Chapter 1

Towards a high order Fourier-SEM
solver of fluid models in tokamaks

A. Bonnement, S. Minjeaud, R. Pasquetti

Abstract We investigate a fluid modeling approach to describe the plasma
behavior in tokamaks. For the numerical approximation, we use a high order
method based on Fourier expansions in the toroidal direction and the spectral
element method (SEM) in the poloidal plane. We first focus on anisotropic
diffusion, because in tokamaks diffusion strongly dominates along the mag-
netic field lines, and provide some comparisons with finite element results.
Then we give preliminary results for a plasma two fluid (ions and electrons)
numerical model.

1.1 Introduction

The production of energy by fusion of light nuclei like Deuterium and Tritium
may be achieved by Magnetic Confinement Fusion. This is done in annular
apparatus called tokamaks, where the reacting material is under the form
of plasma (ionized gas at very high temperature). A strong magnetic field
is used to confine the plasma, in order to overcome the pressure gradient
and curvature effects. The ITER device is presently under construction in
Cadarache (France) [17].

Simulating the plasma behavior is extremely difficult, e.g. due to the var-
ious space and time scales which should be considered. In the core of the
plasma kinetic (or gyrokinetic) approaches, based on the resolution of a six-
dimensional (or five-dimensional) Boltzmann-like equation, are usually pre-
ferred. In the edge region of the plasma, where the geometry is more complex
and the temperature less high, fluid approaches may be relevant (this notion
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is certainly not shared by all tokamak physicists). Especially, they can be of
interest beyond or close to the separatrix, which separates the core region,
where the magnetic surfaces are closed, and the scrape off layer (SOL region),
where the magnetic surfaces are open, see e.g. [16].

On the basis of a two fluid modeling, our goal is to develop a three-
dimensional Fourier-SEM code to describe the turbulence transport phenom-
ena in the SOL region. The fluid model is based on the usual conservation
equations of mass, momentum and energy expressed for both ions and elec-
trons and on the assumption of quasi-neutrality of the plasma. The so-called
divertor configuration, which will be used for ITER, is considered. In a given
poloidal plane, it is characterized by the presence of an X-point in the mag-
netic lines. Such a configuration is out of reach of codes that make use of
Fourier expansions in the poloidal angle, coupled to finite differences or finite
elements in the radial one, see e.g. [1].

1.2 Governing equations

The governing equations express the conservation of density, momentum and
energy of each species s = {i, e}, with ¢ for ion and e for electron. Moreover,
we assume that the fluctuations of the magnetic field B are negligible and
consequently that the electric field derives from an electric potential U (from
Faraday’s law). With:

- ng, Mg, s for the volume fraction, mass and electric charge, respectively,

- Ug, s, s, €5, @, for velocity, pressure, deviatoric part of the pressure
tensor, internal energy and associated flux density, respectively,

- R, for the friction forces due to ion-electron collisions and @, for the
energy exchange due to collisions, one obtains:

Ons + V- (nsug) =0,
Ot(nsmsus) + V- (mgnsusus + psI + Ig) = nges(—VU + us A B) + R,
Oes + V- (esus + ;) = —psV - us — Il : Vug + Qs . (1.1)

These equations are completed with the perfect gas law for each species:

Ds = nsTs , Es = ps/(’Y - 1); (12)

where the temperature T has here the dimension of an energy and v =
5/3. The system is closed using the Braginskii closure [4] which provides the
expressions:

- I, = g (uy),

- R, = R,(T.,ne,3), where j = > nsesug is the current density,

-, =9 (Ts,ps,3),
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- Qs = Qs(Tea TMJ)
An additional reasonable assumption is the electroneutrality of the plasma,
which means:

Ne = Z’I’Li,
Zs:ns@s—o%{v.zsnsesuszv-jzoa 43

where Z = —e; /e.. We thus observe that the current j is divergence free.

When taking into account this additional constraint, we obtain a system
of 10 non-linear and coupled Partial Differential Equations (PDE) for the
variables n(=n.), U, us and €,. Such a problem appears extremely difficult
because being:

- steep, as a result of (i) m. < m; and (ii) B strong;

- multiscale in space: The Larmor radius, associated to the spiral motion
of the ions and electrons around the magnetic lines, is much smaller than the
size of the ITER device;

- multiscale in time: The cyclotron period is much smaller than the turbu-
lence time scale which itself is much smaller than the discharge time (duration
of an experiment);

- strongly anisotropic: Diffusion is indeed very dominant along the mag-
netic field lines. This difficulty is addressed in the next Section.

It should be noted that the considered PDE system does not make use of
the so-called drift velocity assumption. We refer to [14] and to the works car-
ried out in the frame of the ESPOIR ANR project for this kind of approaches,
see e.g. [9, 15]. One can also note that simpler fluid modelings, often based
on the MHD equations, have been and are still investigated, see e.g. [1, 6, 13].

1.3 Anisotropic diffusion

The Braginskii closure yields expressions of anisotropic form, e.g. for the
energy flux density (subscripts ¢ or e are omitted in this section):

==XV T =x.ViT +xa(bAVT), (1.4)

where b= B/|B|, VT = (b-VT)band VT = VI' -V T. Such expressions
are strongly anisotropic. Indeed one has:

e oo 1
Xjpo @er)? Ty wer
where, see e.g. [11], w. = |Ble/m is the cyclotron frequency and 7 o

m'/2(kT)3/? /(ne*) is the collision time (with k, Boltzmann constant). The
resulting values of the product w.7 for the plasma core and plasma edge
regions are given in Table 1.1.
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Plasma core|Plasma edge
Temperature (K)| 1.1610% 5.810°
Density (m~3) 1020 1019
we for electrons | 3.39107 1.210°
weT for ions 1.12108 3.96 103

Table 1.1 Typical values of the temperature, density and w.7 product for the ions and
electrons in the core and edge regions of the plasma

Because we plan to use an unstructured mesh, a priori not aligned to the
magnetic field lines, our implementation of eq. (1.4) is based on a tensorial
form of the diffusion coefficient:

@ =x)(b-VT)b+ X1 (VT — (b-VT)b) + xa(bA VT)
= (x) —xL)(b-VT)b+ x VT + xA(bAVT)
= KVT (1.5)

where K = (x| — x.)bb + x1 I+ xA B, with an easily identifiable antisym-
metric matrix B, such that xA(b A VT) = xABVT.

The validity of our Fourier - SEM approach has first been checked on the
anisotropic diffusion problem 9,7 = KVT. In time we use a standard fourth
Runge-Kutta (RK4) scheme and in space Fourier expansions in the toroidal
direction together with spectral elements in the poloidal plane. Using the
Galerkin Fourier method allows us to substitute a set of two-dimensional
problems to the initial 3D one. These 2D problems are then solved by using
the SEM, see e.g. [7, 12].

We consider a test problem of the CEMM (Center for Extended MHD
Modeling, Princeton), see e.g. [8], in a toroidal geometry of square poloidal
cross-section. In the cylindrical coordinate system (R, ¢, z), the initial con-
dition Ty = T'(t = 0) is a “pulse” of Gaussian shape located at (R = Ry, ¢ =
0,z = 0) and of standard deviation §:

Ty = exp(—((R — R1)* + (R1¢)? + 22)/6%). (1.6)
The magnetic field B is defined in the toroidal coordinate system (r,0, ) :

1 1 r

B =pgles - Rogo 1+ (7"/‘1)266)7

= (1.7)

with : Rg, qo: radius of the torus, safety factor (tilting parameter of the mag-
netic lines); a: radius of the torus section; ey, eg: unit vectors versus ¢ and
directions. Then, the magnetic lines make spirals on closed tubular surfaces
T = const.

We first present a test case assuming x; = 1 and x; = xa = 0, that is
K = BB/ B?. Such an input is of course not physical but here our goal is
only to check the capability of the algorithm in the most extreme case. Fig.
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Fig. 1.1 Top: Isotherms at the initial and final time, ¢ = 0 and ¢t = 148.44. Bottom:
¢-averaged solutions at ¢ = 11.72 and ¢t = 31.25.

1.1 (top) shows isotherms at the initial and final time of the computations,
whereas Fig. 1.1 (bottom) shows the ¢-averaged solutions at two intermediate
times. The computation has been done with 64 toroidal Fourier modes, a
polynomial approximation degree N = 4 in each element and 9409 grid-points
in the poloidal plane, so that the total number of grid-points is 1204352. The
mesh is simply aligned along the horizontal (r) and vertical (z) directions.
The time-step was taken equal to 7.8125 1074, As can be observed, despite the
fact that the mesh is not aligned on the magnetic field lines, the anisotropic
diffusion phenomenon is well described.

Fig. 1.2 CEMM test, x| = 1, x. = 0 and xpo = 1 (the two visualizations at left) or
xA = —1 (at right). ¢-averaged solutions at two different times.
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We now investigate the influence of the x(bA VT) term. In fact one has:
V-xa(bAVT) = (Vxa Ab+xA(VAD)) - VT, (1.8)

which means that this ”diffusion term” behaves like a transport term with
velocity un = Vxa Ab+xAV Ab.

Simulation results are provided in Fig. 1.2. The b vector being essentially
parallel to ey, because V A ey = e, /R one observes a transport phenomenon
in the vertical direction which sense depends on the sign of xa.

Fig. 1.3 The characteristic function of a ring is used as initial condition. Top: SEM
(N = 4) and P;-FEM solutions at ¢ = 2. Bottom: Details of the FEM-mesh, which inner
part is aligned on the circular magnetic lines, and profile of the FEM solution.

More quantitative tests have been carried out in two-dimension, with cir-
cular magnetic lines and diffusivity such that x| = 1 and x1 = x» = 0. Using
as initial condition a temperature distribution only depending on the radius,
one expects that the solution does not evolve in time. Two kinds of radius
dependencies have been tested, smooth (Gaussian) or steep (characteristic
function). Nice results have been obtained in both cases, except of course
of the expected Gibbs phenomenon in the stiff case, see Fig. 1.3 (top-left).
Comparisons have been made with the standard P;-FEM approach, based on
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the FluidBox / Plato software [18], for which it turned out to be necessary
to use a mesh aligned on circles to obtain satisfactory results in the steep
case. Fig. 1.3 (bottom-left) shows a zoom of such a mesh, which allows to
compute the steep problem without any oscillations of the solution, see Fig.
1.3 (right). Details are provided in [3].

1.4 Towards the full two-fluid Braginskii model

Combining the conservation equations introduced in Section 1.2, one obtains
the momentum - current q - j system, see e.g. [5], which is equivalent to
the ion - electron momentum g, — q, system that directly results from the
equations (1.1) to (1.3). With p = >, nsms, ¢ = >, q, and when taking
into account that ) Ry = 0 one obtains:

8tQ+v'Z(qsus +psI+Hs):j/\B

03 +V - Y w(gous +pod +I1,) = —c,pVU + (cqq + ¢;5) A B+ Y w,R;

V-3=0
Oes + V- (esus + ) = —psV - us — I, : Vug + Qs (1.9)

where ¢,, ¢4, ¢; and ws = e;/my are given coefficients. This system must be
completed by the state laws, for the ions and electrons, and by the Braginskii
closure. The present formulation clearly points out that one has to solve for
a compressible dynamics, to get p and q, and an incompressible one, to get
U and j. Thus, the potential U appears as the Lagrange multiplier which
allows the current density j to be solenoidal.

Looking at the set of PDEs (1.9), when taking into account that m. < m;
and if assuming (i) that T; = T. = T, so that with n = ) _n,, p = nT,
and (ii) that the viscous stresses are negligible, it turns out to be relevant
to check the capability of the Fourier-SEM approach on the Euler system.
The Euler system may however yield discontinuous solutions and so a stabi-
lization technique is required. To this end, we have implemented the entropy
viscosity technique, that relies on the idea of introducing a non-linear viscous
term, which amplitude is controlled by a viscosity coefficient proportional to
the absolute value of the entropy residual and bounded from above by a O(h)
viscosity (h is the grid-size) [10]. An example of result is presented in Fig.
1.4 (top) for an axisymmetric Euler computation in a domain showing the
limiter (rather than the divertor) configuration. This is e.g. the case of the
Tore-Supra device in Cadarache. One observes that the wave front is rather
well described and, as required by the Bohm boundary condition, that the
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Fig. 1.4 Euler (top) and Navier-Stokes (bottom) results, density (at left) and Mach num-
ber (at right). SEM (N = 4)-EV approximation. RK4 scheme. Initial condition: Fluid
at rest, constant density and pressure. Boundary conditions: Inflow imposed at the inner
boundary; Free-slip at the outer one. The “Bohm boundary condition” M > 1 is imposed
at the plates.

Mach number equals one at the plates. When taking into account the vis-
cous terms and then using the usual closure of Newtonian fluids, one obtains
the Navier-Stokes system. Fig. 1.4 (bottom) shows the influence of viscosity
on the previous simulation result. Considering such a simplified single fluid
approach with Euler, Navier-Stokes and also Braginskii-like closure was inves-
tigated in [3], using in space a finite element / finite volume approximation.

To solve the full g - j system or equivalently the g, — q, one, we use
in time a third order RK3 IMEX scheme [2], in such a way that the flux
terms are treated explicitly whereas the (.) A B terms are treated implicitly.
Note however that no additional cost is required because such terms do not
involve space derivatives. Finally, we use a projection method to compute U
such that V - 3 = 0. This requires to solve the elliptic equation:

V. (pVoU) =V 5%, 8,0U|r =0 (1.10)
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with j* the provisional current obtained by solving the IMEX scheme, dis-
carding the divergence free constraint, and dU a potential increment.

Fig. 1.5 Ion velocity (at left) and current density (at right). The vectors display the
poloidal component and the color the toroidal one. SEM (N = 2) - RK3 IMEX scheme.
The “Bohm boundary condition” M > 1 is imposed at the plates.

Axisymmetric computations have been done using the geometry of the JET
tokamak in Culham [16], considering only the edge region. At the initial time
we use the data provided by the resolution of a Grad-Shrafranov equilibrium,
using the code JOREK [6], i.e. the ion density, the total pressure p = p; + pe
and the magnetic potential. From that one can derive the magnetic field and
the ion and electron internal energies. The initial current density is assumed
toroidal, so that j - Vp =0 and V - 3 = 0, and computed in such a way the
J A\ B term compensates at best the pressure gradient. The initial ion velocity
is set equal to 0 inside the separatrix. In the SOL, it is taken co-linear to the
magnetic field and at the plates such that w; = £¢b, where ¢ is the sound
velocity. Free-slip conditions are used everywhere except at the plates where
we use the Bohm boundary condition M > 1, with M for the ion Mach
number. The mesh is the one provided by the JOREK code. It is aligned
on the magnetic surfaces and is essentially structured, except at the X point
where 8 quadrangular elements use it as a vertex. This is well supported by
the SEM approximation, which is designed to support non-structured meshes.
Steep gradients however occur, especially because at the initial time the ion
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and electron velocities are not continuous at the separatrix and moreover
show four different values about the X-point. The computations have been
done with N = 2. Increasing this value of the polynomial approximation turns
out to be difficult with the appearance of negative values of the pressure at the
plates. This seems strongly due to the JOREK mesh, that includes, especially
at the plates, elements of very high aspect ratio. Fig. 1.5 shows snapshots of
the ion velocity field and of the current density for an Euler closure of the
governing equations.
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