
rection technique introduced in §3 has been shown to perform very well with P1 lumping and P2

quasi-lumping. It seems that for these two elements using only one correction term only is enough
to remove the dispersion error. We have verified that, although suboptimal, satisfactory results can
also be obtained for the P3 approximation.

The idea of applying the mass matrix corrections and using triangular quasi-lumped mass ma-
trices could be extended to higher-order finite elements. These venues will be explored in future
works.

Appendix A. Anti-dispersive effect of the Q1-mass matrix on 2D Cartesian grids.
Consider the two-dimensional transport equation:

∂tu + β·∇u = 0,

with constant velocity field β = (βx, βy). Consider a Cartesian grid with mesh sizes hx and hy in x-
and y-directions, respectively.

Proposition A.1. The dominating term in the consistency error of the Q1 Galerkin approxi-
mation is O(h4

x + h4
y) at the grid points (xi, yj).

Proof. The test functions are the tensor products of one-dimensional functions, say ψxi (x)ψyj (y),
and the Q1 Galerkin approximation is represented as follows:

u(x, y, t) =
∑
i

∑
j

ui,j(t)ψ
x
i (x)ψyj (y).

Applying twice the Simpson quadrature rule, the term involving the time derivative becomes∫ yj+1

yj−1

ψyj

∫ xi+1

xi−1

∂tuψ
x
i dxdy = hxhy∂t(

4

9
ui,j +

1

9
(ui±1,j + ui,j±1) +

1

36
ui±1,j±1),

where the notation ui±1,j stands for ui−1,j + ui+1,j and ui±1,j±1 stands for ui−1,j−1 + ui+1,j−1 +
ui−1,j+1 + ui+1,j+1, etc. Similarly, for the transport term we obtain:∫ yj+1

yj−1

ψyj

∫ xi+1

xi−1

β·∇uψxi dxdy = hyβx

(
1

3
(ui+1,j − ui−1,j) +

1

12
(ui+1,j±1 + ui−1,j±1)

)
+ hxβy

(
1

3
(ui,j+1 − ui,j−1) +

1

12
(ui±1,j+1 + ui±1,j−1)

)
.

After inserting the exact solution, u, in the Q1 Galerkin approximation of the transport equation,
using Taylor expansions, and dividing by hxhy, we obtain:

1

hxhy

∫
Sij

(∂tuij + β·∇uij)ψxi (x)ψyj (y) dxdy = ∂t(uij +
h2
x

6
∂xxuij +

h2
y

6
∂yyuij)

+ βx(∂xuij +
h2
x

6
∂xxxuij +

h2
y

6
∂xyyuij)βx(∂yuij +

h2
y

6
∂yyyuij +

h2
x

6
∂yxxuij) +O(h4

x + h4
y),

where Sij = [xi−1, xi+1]× [yi−1, yi+1] and uij := u(xi, yj). Taking into account that ∂tu(xi, yj , t) =
−βx∂xu(xi, yj , t)− βy∂yu(xi, yj , t), one observes that the consistency error is of order 4.

The above proposition shows that using the consistent matrix has an anti-dispersive effect for
the 2D transport equation. One may conjecture that such a result holds in any dimension.

Appendix B. One-dimensional numerical illustrations.
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B.1. Dispersive effects of mass lumping. We illustrate here the anti-dispersive effect of
the consistent mass matrix in one space dimension. We show in Figure B.1(a) and B.1(b) the

(a) Lumped mass matrix (b) Consist. mass matrix (c) Lumped mass matrix (d) Consist. mass matrix

Figure B.1. Consistent vs. lumped mass matrix, uniform mesh, 100 cells, T = 100. Dashed line: exact solution;
solid line: numerical approximation.

Galerkin solution to the transport equation ∂tu+ ∂xu = 0 over the interval Ω = (0, 1) with periodic
boundary conditions and initial data u(x, 0) = sin(2πx). The solution is computed at T = 100,
i.e., 100 periods, on a uniform mesh composed of 100 P1 cells. The time stepping is done using
the standard explicit forth-order Runge Kutta (RK4) method so that the error induced by the time
approximation is negligible with respect to the spatial error. The CFL number is 0.7. We show in
Figure B.1(c) and B.1(d) the Galerkin solution with the initial data u(x, 0) = 1 if 0.4 < x < 0.7 and
u(x, 0) = 0 otherwise. The solution is computed at T = 1. The solutions shown in Figure B.1(a)
and Figure B.1(c) are computed with the lumped mass matrix, and those shown in Figure B.1(b)
and Figure B.1(d) are computed with the consistent mass matrix. The anti-dispersive effects of the
consistent mass matrix are clearly visible on these two examples.

Since the dispersion analysis has been done assuming that the mesh is uniform, it is not clear
a priori that the anti-dispersive effects of the mass matrix are robust with respect to mesh non-
uniformity. This issue can be explored numerically by repeating the above numerical experiments
on non-uniform meshes. The results are shown in Figure B.2. The mesh is composed of 100 cells with
random size and the anisotropy factor is 3, that is to say the size ratio between two neighboring cells
is at most 3. These experiments show that mesh non-uniformity does no have a notable influence
on the anti-dispersive effects of the consistent mass matrix, and the conclusions of the dispersion
analysis hold when the mesh is moderately non-uniform.

(a) Lumped mass matrix (b) Consist. mass matrix (c) Lumped mass matrix (d) Consist. mass matrix

Figure B.2. Consistent vs. lumped mass matrix, random mesh, 100 cells, T = 1. Dashed line: exact solution;
solid line: numerical approximation.



22 J.L. GUERMOND, R. PASQUETTI

B.2. Numerical illustrations of the correction technique. We illustrate numerically the
correction technique introduced in §3 in one space dimension with P1 finite elements.

We show in Figure B.3 the effects of replacing the inverse of the lumped mass matrix by (3.6).
The setting is the same as in Section B.1 and the initial data is the smooth sine function. We show
in Figure B.3(a) the Galerkin solution using the lumped mass matrix on a random mesh composed
of 100 cells at T = 100. The solutions shown in Figure B.3(b) and Figure B.3(c) have been obtained

by replacing M
−1

by (1 + A)M
−1

and (1 + A + A2 + A3 + A4)M
−1

, respectively. Figure B.3(a)
clearly illustrates the dispersion effect of mass lumping; the phase error is O(1) after 100 turnover

times. Figure B.3(b) supports our claim that replacing M−1 by (1 +A)M
−1

corrects the dispersion
error of the lumped mass matrix.

(a) 1 (b) 1 +A (c) 1 +A+A2 +A3 +A4

Figure B.3. Mass matrix corrections on a random mesh, 100 cells, T = 100. Dashed line: exact solution; solid
line: numerical approximation.

We show in Figure B.4 the Galerkin solution of the one-dimensional transport problem with
a step function as initial data. The solution shown in Figure B.4 has been computed at T = 1
using the lumped mass matrix on a uniform mesh composed of 100 cells. The solution shown

in Figure B.3(b) and Figure B.3(c) have been obtained by replacing M
−1

by (1 + A)M
−1

and

(1+A+A2+A3+A4)M
−1

, respectively. Figure B.4 also confirms that replacing M−1 by (1+A)M
−1

corrects the dispersion error of the lumped mass matrix even for non-smooth solutions.

(a) 1 (b) 1 +A (c) 1 +A+A2 +A3 +A4

Figure B.4. Mass matrix corrections on a uniform mesh, 100 cells, T = 1. Dashed line: exact solution; solid
line: (un-stabilized) Galerkin approximation.

Of course, the Galerkin method must be stabilized to get rid of the spurious oscillations. As
shown in §5.6, stabilization has a marginal effect on dispersion.
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