
Computers & Fluids 40 (2011) 179–187
Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid
Temporal/spatial simulation of the stratified far wake of a sphere

R. Pasquetti
Lab. J.A. Dieudonné, UMR CNRS 6621, University of Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
a r t i c l e i n f o

Article history:
Received 29 March 2010
Received in revised form 8 July 2010
Accepted 31 August 2010
Available online 21 September 2010

Keywords:
Wake flows
Stratified fluids
Large-eddy simulation
Spectral vanishing viscosity
Spectral methods
0045-7930/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.compfluid.2010.08.023

E-mail address: Richard.PASQUETTI@unice.fr
a b s t r a c t

Far wakes are generally studied on the basis of a temporal development study, i.e. the flow is assumed
periodic in streamwise direction and one focuses on its evolution in time. It is then required to set up
an appropriate initial condition to start the calculation. Like in some previous works, we study the far
wake of a sphere in a stratified fluid, but rather than starting from an ad hoc initial condition, we first
carry out a spatial development simulation in order to define a relevant initialization. The control param-
eters of the flow are the Prandtl, Reynolds and internal Froude numbers, that we take equal to Pr = 7,
Re = 10,000 and F = 25. The numerical method is based on a spectral multi-domain Fourier–Chebyshev
approximation, stabilized by using a spectral vanishing viscosity technique, that may be interpreted as
a spectral large-eddy simulation closure restricted to the high frequencies. Very realistic results are
obtained, especially showing the so-called three-dimensional (3D), non-equilibrium (NEQ) and quasi
two-dimensional (Q2D) regimes, with satisfactory comparisons with the experiments.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Wakes in stratified fluids have now a long history, as e.g. sum-
marized in [1,2] and references herein. Simulating such flows,
especially when they are turbulent, remains however a challenging
task. The smallest scales of the flow are generally out of reach of
Direct Numerical Simulation (DNS), and so it is required to use
Reynolds Averaged Navier–Stokes (RANS) or Large-Eddy Simula-
tions (LES) approaches, the latter being better adapted to a detailed
description of the flow. Moreover, the computation of far wakes
cannot be achieved in very elongated domain, so that the simula-
tions are generally based on temporal development studies.

Stratified fluids are essentially characterized by the Brunt
Väisälä angular frequency N, such that N2 = �g@yq/q, where y de-
notes the vertical axis, q the fluid density and g the gravity accel-
eration. In case of a thermal stratification, if the variations of q(y)
are weak, then with a for the thermal expansion coefficient
N2 � ga@yT0, where T0 is the basis temperature profile. Hereafter
we suppose that the stratification is linear (@yT0 = cte > 0). In the
frame of wake flows, from the buoyancy frequency arises the
dimensionless internal Froude number: With D, U and dT = D@yT0,
for a characteristic length, velocity and temperature gap, respec-
tively, one has F = U/(ND). For given Reynolds and Péclet numbers,
depending on the value of F a large variety of flows may be ob-
tained, see e.g. [3,4] for the wake of a sphere of velocity U and
diameter D. Note that for both the sphere and the cylinder, some
ll rights reserved.
authors prefer to define the Froude number with the radius, say
R, so that with obvious notations, FR = 2F.

Here we consider the turbulent wake of a towed sphere in ther-
mally stratified water. Experimental results in this case are numer-
ous, see e.g. [5–7]. The Reynolds, internal Froude and Prandtl
numbers are taken equal to Re = UD/m = 104, where m is the kine-
matic viscosity, F = U/(ND) = 25 and Pr = m/j = 7, where j is the
thermal diffusivity, respectively. Note that N = 5 � 10�3 rd s�1 is
typical of a thermal stratification in the oceans. We are especially
interested in the very late wake, i.e. at distances l � 2500D from
the sphere, or equivalently, using 1/N as reference time, after a
dimensionless time delay Nt = l/(FD) � 100. Computations similar
to the one proposed here were e.g. carried out in [8–10], but these
studies only provide a temporal study: The flow is assumed peri-
odic in longitudinal direction and the initial conditions, for velocity
and temperature, correspond to mean profiles with superimposi-
tion of an ad hoc noise, issued from first and second order statistics
of some experiments. In this case, no coherent structures are pres-
ent in the flow at the initial time and so the validity of the temporal
study may be criticized. Especially, phase coherence is not main-
tained and one observes significant transients in start-up due to
the mismatch of forcing and correct Navier–Stokes solutions. In
the present work we first carry out a computation of the spatial
development, so that we can start the temporal study with a rele-
vant initial condition.

The paper is structured as follows. In Section 2 we briefly
describe the model and the numerical method and also give
some details on our Spectral Vanishing Viscosity–Large-Eddy
Simulation (SVV–LES) approach. In Section 3 we describe the space
development study and provide some statistics on the computed
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Fig. 1. Spectral viscosity operator for two different thresholds mN. Comparisons
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flow. In Section 4 we explain how we extend the spatial develop-
ment computation by a temporal development study. Detailed re-
sults and comparisons with the experiments are given in Section 5.

2. Modeling and numerical method

2.1. Modeling

The flow is assumed to be governed by the incompressible
Navier–Stokes equations coupled, within the Boussinesq approxi-
mation, to an advection–diffusion equation for the temperature.
In dimensionless form these equations are:

Dtu ¼ �rpþ 1
F2 Tey þ

1
Re

Du ð1Þ

r � u ¼ 0 ð2Þ

DtT ¼
1
Pe

DT ð3Þ

where t is the time, Dt the material derivative, ey the unit vector in
vertical direction y, u, p and T the velocity, pressure and tempera-
ture fields, respectively. For the reference length, velocity, time,
temperature and pressure we use D, U, D/U, D@yT0 and qU2, respec-
tively (D, sphere diameter, U, sphere velocity, @yT0, initial vertical
gradient and q, density). The control parameters of the flow are
the Reynolds (Re = UD/m), Péclet (Pe = UD/j) and internal Froude
(F = U/(ND)) numbers.

We are interested in the far wake of a sphere moving at con-
stant velocity in an open domain stably stratified with a constant
vertical temperature gradient. From practical considerations, the
computational domain must however be bounded and artificial
boundary conditions have then to be introduced, as described in
Sections 3 and 5 for the spatial and temporal studies, respectively.
At the surface of the sphere the no slip condition is relevant and for
the temperature this is discussed in next Section.

2.2. Numerical method

The governing equations are considered in a parallelepiped do-
main, aligned on the axis of the Cartesian coordinate system, with x
for the longitudinal streamwise direction, y for the vertical direc-
tion and z for the horizontal transverse direction, which is assumed
homogeneous. A domain decomposition technique with conform-
ing meshes is implemented in the elongated x-streamwise direc-
tion. In each subdomain one uses a Chebyshev–Fourier spectral
approximation, i.e. Chebyshev expansions are used in the x-
streamwise and y-vertical directions, while Fourier expansions
are used in the z-transverse direction. In z-direction the width of
the domain is chosen sufficiently large to avoid any coupling.

The time scheme is second order accurate and makes use of
three (resp. two) steps for the velocity (resp. temperature): A
transport step, a diffusion step and, for the velocity, a projection
step yielding a divergence-free vector field. The transport step is
handled explicitly, using an Operator Integration Factor (OIF)
semi-Lagrangian method and the RK4 scheme. The diffusion step
is handled implicitly, using BDF2, i.e. the material derivative is
approximated by using a three-level backward finite difference
scheme. The projection step allows to obtain the velocity field by
solving a ‘pseudo-Poisson’ problem for the pressure correction,
using the so-called PN � PN�2 approximation, so that the pressure
correction problem is well posed and no boundary conditions are
required for the pressure. The code is parallelized and vectorized:
Each subdomain is associated to one vectorial processor. Details
may be found in [11].

For the spatial development study, a sphere is embedded within
the computational domain. The modeling of the sphere makes use
of a ‘pseudo-penalization technique’ [12], i.e., a penalization term
is implicitly introduced in the momentum equations to approxi-
mately cancel the velocity inside the sphere. The temperature is
let free to evolve, i.e. the sphere material is assumed thermally con-
ductive. For simplification, the fluid and the sphere thermal diffu-
sivities are taken equal, so that the fluid temperature equation also
holds inside the sphere, where then one solves the heat equation.
One may indeed think that the sphere conductivity has a negligible
impact on the far wake.

2.3. The SVV–LES technique

To compute turbulent flows we use a LES approach, based on a
stabilization technique, such that the ‘spectral accuracy’ of the
approximation is preserved. It relies on the introduction in the gov-
erning equations of a dissipation term only active in the highest
Fourier and Chebyshev frequency ranges. In the 1D 2p-periodic
case, when using the Fourier approximation, such a term, say VN,
is such that its Fourier spectrum is:

ðbV NÞk ¼ ��N
bQ kk2ðûNÞk � N 6 k 6 N

where uN is the trigonometric polynomial interpolant of degree N
that approximates some exact solution u. In this formula �N is a
O(N�1) parameter and the bQ k a set of coefficients such that
bQ k ¼ 0 if k 6mN and 1 P bQ k > 0 if k > mN, with e.g. the threshold
value mN ¼ Oð

ffiffiffiffi
N
p
Þ, see [13] for a theoretical analysis carried out

on the inviscid Burgers equation.
In Fig. 1 we show the variations of bQ k with respect to k/N,

for two different values of mN and using bQ k ¼ expð�ððk� NÞ=
ðk�mNÞÞ2Þ, as suggested in [14] where the non-periodic spectral
Legendre case is investigated. The SVV stabilization may be com-
pared to the Chollet–Lesieur (C–L) spectral viscosity, which is a
LES closure expressed in spectral space derived from the Eddy-
Damped Quasi-Normal Markovian (EDQNM) theory [15]. It is
remarkable to observe that the main difference between C–L and
SVV lays in the fact that C–L is active on the full spectrum, whereas
SVV only acts on the high frequencies. With respect to C–L, SVV
may be viewed as a modeling restricted to the high frequency
range, in the spirit of Variational Multi Scales (VMS) methods that
have been recently developed, see e.g. [16]. Note that from Chollet–
Lesieur theory one can also derive the following amplitude coeffi-
cient of the dissipation term: �N � N�4/3. It is also of interest to
compare SVV and hyperviscosity. If we assume that hyperviscosity
is implemented through a bi-Laplacian, then in Fourier space we
have:
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�ð dD2uN Þk ¼ �k4ðûNÞk ¼ �bQ kk2ðûNÞk; bQ k ¼ k2

We have also reported this parabola in Fig. 1. We note that for k/
N � 1, C–L and hyperviscosity provide similar hyperviscous behav-
iors (the two curves show the same slope), whereas SVV acts like
a Laplace operator (the slope vanishes).

Extending this approach to the multidimensional vector case is
not a trivial task, see e.g. [17] for the Navier–Stokes equations and
[18] in the frame of LES. Details of our approach have already been
described, see e.g. [19–21]. Note that we use a similar stabilization
for both the velocity components and for the temperature. Con-
cerning the optimal values of the SVV parameters, we refer to
[22] where, on the basis of numerical experiments, it appears suit-
able to simply minimize the SVV contribution together with pre-
serving the stability of the scheme.
3. Spatial development study

The computation is done in the Galilean frame of reference of
the sphere and at the initial time the temperature gradient is con-
stant. For the boundary conditions: (i) at the inlet of the channel
the velocity and temperature gradient are constant, (ii) at the hor-
izontal boundaries one assumes free-slip conditions for the veloc-
ity and adiabaticity for the temperature, (iii) the flow is periodic in
transverse direction and (iv) at the outlet one uses an advection
equation at the (constant) bulk flow velocity.

The computational domain is X = (�4.5,30.5) � (�4,4) � (�4,4)
and the sphere, of unit diameter, is centered at the origin, see Fig. 2.
In streamwise direction we have eight subdomains of variable
length, with interfaces located at x = {�4.5,�0.5,0.5,2.5,6.5,12.5,
18.5,24.5} in order to accumulate grid points just upstream and
downstream of the sphere. In each subdomain, the polynomial
approximation degrees equal Nx = 60 and Ny = 160, and we use
Nz = 80 Fourier modes. Then we have about 12 millions of grid
points for this simulation. The SVV parameters are taken equal to
�N = 1/N, mN = N/2 for the velocity and mN ¼

ffiffiffiffi
N
p

for the tempera-
ture. This smaller value of mN has been used for stability reasons
in the temperature calculation. The space computation was carried
out till time tF = 190 (reference time, D/U), with a time-step
s = 5 � 10�3.

Fig. 3 shows some first and second order statistics, computed
during the last 60 time units, both for the velocity and tempera-
ture. The streamwise velocity mean profiles show that, in the near
wake and for F = 25, the influence of the stratification may be ne-
glected, since the y- and z-profiles coincide. This is e.g. coherent
with the experiments of [3], where a Re–F diagram shows that
for Re = 104 and F > 20, the velocity–temperature coupling is negli-
gible at such small distances from the sphere. The anisotropy of the
Fig. 2. Schematic of the mesh for the spatial study, visualizing 1 point for 5 in each
direction. In both x and y-directions mappings are applied to accumulate grid points
close to the sphere.
flow is only pointed out by the temperature variance profiles.
Moreover, the maxima of the turbulent kinetic energy are decreas-
ing downstream of the sphere whereas at the considered distances
the temperature variance profiles are still increasing. Note that
such profiles are not completely converged, so that one can ob-
serve some symmetry deficiencies. However our goal is not to
get fully converged statistics but instantaneous temperature and
velocity fields, to be used as relevant initial conditions for the tem-
poral study.

To conclude this section we provide some details on the sphere
modeling, using the pseudo-penalization technique. Thus, Fig. 4
(left) shows the mean steamwise velocity along the streamwise
direction. The minimum of ux is found at x = 1.46, with value
ux = �0.364. This is e.g. coherent with the result obtained in [23],
for a non-stratified fluid and using a 5th order accurate LES based
on the dynamic Smagorinsky model. A zoom inside the sphere is
provided in Fig. 4 (right), which shows the mean profiles of each
component of the velocity along the corresponding diameter, e.g.
ux along the x-axis. Such visualizations reveal at best the deficien-
cies of our penalization technique and it has been checked that in-
side the sphere the fluctuations of the velocity components were
negligible, so that it is relevant to look at the time averaged values.
Mainly, one remarks some oscillations of the streamwise velocity
just behind the blocking point at the sphere front. Globally, the
agreement of our results with the theoretical analysis which pre-
dicts a O(s) residual velocity appears however satisfactory.

4. Temporal development

Since computing the space development in a domain of exces-
sive length, say 2500D, is out of reach of the present computer
capabilities, we plan now to carry out a time development study,
starting from the result of the space development study. To this
end, we focus on the following x-truncated subdomain of X:
(6.5,24.5) � (�4,4) � (�4,4), which corresponds to the 5th, 6th
and 7th subdomains, see Fig. 2, and plan to see, now in a fixed
frame of reference, how this part of the wake evolves in time. First,
because temporal studies usually assume periodicity in stream-
wise direction, the observed part of the wake must be made peri-
odic in x-direction. Second, because we expect a large increase of
the wake width in the median horizontal plane, due to the confine-
ment effect of the stratification, the computational domain must
be enlarged. Finally, we propose using a divergence cleaning like
method to get a divergence free initial condition and thus a well
posed Navier–Stokes problem. The approach that we suggest
shows the following steps:

– The streamwise velocity is corrected by the sphere velocity,
plus a small adjustment to take into account that the spatial
computation was not carried out in an open domain (in dimen-
sionless form we used U = 1.0038). The adjustment is required
to take into account the flow drained by the sphere: Due to
the incompressibility constraint, using a unitary correction
would induce a non zero velocity at the artificial boundary of
the computational domain X. With such an adjustment, we
cancel at best the velocity at the artificial boundaries. Out of
the wake the flow is then at rest.

– In streamwise direction the flow is embedded in a twice larger
domain and made periodic by symmetrically extending the
velocity components and temperature fields. More precisely,
we use even symmetries of ux, uy, uz and T, such that
6.5 < x < 24.5, with respect to the plane x0 = 24.5. Since the
streamwise direction becomes the homogeneous one, for the
temporal study the x-direction is handled with Fourier expan-
sions and the z-direction with the Chebyshev multi-domain
method. Then one has to transfer the data obtained on the space
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Fig. 3. Mean profiles of streamwise velocity (with a ±0.1 shift) and temperature at different abscissa. Turbulent kinetic energy and temperature variance along the vertical (y)
and transverse (z) directions.
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computational grid to the temporal one. This is done by using a
Chebyshev interpolation, to go from the non-regular Gauss–
Lobatto–Chebyshev (plus mapping) mesh to the regular Fourier
one, and by using a trigonometric interpolation for the inverse.
– In the horizontal transverse direction the flow is embedded in a
three times larger computational domain, in which the temper-
ature and velocity fields are extended by the profiles obtained
at the end of the space development computation.



Fig. 6. Instantaneous velocity components at the beginning of the time develop-
ment computation (t = 191). The color map is the same as in Fig. 5 with extrema
±0.5 for the three components. From up to down: Streamwise (ux), vertical (uy) and
transverse (uz) velocity components.
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– The extended velocity field is made divergence free by projec-
tion onto a space of divergence-free vectors, as it is classical
with fractional step methods. Note indeed that after the sym-
metrization and with ~u for the extended velocity field,
r � ~u ¼ 2@x ~ux in the streamwise extended part. This results from
the fact that the symmetry preserves the derivatives in y and z,
but gives the opposite for the derivative in x. The ‘‘divergence
cleaning” procedure consists in computing u ¼ ~uþru, where
u solves the Poisson equation Du ¼ �r � ~u with an homoge-
neous Neumann boundary condition. However, taking advan-
tage of the fact that our Navier–Stokes solver makes use of a
projection method and since we know the velocity and temper-
ature fields at the previous time levels, we actually use a
slightly improved algorithm: The computation is restarted with
the three time level BDF2 scheme, using the temperature and
velocity fields obtained by symmetry, and the projection is car-
ried out by the solver at the end of the first time-step. Since the
Navier–Stokes equations are not verified in the part constructed
by symmetry, again due to the change of sign in the first order
x-derivatives, we then implicitly introduce during the first time-
step a compensatory forcing. This forcing term may be viewed
as the force field required at the beginning of the simulation
to enforce the periodicity.

After translation in x, we thus obtain the domain X
0
= (�18,

18) � (�4,4) � (�12,12), within which the velocity and tempera-
ture fields are completely defined. Fig. 5 shows the result of this
periodic extension algorithm for the temperature field, which are
visualized at the end of the space development computation and
at the beginning of the temporal one. Note that thanks to an addi-
tional translation the space development result has been centered
inside X

0
. This has of course no influence on the ulterior develop-

ment of the flow.
Fig. 6 shows the components of the velocity field at the begin-

ning of the time development study. Thanks to using even symme-
tries (i) the velocity remains continuous (C0 continuity) and (ii) the
direction of the flow drained by the sphere is preserved, i.e. along
the x-axis ux keeps the same sign in the initial and extended part.
Any other kind of set up of the initial condition would yield an
unphysical flow, showing e.g. discontinuities of the velocity
components. Thus, the flow that would be obtained by reflection
(Navier–Stokes equations are preserved by reflection), i.e. with re-
spect to the plane x = x0 such that ~uxðx; :Þ ¼ �uxð2x0 � x; :Þ;
~uyðx; :Þ ¼ uyð2x0 � x; :Þ; ~uzðx; :Þ ¼ uzð2x0 � x; :Þ, would be unphysical.
Note however that the present procedure does not avoid disconti-
nuities of the first order derivatives (C1 discontinuity), then induc-
Fig. 5. Instantaneous temperature fields, at the end of the space development study
(t = 190) and at the beginning of the time development computation (t = 191), using
the above color map with �4 6 T = y 6 4. In streamwise x-direction the temper-
ature field is discretized on a multi-domain Chebyshev mesh in the first figure,
whereas in the second one it is defined on a regular Fourier grid.
ing some high frequencies. One may think that the SVV technique
helps to damp these frequencies.

One may fear that a long time interval is required to smooth the
perturbation associated to the transition from the space to the
temporal study. Fig. 7 shows the variations in time of the residual
of the vertical component of velocity, uy, and of the temperature, T,
around the transition time t = 190. The residuals are defined simi-
larly for uy and T, e.g. for the temperature rT = maxjdTj/s, where dT is
the difference between two consecutive temperature fields (s is
the time-step). First, one observes that the levels of the space
and time studies residuals are very different. For the temporal
study the flow indeed simply relaxes whereas for the spatial one,
carried out in the Galilean frame of the sphere, it is strongly
unsteady, especially due to the vortex shedding. Second, one ob-
serves a peak at the first time-step of the temporal study. This is
associated to the projection procedure and to the change of
computational grid. However, it appears that beyond this first
time-step no spurious perturbation survives.

5. Results

The temporal computation has been carried out in X
0
= (�18,

18) � (�4,4) � (�12,12), using free-slip condition and adiabaticity
at all side walls, except those orthogonal to the homogeneous
 0
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Fig. 7. Variations in time of the residuals of the vertical velocity and temperature at
the end of the spatial study and at the beginning of the temporal one (s = 5 � 10�3).



Fig. 8. Schematic of the mesh for the temporal study, visualizing 1 point for 5 in
each direction. One uses now the regular Fourier grid in x-direction and the multi-
domain Chebyshev one in transverse z-direction.
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x-direction. For the discretization we use three identical subdo-
mains (now in z-direction), with Nx = 180 Fourier modes, Ny = 160
and Nz = 159 in each of them. This yields about 27,705,000 grid
points, see Fig 8.
Fig. 9. Instantaneous temperature and vorticity fields at times Nt = {0.66,5.66,24.86,
Temperature in the median vertical plane, with jTj 6 4; Transverse componen
jxzj 6 {5.3,0.46,0.089,0.026}; Vertical component in the horizontal plane, using jxyj 6 {
SVV parameters have been taken equal to mN = N/2 and �N = 1/N.
The flow has been computed from t = 190 till t = 2652, the time-
step being increased from s = 5 � 10�3 till s = 0.16. However, it is
relevant to relate the initial time of the temporal study to the dis-
tance to the sphere, i.e. to t = (6.5 + 24.5)/2 = 15.5, resulting in a
time shift of 174.5. Moreover, the relevant time scale is now the in-
verse of the buoyancy frequency, so that the dimensionless time
must be scaled with the Froude number F = 25. Thus, the temporal
study was carried for 0.62 < Nt < 99.1 (here t has a dimension and
Nt is the dimensionless time). Note that it would not be satisfac-
tory to go on the computation beyond this final time, due to con-
finement effects both in streamwise and transverse directions.

Fig. 9 shows visualizations at different times of the temperature
and transverse vorticity xz in the vertical median plane z = 0, to-
gether with the vertical vorticity xy in the median horizontal plane
y = 0. One clearly discern the increasing width of the wake in the
horizontal plane and the confinement effect, with appearance of
the so-called pancake eddies, in the vertical one. Note that such fig-
ures may recall those of [10] (Re = 104, F = 10), but at much shorter
times; Thus, our visualization at Nt = 99.1 reminds their result at
Nt = 675. One may then think that the presence of coherent vortex
structures at the initial time induces a quicker development of the
99.1} (from left to right and up to down). In each quadrant, from up to down:
t of the vorticity in the same plane, using the time-dependent scaling
6.9,0.65,0.063,0.021}. For all figures the color map is the one used in Fig. 5.
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Fig. 10. Mean streamwise velocity times (Nt)2/3 and temperature in median transverse (z) and median vertical (y) directions at different times (note that the scales in z and y
differ by a factor 10/4).

 1

 1  10  100

V
el

oc
ity

 d
ef

ec
t x

 F
2/

3

Time (Nt)

max u
exp.

 1

 10

 1  10  100

W
ak

e 
am

pl
itu

de

Time (Nt)

mean half-width
mean half-height

(Nt)**1/3

Fig. 11. Evolution of the F2/3 weighted velocity defect (at left) and wake amplitude (width and height) (at right). Comparisons with the ‘universal curve’ and predictions of
[24].

Table 1
Decrease rates and critical Nt values for the LES and the experiments. NtI (resp. NtII)
separates the 3D and NEQ (resp. NEQ and Q2D) regimes.

NtI NtII Rate 3D Rate NEQ Rate Q2D

[24] 1.7 ± 0.3 50 ± 15 �2/3 �0.25 ± 0.04 �0.76 ± 0.12
SVV–LES 2.4 30 ��2/3 �0.2 ��0.76
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stratified wake even if, as claimed in [8–10], the seeding of coher-
ent vortex structures is not required to observe the formation and
development of far-wake eddies. Note however that the definition
of a reference length is not obvious when no obstacle is present, so
that the Reynolds and internal Froude number values may then be
discussed.

More quantitative results are given in Fig. 10, where mean pro-
files of the temperature and streamwise velocity are displayed. The
velocity profiles are weighted by (Nt)2/3, knowing that in the non-
stratified case the velocity defect decreases as (Nt)�2/3. These mean
profiles result from a space averaging, in streamwise direction, to-
gether with a (non-weighted) time averaging during 600 time-
steps during the temporal development. The time value affected
to each curve corresponds to the median one during this laps of
time. The statistics are of course not well converged, but they
clearly show the confinement effect in vertical direction and the
wake width increase in transverse direction.

The temperature profiles show a slow return to a quasi-linear
stratification. From the velocity profiles one can provide the tem-
poral evolution of the velocity defect and of the amplitude of the
wake, see Fig. 11. The velocity defect is computed from the mini-
mum of the mean streamwise velocity in the median horizontal
plane. For the amplitude of the wake, we also use space and time
averaged values and, as suggested in [24], the wake region is de-
fined as the band where the velocity defect exceeds 20% of its
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Fig. 12. Turbulent kinetic energy and temperature variance times (Nt)4/3 in median transverse (z) and median vertical (y) directions at different times.
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maximum. Note that Gaussian fits are often used to define such
amplitudes, but when starting from a non ad hoc initial condition,
such profiles are only poorly Gaussian, see Fig. 10. As expected
from the works of [24], the variation in time of the velocity defect
clearly shows three regimes. Thus, we find the ‘3D’ (three-dimen-
sional), the ‘NEQ’ (non-equilibrium) and the ‘Q2D’ (quasi-two-
dimensional) regimes, for low, intermediate and high values of
Nt, respectively. It is worth noting that the experimental curve
summarizes a large amount of experimental results, obtained for
various values of the Froude and Reynolds numbers. The depen-
dence on the Froude number is taken into account by the F2/3

weight whereas the dependence on the Reynolds number is negli-
gible, for sufficiently high values of these two control parameters.
Finally, it may be checked, e.g. by looking at the Fig. 7 of [8], that
the transitional NEQ regime seems to appear clearer in the present
simulations than in previous numerical works.

Comparisons between the present LES results and the experi-
mental ‘universal curve’ of [24], for both the ranges and the slopes,
are provided in Table 1. The ranges only slightly differ from the
experiments. Concerning the rates of decrease, in the 3D and
Q2D regimes it is difficult to get a precise approximation of the
slopes, see Fig. 11 (left), but one may consider that our results
are satisfactory. In the NEQ regime, the LES rate is slightly lower
(in absolute value) than the experimental one.

Concerning the time variations of the wake width, from [24]
one should recover the rate of the non-stratified case, i.e. 1/3. In
the mean we indeed obtain such a rate, see Fig. 11, but large fluc-
tuations are present: For Nt � 10 the rate is close to 0 whereas for
Nt � 50 it is close to 1. Concerning the wake height the variations
are much smaller: One first observes a maximum, for Nt � 2, i.e. at
the transition of the 3D and NEQ regimes. Beyond that, the strati-
fication becomes active: The wake height slightly decreases and
then remains constant during the NEQ range, before increasing
slowly again during the Q2D regime. Such results conform with
the experiments reported in [25], where some wide minima also
appear in the NEQ range, depending on the internal Froude number
value.

We finish the paper with some second order statistics, using
again an average in streamwise direction together with an average
over 600 time-steps. Fig. 12 shows the turbulent kinetic energy
and the temperature variance, both weighted by (Nt)4/3. This
weight is again based on the non-stratified case, for which the
velocity fluctuations as well as the fluctuations of a passive scalar
decrease as (Nt)�2/3. The distortion with respect to the non-strati-
fied case is especially pointed out by the great amplitude of the
turbulent kinetic energy profile at Nt = 97.18.

6. Conclusion

The problem of the computation of the stratified far wake of a
sphere has been revisited, using a highly accurate SVV stabilized
spectral LES and a temporal/spatial procedure. The approach is
based on first carrying out a spatial development study to establish
a relevant initial condition to the temporal one, so that it does not
suffer from setting up an artificial initial condition as done in pre-
vious numerical works. The critical point is to carefully transfer the
results from the spatial to the temporal study. A periodic extension
algorithm has been suggested to this end, which may be used in
different contexts, i.e. for different physical problems and using dif-
ferent numerical methods. Since the only fully satisfactory proce-
dure would be to carry out a spatial development study in a
computational domain of excessive size, such an approach remains
not perfect but is from our point of view much better than the
more academical temporal study. The present temporal/spatial
SVV–LES has allowed the computation of the turbulent wake of a
sphere, in thermally stratified water, at distances of about 2500
diameters. Experimental results have been recovered in rather sat-
isfactory way, especially showing the three expected flow regimes
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(3D, NEQ and Q2D) and the confinement effect due to the
stratification.
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