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P. Fischer and J. Mullen [3] have recently proposed a stabilization technique for the
solution of the unsteady Navier–Stokes equations with the spectral element method. It is
based on interpolations in physical space: Given the values of a function u on a Gauss–
Lobatto–Legendre (GLL) mesh with (N + 1)d nodes per element (where d is the space
dimension and N is the degree of the polynomial approximation in each direction), in each
element one uses the polynomial interpolant to compute u at the N d nodes–GLL mesh, so
that one obtains a new polynomial approximation, the degree of which in each direction is
then N − 1. Combined with a relaxation method, this “filtering” of the highest frequencies
is applied at each time step. An important advantage of the technique is that interelement
continuity and boundary conditions are preserved. Its efficiency, for high Reynolds number
flows, was demonstrated from results of numerical simulations. In the present note we
point out that this technique finds a simple interpretation in Legendre spectral space and
that this interpretation remains true when a Chebyshev polynomial approximation is used.
Although the result is easy to obtain it is not a priori obvious, so that to our knowledge this
viewpoint has not yet been clearly stated. Moreover, we emphasize the link, only briefly
mentioned in the conclusion of [3], to the filtering procedure suggested in [2], and finally
we consider the case of the Fourier spectral method, by extension to the trigonometric
polynomials.

Without loss of generality we can restrict ourselves to the one-dimensional situation. Let
� = [−1, 1], PN (�), N ∈ N

∗, the space of the polynomials of maximum degree N defined
on �, {Li }N

i=0, the set of the N + 1 Legendre polynomials of degree i , and {ξ N
i }N

i=0, the set
of the GLL nodes associated with PN (�), i.e., those that solve (1 − x2)L ′

N (x) = 0.
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To every u ∈ PN (�) is associated a polynomial v ∈ PN−1(�), such that v(ξ N−1
i ) =

u(ξ N−1
i ), 0 ≤ i ≤ N − 1. We denote FN : PN (�) → PN−1(�), the interpolation operator

such that FN u = v.
With α a real number such that 0 < α ≤ 1, the stabilization operator proposed in [3]

gives FN ,α = αFN + (1 − α) Id where Id is the identity operator. The relaxation parameter
α allows us to filter only a fraction of the highest mode.

In fact one can easily check that the operator FN simply transfers the N -mode value to the
N − 2 one and that this result also holds for the Chebyshev polynomials. More precisely,
we have the following:

Given u ∈ PN (�), let {ϕk}N
k=0 be the Legendre or Chebyshev polynomial basis of PN (�)

and let {ûk}N
k=0 be the components of u in this basis, i.e., u = ∑N

k=0 ûkϕk . Then

FN u =
N−3∑
k=0

ûkϕk + (ûN−2 + ûN )ϕN−2 + ûN−1ϕN−1. (1)

Of course, this result implies

FN ,αu =
N−3∑
k=0

ûkϕk + (ûN−2 + αûN )ϕN−2 + ûN−1ϕN−1 + (1 − α)ûN ϕN .

Demonstrating Eq. (1) is not difficult. Clearly, FN ϕk = ϕk if k < N , so that, with v = FN u,

v̂k = ûk + ûN p̂k, 0 ≤ k ≤ N − 1,

where p := FN ϕN = ∑N−1
k=0 p̂kϕk .

It remains to compute the p̂k . Using the N -points-based Gauss–Lobatto quadrature for-
mula, one obtains

1∫
−1

p(x)ϕk(x)w(x) dx ≈
N−1∑
i=0

ρN−1
i p

(
ξ N−1

i

)
ϕk

(
ξ N−1

i

)
,

where w(x) is the appropriate weight function (w(x) = 1 in the Legendre case and w(x) =
(1 − x2)−0.5 in the Chebyshev case) and where the ρN−1

i are the quadrature coefficients.
But from the definition of FN , p(ξ N−1

i ) = ϕN (ξ N−1
i ), 0 ≤ i ≤ N − 1. Because the N -

points-based Gauss–Lobatto quadrature formula is exact for polynomials of degree n such
that n ≤ 2N − 3, the orthogonality of the basis {ϕk}N

k=0 means that p̂k = 0, so that v̂k = ûk,

if k ≤ N − 3. Consequently,

p = p̂N−1ϕN−1 + p̂N−2ϕN−2.

However, the polynomials ϕN−1 and ϕN are of opposite parity, whereas ϕN−2 and ϕN are
of same parity. Since it is clear that the operator FN preserves the parity, we can infer
p̂N−1 = 0. Finally, since FN does not change the values of p at the endpoints, p̂N−2 = 1.
Consequently, v̂N−2 = ûN−2 + ûN and v̂N−1 = ûN−1.

Note that Eq. (1) may also be obtained in a less direct but quicker way. In fact, from
the definition of FN and the unicity of the Legendre or Chebyshev decomposition, one has
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simply to check that

ϕN
(
ξ N−1

i

) = ϕN−2
(
ξ N−1

i

)
, 0 ≤ i ≤ N − 1. (2)

• Legendre case (ϕk = Lk): Starting from the differential and recurrence relations [1]

(1 − x2)L ′
k = kLk−1 − kx Lk,

Lk+1 = 2k + 1

k + 1
x Lk − k

k + 1
Lk−1,

by elimination of x Lk one obtains the new relation

(1 − x2)L ′
k = k(k + 1)

2k + 1
(Lk−1 − Lk+1).

For k = N − 1, we obtain L N−2(ξ
N−1
i ) = L N (ξ N−1

i ), 0 ≤ i ≤ N − 1, since from the defi-
nition of the GLL points, the ξ N−1

i solve (1 − x2)L ′
N−1(x) = 0.

• Chebyshev case (ϕk = Tk(x) = cos k(acos x)): Because the Chebyshev–Gauss–
Lobatto points are explicitly known, i.e., ξ N

i = cos(π i/N ), 0 ≤ i ≤ N , the equalities (2)
can be trivially obtained as

TN
(
ξ N−1

i

) = cos

(
Nπ i

N − 1

)
= cos

(
π i + π i

N − 1

)
,

TN−2
(
ξ N−1

i

) = cos

(
(N − 2)π i

N − 1

)
= cos

(
π i − π i

N − 1

)
,

so that TN−2(ξ
N−1
i ) = TN (ξ N−1

i ), 0 ≤ i ≤ N − 1.

At this point, it is of interest to argue that the stabilization technique considered here
may be recast in the more general approach introduced by Boyd [2]. Indeed, to filter while
preserving the endpoint values it is suggested in [2] to

(a) rewrite u(x) as

u(x) = ax + b + U (x),

where U (±1) = 0 and with a and b determined from u(±1);
(b) express U in a new basis {φk}N−2

k=0 , such that φk(±1) = 0, of course, the choice of
this basis is an important point and using

φk = ϕk+2 − ϕk

is suggested; and
(c) apply the filtering procedure to the spectrum of U in this basis.

First, from the equality

N∑
k=0

ûkϕk(x) = ax + b +
N−2∑
k=0

Ûkφk(x),

by identification one obtains ÛN−2 = ûN .
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Now let us apply a cutoff filter F ′
N which simply cancels the N − 2 -mode of U . Then

F ′
N u = u − ûN (ϕN − ϕN−2)

=
N−3∑
k=0

ûkϕk + (ûN−2 + ûN )ϕN−2 + ûN−1ϕN−1,

so that F ′
N = FN .

Finally it should be stressed that a similar filter-based stabilization technique can be
produced for the Fourier spectral method. To this end we focus on the approximation of
periodic functions by trigonometric polynomials.

More precisely, let SN (�) be the space of the real-valued trigonometric polynomials
defined on � = [0, 2π ] and of degree k such that |k| ≤ N . Any u of SN (�) may be written
as

u(x) =
N∑

k=−N

ûk exp(ikx), (i2 = −1), (3)

where û−k = ¯̂uk (where ¯̂uk is the complex conjugate of ûk). Let us define the operator FN

as before and use the regular mesh of � : ξ N
i = π i/N , 0 ≤ i ≤ 2N − 1. Then we have the

following:
With u ∈ SN (�) and {ûk}N

k=−N the Fourier spectrum of u, one has

FN u(x) =
N−1∑

k=−N+1

v̂k exp(ikx) (4)

with

v̂k = ûk if |k| ≤ N − 3, k = ±(N − 1),

v̂N−2 = ûN−2 + û−N ,

v̂−N+2 = û−N+2 + ûN .

Again, because the grid points are explicitly known the result can be trivially obtained,
since an elementary calculation yields the two sets of equalities

exp
(
εiNξ N−1

i

) = exp
(−εi(N − 2)ξ N−1

i

)
, 0 ≤ i ≤ 2N − 3, ε = ±1.

However, from a practical point of view, one uses the discrete Fourier transform which
associates to the u(ξ N

i ), 0 ≤ i ≤ 2N − 1, the ũk, 0 ≤ k ≤ N , such that, with ũ−k = ¯̃uk and
ũN real,

u
(
ξ N

i

) =
N∑

k=−N+1

ũk exp
(
ikξ N

i

)
.

Here the problem is that to interpolate u at the grid points ξ N−1
i , a real-valued expression

like (3) is required. Knowing that exp(−iNξ N
i ) = exp(iNξ N

i ) = ±1 and that necessarily
û−N = ¯̂uN , it is natural to assume that ûN = û−N = ũN /2.
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Then

FN u
(
ξ N

i

) =
N∑

k=−N+1

ṽk exp
(
ikξ N

i

)
, 0 ≤ i ≤ 2N − 1,

with

ṽk = ũk if |k| ≤ N − 3, k = ±(N − 1),

ṽ±(N−2) = ũ±(N−2) + ũN

2
,

ṽN = 0.

Preliminary numerical tests have shown the expected stabilization effect of this approach
in the computation of 3D flows with one homogeneous direction, using spectral Fourier–
Legendre elements.

To conclude this note let us mention that the present filter-based stabilization technique
appears to be optimal in the following sense: The filtering of the N th mode while keeping
the endpoint values is achieved by modifying only the mode of rank k ≥ kc, so that kc

is maximal. Indeed, since the Legendre or Chebyshev polynomials are alternatively odd
or even, one has kc ≤ N − 2. But precisely, in the filter-based stabilization technique, the
endpoint values are preserved by modifying only the mode kc = N − 2. This may be an
important feature in the framework of direct numerical simulations of fluid flows. However,
one may notice that, in contrast with usual filters, the filter-based stabilization technique
does not imply a dissipation of “energy.” Thus, for the Legendre or Chebyshev polynomials,
with ‖ · ‖w for the L2 weighted norm, one has

‖u‖2
w − ‖FN u‖2

w = û2
N ‖ϕN ‖2

w + û2
N−2‖ϕN−2‖2

w − (ûN + ûN−2)
2‖ϕN−2‖2

w,

which may be positive or negative. This is particularly obvious for the Chebyshev polynomi-
als, for which ‖ϕi‖w = π

2 for i > 0, since then the sign of the difference is simply opposite to
the sign of the product ûN ûN−2. But as far as we know, such a possible creation/dissipation
of energy has never induced any anomalies in the numerical results.
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