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Abstract

“Defiltering-Transport-Filtering” (DTF) algorithms are proposed for the large
eddy simulation of incompressible flows by using high order methods. These new
algorithms are based (i) on an approximate deconvolution method for the modeling
of the sub-grid scale stress tensor and (ii) on a semi-Lagrangian method to handle
the convective term. Such algorithms are implemented in 3D spectral solvers (one
homogeneous direction), using differential operators to handle in an approximate way
the filtering and defiltering operations. Stability and dissipation properties of the
schema are discussed. Preliminary results, obtained with a Chebyshev collocation
solver, for the 3D wake of a cylinder with Reynolds number equal to 1000 are presented.
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ods.

1 Introduction

The LES (Large Eddy Simulation) equations for incompressible flows are ob-
tained by applying a spatial filtering to the incompressible Navier-stokes equa-
tions (see e.g [14]). When assuming that the filtering operator and the spatial
derivatives commute one obtains:

Ou+V-(a®u)=-Vp+vVia—V- -1 1
V-u=0 (1)

where a bar is used to specify the filtered quantities, i.e. w = (@1, U2, u3) and p
are the filtered velocity and pressure respectively:

;= Gu; and p=Gp (2)

with G a convolution operator characterized by its kernel, i.e by a filter function
of filter width A in physical or spectral space [15, 20].

Similarly to the RANS (Reynolds Averaged Navier-Stokes) equations, the
non-linear convective term yields an additional tensor in the momentum equa-
tion. It is the so-called subgrid-scale stress (SGS) tensor 7, such that:

Tij = Uity — Uil (3)

Then occurs a closure problem: the tensor 7 must be modelled.

Closure of the filtered Navier-Stokes equations can be handled in several
ways and SGS modeling remains a serious problem. Hereafter we follow an
approach of the “velocity estimation model” or “Approximate Deconvolution
Method” (ADM) type [2, 3, 21, 22].



Deconvolution problems being ill-posed, the idea of the ADM is to introduce
an approximate inverse of the convolution operator, to get from the filtered
velocity an approximation of the exact velocity which then can be used for the
determination of the SGS tensor 7:

Tij = wjul —ujul where ui =GV, (4)
with G, the “defiltering operator”, i.e. an approximate inverse of G.

Here one may remark that with Gt =1 (1, identity operator) one recovers
the following form of the scale similarity model [1]:

Tij = Uil — Uil; (5)

where the “test-filter” is only formally the same as that the filter used to obtain
the filtered quantities. Thus, it may be considered that the ADM essentially
yields improved scale similarity type models.

Scale similarity models are known to be not enough dissipative but better
on “a priori tests” than “Eddy viscosity models”, which generally state a pro-
portionality between the deviatoric part of the SGS tensor, say Ti? , and of the
filtered strain rate tensor:

Tz-? = —ZVTSij (6)

with S;; = 1(0;; + 0;4;) and vy an eddy viscosity, e.g. vr = (C,A)%[S|, A
filter width, C's the Smagorinsky constant.

Mixed models, i.e. which use both the eddy viscosity and the scale similarity
concepts, are probably the most efficient. In any cases, improvements may also
be found out by using the dynamic modeling [7], based on a double filtering to
determine the optimal values of the control parameters of the SGS model.

The starting point of the present study is the ADM approach recently pro-
posed in [12], which makes use of Taylor expansions of the u; to get approx-
imations of the filter and of its inverse. Thus, with 3D filters defined as the
tensorial product of 1D Gaussian or “box” convolution kernels of filter widths
A; in direction 4, with a O(A%, A%, A%) approximation one obtains:

G=1+4
Gr=1-4 (7)
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where A = 2 E_l A30;.

The authorls mention that such a model shows the advantage of having no
free parameter, but that the A; must be taken greater than twice the size of the
grid spacing h;.

Of course, the filter width is generally not constant, especially if an “implicit
filtering” by a non-homogeneous computational grid is assumed. Consequently,
the previous expression of A is approximative and moreover the convolution and
differential operators no-longer commute, so that a commutation error arises in
the LES equations. In this paper we do not address this problem, assuming
that the space variations of the grid size are “sufficiently smooth” to allow us to
neglect all the extra-terms arising from these space variations [9].



Knowing that A is O(h), the present approach again shows that using low
order methods (i.e. not better than O(h?)) for LES is questionable, since approx-
imation errors and SGS modeling adjustments may show comparable amplitudes
[9, 13].

2 Defiltering-Transport-Filtering algorithms

Spectral solvers are usually based on semi-implicit time-schemes: Linear terms
are treated implicitly and non-linear ones explicitly, using an Adams-Bashforth
extrapolation. When high Reynolds number flows are concerned, for stability
reasons it is of interest to look for alternative procedures. One of them is
the “semi-Lagrangian” method, defined as a result of the operator-integration-
factor splitting method in [17], which permits an efficient computation of the
solution at the feet of the characteristics issued from the grid-points before
solving a generalized Stokes problem [18, 25]. The specificity of this semi-
Lagrangian approach is that no high-order spatial interpolations are required,
which is essential in the frame of spectral methods.

The basic idea of the DTF algorithms is to combine the ADM with this
semi-Lagrangian method. To this end we first rewrite the filtered incompressible
Navier-Stokes equations in convective form:

Diyu = —Vp +vV2a,

where D; stands for the material derivative. The approximation of D;u with a
BD@ approximation (Backward Differentiation of order Q) yields, with ay,q =

1,---,@Q, a set of given coefficients:
1 =Q
Deu = 5 (aou™ + > aa"t ) + 0(AL9) (9)
q=1

where u™t! ~ u(x,tpy1) and @™ & w(x(T, thr1;tnrl—q)s tntl—q); With
X(,thy1;t) the characteristic issued from (&,t,41). Note that the @™ 177,
g=1,---,Q, are nothing but the consecutive values of u at times t,,;1_4 when
following the fluid particle passing at « at time t,,41. Applying now the filtering
operator G to this BD@ approximation of the material derivative one obtains:

L 1 =Q B
Dyu ~ o (a0u™" + > aa"t Y (10)
g=1

The closure problem now reads: Determine the @ "7 from the @nt1—9.

With T for the transport operator such that: @} % = Tu]*' % the most
immediate DTF approach consists in applying successively the defiltering, trans-

port and filtering operators to each component of the velocity field:
& = grgtanti—e (11)

where T depends on the “defiltered velocity”, i.e. T = T(GTu). Hereafter we
refer to this three steps algorithm by DTF.1.



However one can check that DTF.1 yields a consistency failure: Let At — 0,
so that T' — 1, then, since Gt is only an approximate inverse of G:

9=Q
(0 + > yGGTu™ £0 (12)

=1

which means that the material derivative blows up for At = 0.
Such a failure may be overcome by using:

& = (GTGY +1-GGH)at e (13)
which results from substracting from eq. (11) the “equality”™
"l GGt e (14)

The corresponding algorithm is called hereafter DTF.2.

The algorithms DTF.1 and DTF.2 have been implemented in two 3D DNS
solvers: (i) a spectral collocation solver (Chebyshev-Chebyshev-Fourier) and
(ii) a Fourier-Legendre spectral element solver. Both solvers make use at each
time-cycle of a two-step algorithm. First, in a “transport step”, one solves the
@ auxiliary problems (¢ =1,---,Q):

) V¢ =0
{ ‘bt(fntl’qu) juT‘l—H_q (15)
Then: ;"7 = ¢(tns1) (16)

To this end we use a RK4 (Fourth order Runge Kutta) scheme with sub-time
cycling (see [25] for details).
Second, one has to compute %™t by solving the generalized Stokes problem:

=Q

Qo _ni1 nt+l o o2-ntl _ _i =n+l—q
Al +Vp vVt = Al q; ot (17)
V-amtt =0

which splits into a set of 2D-like problems, handled with the Chebyshev or the
spectral element approximation. Hereafter we focus on the Chebyshev solver
(mono-domain version of [19]), for which numerical results are given in Section
4.

Note that since a RK scheme is used for the transport step:

A" = "L ALY TRy, (18)
k

where the Rj, denote the terms of the RK scheme. Then DTF.1 and DTF.2
yield to use the following non-consistent and consistent forms respectively:

@t = GGratIT1+ AtG Y Ry (19)
k
@™ttt = @t L AtG Y Ry (20)
k
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Figure 1: left: 1 D periodic case, Fourier spectra of G for a = {1.559, 2,2.205}
and of the Gaussian filter; right: 1D non-periodic case, eigenvalues of the Cheby-
shev approximations of hd, and h?d2.

3 Filtering and defiltering procedures

The main ingredients of the DTF algorithms are the filtering and defiltering
operators. As mentioned in introduction, following [12] we plan to use differen-
tial operators which are expected to approximate the Gaussian or (“box”) filter
and of its inversion (see eq. (7)). In this Section we present a spectral analysis
of such operators in the 1D periodic and non-periodic cases, using a Fourier
and a Chebyshev approximation respectively.

1D periodic case (Fourier approximation):

In Fig. 1 (left) we present the Fourier spectra of G, say G, obtained for
different values of the ratio @« = A/h. Such curves are parabola of equations:

A a?n? ko,
Grp=1- 24 (K) (21)
where K is the number of Fourier modes (K = 30 in Fig. 1).

Of course the Fourier spectrum of GT is the one obtained by symmetry
with respect to G = 1. We have also plotted the Fourier spectrum of the
Gaussian filter that is to be approximated: One observes that with a = 2 the
approximation is only valid for the low frequencies. More precisely one can
check that:

- with @ = 2, if k/K > 0.8 then G} < 0, i.e. G is not a filtering operator,

- min(G}) > 0 requires a < 1.559,

- if @ > 2.205, max |G| > 1, ie. ||G]|* — oo as n — 0.

Moreover, the stability of the DTF.1 algorithm is governed by the operator
G G, since if At — 0, T — 1. It can be easily checked that :

- if @ > 1.854, then ||G G1||" — oo with n.

Finally, it must be stressed that to maintain these properties in 3D the
operator G must be defined as the tensorial product of 1D operators. With
G =1+ A, it turns out that G is really a filtering operator only if a < 0.9 and
that the stability constraint reads a < 1.071.

1D non-periodic case (Chebyshev approximation):
To handle the non-periodic case we proceed to an eigenvalue analysis of the
Chebyshev approximation of G. To this end we restrict the definition domain of



G to the space Py of polynomials of degree N and use the usual Gauss-Lobatto-
Chebyshev grid, so that G is now a matrix of dimension (N +1) x (N +1). The
eigenvalues of G, say \;, write:

OLZ

Ai =14 oo

(22)
where the u; are the eigenvalues of the discrete form of h?92.

In Fig. 1 (right) we have plotted the eigenvalues of the Chebyshev approxi-
mations of hd, and h?02, with h a local mesh size obtained through the collo-
cation grid: h(z;) = (zi41 —2i-1)/2, 0 < i < N, and h(zg) = h(zn) = 21 — 0,
where {z;,i =0,---, N} is the set of the Gauss-Lobatto-Chebyshev points, i.e.
x; = —cosz;, #z; =10z, 0z =m/N. One observes that (i) for hd, the eigen-
values are imaginary and that (ii) the y; are real non positive.

The critical values of a can be easily determined:

-0< <1 <=  a<+y/24/ max(—pw),

- <1 = a < 4/48/ max(—p;).

N 61 122 244 488
max(—p;) | 9.672 | 9.777 | 9.825 | 9.848
Table 1

Table 1 lists the values of max(—pu;), i.e. of the spectral radius of the Cheby-
shev approximation of h%292, for different values of N. One observes that the
dependence on N is weak. Moreover, in the limit N = oo, max(—p;) = 72 so
that the Chebyshev and Fourier critical « are the same. Thus, for N = 488 we
find that G is actually a filtering operator if o < 1.561.

Numerical tests on stability of the combined filtering-defiltering procedure
using both spectral element and Chebyshev methods were in good agreement
with these estimated critical values of a.

Remark: For large values of N the above results can be interpreted from the
relations:

dx dz T
A’z dz 2 1
292 2792 22 — 2 _
WO m 0O+ (g 0) =m0 - s (2

Filtering in Fourier space:

The previous analysis gives rise to the idea of filtering in Fourier space, i.e to
apply a filter of constant width to the 2m-periodic function u(— cos(z)),z € R.

Of course, such an approach shows the main advantage that the spectrum
of G may be directly defined. Moreover, one gets rid of the sensitive problem of
near-wall filtering, assuming implicitly that the filter-width in normal direction
vanishes at the wall. Hereafter, in order to recover the filtering property we use
G}, = max(G}y,0), i.e. the convolution product of G' with a spectral cutoff filter.
Such a cutoff includes a partial de-aliasing effect.

One should remark that:

- filtering for non-equidistant grids is defined in a related way in [8],

- the method can be generalized as soon as x; = H(idz), with H a smooth,
pair and 2w-periodic mapping, as it is e.g. the case for the Gauss-Lobatto-
Legendre grid.



4 Preliminary numerical experiments: Analysis
and improvements

The first numerical experiments have shown that (i) DTF.1 is too much dissipa-
tive and yields time-step dependent results (consistency problem) whereas (ii)
DTF'.2 is not dissipative and so not stable for reasonable values of the time-step.

To point out the dissipative feature of DTF.1, let us assume a BD1 approx-
imation of the material derivative and use a RK scheme for the transport step.
Then, DTF.1 yields for the momentum equation:

"t — GGtar

—n+1 2-n+1 __
A —G Y Ry + Vp"t — vV =0 (25)

k

where again the Ry are the terms that appear in the RK scheme. Such an
equation also writes:

—G S Ry + Vi - ovRant = —Aita _GGha"  (26)
k

,a'ﬂ-‘rl _ ,an
At

Clearly the right hand side term is dissipative but, as expected, depends on the
time-step.

However, it is of interest to outline that such a dissipative term is close to
the one introduced in [22]. Even more, if one combines DTF.1 and DTF.2, for
the computation of the ﬁ"+1_q, by using weighted coefficients equal to xAt and
(1 — xAt) respectively, then one obtains:

,&TL+1 —an”

—G Y R+ Vp" — Ve = —x(1-GGhHa"  (27)
At -
which exactly shows the dissipative term of [22]. The time-scheme is now con-
sistent, but it appears a new parameter: x. In [22] a dynamic modeling is used
to adjust the value of this parameter.

In order to overcome the lack of dissipation of the DTF.2 algorithm, we
suggest using stabilization techniques. Especially,

- the spectral vanishing viscosity (SV) method, introduced in [16, 23] for con-
servation laws. It consists of introducing a viscous term acting only the highest
frequencies. Let us mention that the SV method was successfully checked in [11],
in the framework of the so-called MILES (Monotone Integrated LES) appoach,
when no SGS modeling is used (see e.g. [6]);

- the filter-based stabilization technique proposed in [4]. Stabilization is ob-
tained by interpolation, at each time-step, of the solution, say in the polynomial
space Py, onto the Gauss-Lobatto grid of the polynomial space Pn_1.

To check the DTF.2 algorithm associated to the SV method, we have used the
Chebyshev collocation solver for the computation of the wake behind a circular
cylinder. The Reynolds number, based on the mean flow velocity and the cylin-
der diameter, is equal to Re = 1000. This value corresponds to the lower part
(350 < Re < 1500) of the turbulent sub-critical regime (350 < Re < 300000).
The flow is computed in the domain Q =] — 2;4[x] — 3;3[x]0; 4], the cylinder
axis being located at = 0,y ~ 0. A “smoothed penalty technique” [5] is used



to model the cylinder, i.e. a penalty term is introduced in the momentum equa-
tion to cancel the velocity inside the cylinder and its characteristic function is
filtered (“raised cosine filter”) to weaken the Gibbs phenomenon. At the outflow
boundary of the computational domain we impose to the velocity components
an advection equation based on the mean flow velocity. Free-slip boundary con-
ditions are used at y = £3 and the z-direction is assumed homogeneous. The
calculation parameters are Q = 2, N, = 61, N, = 61, N, = 40 and At = 5.1073.
No-sub-cycling is used in the transport step. The spectral viscosity is increased
smoothly, as suggested in [16], from 0 to the inverse of the number of Chebyshev
or Fourier modes in the upper half part of the Chebyshev and Fourier spectra.

Velocity

Figure 2: DTF2+SV, left: u, = {0,0.8} at ¢ = 80; right: history plot of u,
downstream of the cylinder.

Fig. 2 points out the turbulent feature of the flow: Visualization of the
streamwise component shows that the flow is fully 3D and the crosswise compo-
nent at a point downwards the cylinder is quickly oscillating. However, one can
discern a dominant frequency yielding a Strouhal number St =~ 0.21, which is
in agreement with the numerical and experimental results presented in [10, 24]
respectively.

In Fig. 3 we have plotted isovalues of the streamwise component of the
velocity in the planes z = 2 and y = 0, and also the spanwise component of
the vorticity for z = 2, at times corresponding approximatively to one vortex
shedding period. Such results point out that the recirculation length is less than
two cylinder diameters. Also the instantaneous vorticity plots, shown without
any post-processing, exhibit the expected separating shear layers downstream
of the cylinder.

5 Conclusion

Using high-order methods for the LES of turbulent flows should permit to find
out numerical solutions not “polluted” by approximation errors. With this goal,
DTF algorithms have been proposed and implemented in spectral solvers. Ba-
sically they are of the scale similarity type, but improved through the use of
an ADM. The main idea is to take benefit of a semi-Lagrangian formulation
to handle with an efficient explicit algorithm the additional terms arising in
the Navier-Stokes equations. It has been pointed out that for the filtering and



Figure 3: DTF2+4SV, u,(z = 2) (top), uz(y = 0) (medium) and w,(z = 2)
(bottom) at ¢t = {77,78,79,80}. Negative values are in dashed lines, du, = 0.2
and dw, = 2.

defiltering procedures, using approximations of the convolution and deconvo-
lution operators with differential ones must be done with care. Also it has
been shown that filtering-defiltering in Fourier space could be of interest when
Gauss-Lobatto type computational grids are concerned.

Just like other ADM, the DTF algorithms need additional regularization:
This can be achieved through the use of stabilization techniques, like the
spectral vanishing viscosity method. The results that have been presented are
preliminary ones. The aim is now an improvement of the algorithms and “a
posterior?’ tests to check the turbulence features of the computed flows.
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