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Abstract In the field of spectral element approximations, the interpolation
points can be chosen on the basis of different criteria, going from the mini-
mization of the Lebesgue constant to the simplicity of the point generation
procedure. In the present paper, we summarize some recent nodal distrib-
utions for a high order interpolation in the triangle. We then adopt these
points as approximation points for the numerical solution of an elliptic partial
differential equation on an unstructured simplicial mesh. The L2-norm of the
approximation error is then analyzed for a model problem.
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High-order interpolation
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1 Introduction

High quality polynomial interpolation of functions is a classical topic in
approximation theory. It plays an essential role in the success of spectral and
hp-finite elements applied for the numerical solution of partial differential
equations. As soon as the exact solution is smooth, these methods can achieve
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spectral convergence of the discrete solution by allowing p-refinement of
the polynomial degree in each element. While hierarchical hp-finite elements
employ modal basis functions (see [21, 24]), spectral element methods on
quadrilateral/hexahedral elements (QSEM) employ a nodal approach based
on the tensor product of one-dimensional Gauss–Lobatto–Legendre (GLL)
points (see, e.g., [2, 8, 15]). The need to extend spectral element formulations
to complex geometries and unstructured meshes has recently led to the con-
struction and study of triangular/tetrahedral spectral elements (TSEM); see,
e.g., [13, 14, 25, 26] and the previous studies of interpolation nodes on triangles
[7, 13].

The question of how to distribute nodes in a triangle or tetrahedron which
are suitable for high-order polynomial interpolation is still a somewhat open
question. There has been several attempts to produce nodal sets using direct
and indirect methods to minimize their Lebesgue constant.

Two factors figure prominently in the quality of high-order polynomial
approximations, namely, the smoothness of the function to be interpolated,
and the locations of the interpolation points. Interpolations using uniformly
distributed points yield undesirable behavior (oscillations) even for analytic
functions as soon as the polynomial degree of approximation increases. The
problem of how to distribute interpolation nodes in tensor-product domains is
solved by recurring to Gauss-Lobatto points. It was not clear how to extend
these points to a non-tensor-product domain. Before going into the details, we
would like to make a bit of history on some important achievements.

A first widely adopted approach was proposed in [15], based on the idea of
using a change of coordinates to transform the quadrangle (and its quadrature
points) into the triangle. The main drawback of this approach is that the
interpolation points are not symmetrically distributed over the triangle and
accumulate at one of the vertices. An early different approach [5] on a
triangle was to choose the nodal set which maximizes the determinant of the
Vandermonde matrix defined using a suitable L2-orthogonal polynomials on
the triangle up to the 7th order. The resulting nodes are referred to as Fekete
nodes. Since Fekete points are known to be the GLL points on the line [10] and
in the d-dimensional cube [4], Fekete points are one possible generalization of
GLL points for the triangle. This approach was improved and extended up to
degree 13 in [7] and further extended to the 18th order in [26]. Note however
that the polynomial space used for the d-dimensional cube is different from
that used for simplices. In fact, N denotes, on cubes, the maximal polynomial
degree in each variable and, on simplices, the total polynomial degree.

An alternative approach was adopted in [13]. It was observed in [23] that
the location of the maxima of certain Jacobi polynomials in the interval [−1, 1]
correspond to the equilibrium positions of a system of repelling electric charges
constrained to lie in the interval. As a consequence, GLL points coincide with
the equilibrium positions of these electric charge systems. This analogy has
been extended to compute node distributions in the triangle by looking for
equilibrium positions of charges distributed in the triangle with line charges
fixed on the boundary of the triangle.
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Rather recently, different strategies have been adopted with respect to the
one discussed so far about nodal distributions resulting from optimizing the
interpolation quality of nodes by varying their location. Of great practical
interest, especially in three dimensions where optimization procedures become
quite complicated (and a natural question arises for non-convex problems:
“Is the computed set really the optimal one?”), would be to have an explicit
formula for the distribution of points in the triangle/tetrahedron. This was
done in [3] and very recently in [11]. Another approach has been proposed
in [27], suggesting to replace the task of creating a nodal distribution with
a closely related task of building a coordinate transformation for the trian-
gle/tetrahedron, as occurs in the presence of curvilinear finite elements.

We will summarize these most recent existing nodal sets and compare them
numerically in terms of Lebesgue constants, generalized Vandermonde matrix
conditioning and accuracy when adopted as approximation points in a TSEM
approach [18] applied to a model problem.

2 Definition of an interpolation grid over a triangle

We consider the interpolation of a function of two variables over a tri-
angular domain T in the xy plane. We suppose this triangular domain to
be the image by means of a suitable mapping g = (gx, gy) of the refer-
ence triangle Tref = {(r, s) : −1 ≤ r, s, r + s ≤ 0}. The interpolated function
is then approximated with a complete Nth-degree polynomial in r and s,
i.e., ( f ◦ g)(r, s) ≈ (IN( f ◦ g))(r, s) = ∑N

k=0

∑N−k
�=0 ak�rks�, involving n = (N +

1)(N + 2)/2 unknown coefficients ak�. These coefficients are computed by
selecting n interpolation nodes (ri, si) over Tref and enforcing the interpolation
conditions ( f ◦ g)(ri, si) = (IN( f ◦ g))(ri, si) for 1 ≤ i ≤ n. To speed-up the in-
terpolation process, we introduce cardinal node interpolation functions ϕi(r, s),
1 ≤ i ≤ n, with the properties of ϕi being a polynomial of total degree ≤ N on
Tref and ϕi(r j, s j) = δij, where δij is the Kronecker symbol. The interpolating
polynomial can be written as (IN( f ◦ g))(r, s) = ∑n

i=1 ϕi(r, s) fi, where fi =
( f ◦ g)(ri, si) are the prescribed function values at each of the n nodes. In
this light, the interpolation problem reduces to obtaining an expression for
each cardinal function ϕi. Note that the nodal basis {ϕi} depends only on
the interpolation nodes (ri, si). Once this is done, the function f itself can
be interpolated at any point (x, y) of T using the expression (IN f )(x, y) =
(IN( f ◦ g))(r, s), with (x, y) = g(r, s).

To compute the cardinal node interpolation functions, we introduce a set
of n polynomial functions {ψ j} that form a complete base of the Nth-order
polynomial space PN , and introduce the expansion

ϕi(r, s) =
n∑

j=1

ci
jψ j(r, s), (1)
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where ci
j are unknown coefficients. Enforcing the interpolation conditions, we

find that the vector of coefficients ci = (ci
1, ci

2, ..., ci
n)

t, corresponding to the ith
cardinal function, satisfies the generalized Vandermonde system

Vci = ei, (2)

where ei is the ith unit vector of the canonical basis of R
n. The (i, j) entry of the

generalized n × n Vandermonde matrix V is given by Vij = ψ j(ri, si). Once the
solution of the linear system (2) has been found, the polynomial interpolation
over the triangle is accomplished. The difficulty of solving the linear system (2)
is related to the conditioning of the generalized Vandermonde matrix which
is sensitive to the choice of the basis functions ψ j, and interpolation points
(ri, si). In practice, it is convenient to employ a set of polynomial basis functions
that enjoy orthogonal or near-orthogonal properties (e.g., the Koorwinder-
Dubiner polynomials [9]).

A good measure of the quality of the polynomial interpolation is given by
the Lebesgue constant �N , defined as

�N = max
(r,s)∈Tref

LN(r, s), LN(r, s) =
n∑

i=1

|ϕi(r, s)|, (3)

where LN denotes the Lebesgue function. This function takes value 1 at the
interpolation points (ri, si) and reaches maximal values where nodal coverage
is poor, as for example between points. The Lebesgue constant is involved in
the mesure of how well the interpolation polynomial function (IN f ) represents
f over Tref. Let us consider a function f ∗ ∈ PN which best represents f in the
usual maximum norm ||.||∞. Then in general f ∗ �= IN f , but of course f ∗ =
IN f ∗. Thus

|| f − IN f ||∞ = || f − f ∗ + IN f ∗ − IN f ||∞
≤ || f − f ∗||∞ + ||IN||∞|| f ∗ − f ||∞
≤ (1 + ||IN||∞)|| f − f ∗||∞

where ||IN||∞ = max{||u||∞=1} ||INu||∞ = �N , see [7]. This result provides an
upper bound which is the worst possible point-wise error for the polynomial
interpolant relative to the best possible uniform polynomial approximation
available at the same order. Additionally, the Lebesgue constant bounds the
polynomial approximation in terms of the nodal function value [6]

||IN f ||∞ ≤ �N max
1≤i≤n

| f (ri, si)|.

The Lebesgue constant �N is defined only in terms of the cardinal functions
which in turn are defined only depending on the nodal positions, regardeless
of the basis functions. It is reasonable to try to construct a set of nodes whose
Lebesgue constant is as small as possible. By the way, the practical construction
of the nodal set as well as its possible extension to 3D and non-triangular
shapes are two other important aspects to consider.
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2.1 Koornwinder-Dubiner polynomials [9]

In the reference triangle Tref, the following KD polynomials are L2-
orthonormal, where L2(Tref) is the Hilbert space of square-integrable func-
tions on Tref and inner product ( f, g) = ∫

Tref
f (r, s) g(r, s) dr ds:

ψij(r, s) = cij P
0,0
i

(
2r + s + 1

1 − s

) (
1 − s

2

)i

P2i+1,0
j (s), (4)

with the normalizing factor cij = √
(2i + 1)(i + j + 1)/2 and Pα,β

i (x) being the
i-th order Jacobi polynomials [1] evaluated at x.

Let us consider now the space PN(Tref) of polynomials defined on Tref and of
total degree ≤ N. The n = (N + 1)(N + 2)/2 KD polynomials ψij, i, j ≥ 0, i +
j ≤ N (see Fig. 1 for an illustration with N = 4) constitute an orthonormal
basis of PN(Tref). Hereafter we no-longer use the notation ψij but ψk, 1 ≤
k ≤ n, with any arbitrary bijection k ≡ k(i, j).

2.2 Uniform grid

One way to introduce the definition of uniform grid on a simplicial domain
Tref ⊂ R

d is by means of the notion of barycentric coordinates. Let ni denote
the ith vertex of Tref, ordered in some way. Then, (d + 1) real numbers
λ0, λ1, ..., λd such that

∑d
i=0 λi = 1 determine a point x, the barycenter of

the vertices ni for these weights, uniquely defined by
∑d

i=0 λi(x − ni) = 0.

Fig. 1 KD polynomial basis for N = 4, taken from [20]
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Conversely, any point x has a unique representation of this form, and the
weights λi are the barycentric coordinates of x in the affine basis provided by
the vertices ni. Note that x belongs to Tref if λi(x) ≥ 0 for all i. On Tref, with
n0 = (−1, −1), n1 = (1, −1), n2 = (−1, 1), and x = (r, s), we have

λ0(r, s) = 1

2
(−r − s), λ1(r, s) = 1

2
(1 + r), λ2(r, s) = 1

2
(1 + s).

Now, for each integer N ≥ 1, we define the principal lattice of order N in Tref

as the set TN of points defined by their barycentric coordinates with respect to
the vertices ni as follows

TN =
{

x ∈ Tref, λi(x) ∈
{

0,
1

N
, . . . ,

N − 1

N
, 1

}

, 0 ≤ i ≤ d
}

.

The uniform grid in Tref associated to the degree N coincides with the
nodes of the set TN . Unfortunately, as the interpolation degree N increases,
the accuracy over the uniform grid deteriorates due to the Runge effect.
The interpolated function presents large oscillations between the nodes
and the Lebesgue constant (see Table 1) as well as the generalized Vander-
monde matrix conditioning (see Table 3) increase rapidly with N. As far as it
concerns its use within a discretization approach for the numerical resolution
of an elliptic problem, it is only suitable for low-order polynomial expansions
(see Table 4).

2.3 Fekete grid

A more clever way of arranging the interpolating nodes over the simplex is
provided by the Fekete points [26]. To define these points in Tref, we pick a
basis {ψ j} for PN and we consider the n × n generalized Vandermonde matrix
V(z1, z2, ..., zn) as a function of the nodal positions zi, and whose elements are
Vij = ψ j(zi). By definition, Fekete points are the set of points which maximizes
the determinant of V within the simplex Tref. Fekete points are independent of
the basis choice, since any change of basis only multiplies the determinant by a
constant (which is the determinant of the basis change matrix) independent of
the points. The Lebesgue constant for these points satisfies �N ≤ n. This fact
can be explained by considering the Fekete point cardinal functions. Let us call
v the maximum of the determinant of the generalized Vandermonde matrix

Table 1 Lebesgue constants for different nodal distributions on the triangle, for different polyno-
mial degrees N

N Uniform Fekete Lobatto warp & blend recursive approx. Fekete Sym. [12]

3 2.27 2.11 2.11 2.11 2.11 2.24 –
6 8.75 4.17 3.87 3.70 4.37 6.83 3.87
9 40.92 6.80 7.39 5.74 8.44 12.42 5.59
12 221.41 9.67 17.78 9.36 18.17 19.10 7.51
15 1,315.89 10.02 49.46 17.65 41.74 26.11 9.25
18 8,304.27 14.73 156.22 38.07 113.32 37.99 11.86
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V(η1, η2, ..., ηn) and let {zi} denote the set of Fekete points which achieves the
maximum. The cardinal functions ϕ j(z) ∈ PN are uniquely defined by ϕ j(zi) =
δij. The Cramer’s rule solution of (2) yields the cardinal functions

ϕ j(z) = detV(z1, z2, ..., z, ..., zn)

v

where z appears in the jth row. This is because at z = zi, for i �= j, the ith and
jth rows of the Vandermonde matrix are equal and then det(V) = 0. When z =
z j, we have that the determinant of V is at its maximum and thus det(V) = v.
The expression for ϕ j also leads to the bound

|ϕ j(z)| ≤ 1, ∀z ∈ Tref.

Thus, unlike general optimal interpolation points, Fekete points generate
cardinal functions which achieve their maximum in Tref at their associated
Fekete point. This property gives a bound on the Lebesgue constant, that is

�N = max
z∈Tref

n∑

i=1

|ϕi(z)| ≤ n.

In the one dimensional case, the bound is well known to be logarithmic in
n. Numerical tests suggest that the bound for the Lebesgue constant in the
triangle scales like

√
n ∼ N, in agreement with the results presented in [26].

Until very recently, the Lebesgue constant for the Fekete points was the
lowest known constant for N > 10, but in [12, 20] sophisticated optimization
techniques have been applied to find nodal sets, starting with Fekete distrib-
utions and generating configurations with improved Lebesgue constants (see
last column in Table 1, symmetric case).

The computation of Fekete points requires solving difficult optimization
problems already at moderate degrees (see [26] where a steepest descent
algorithm and explicit formula for computing the gradient of the determinant
of the matrix V have been adopted). In some recent papers (see [22] for
example) suitable algorithms have been studied, that compute multivariate
approximate Fekete distributions by extracting maximum volume sub-matrices
from rectangular Vandermonde matrices on any compact domain. These dis-
tributions can be defined on elements of any shape but, not being symmetric,
they have to be considered, in the absence of a suitable treatment of the points
on the boundary, in the framework of non-conforming approaches, such as
the nowadays largely studied discontinuous Galerkin element method [11]. In
the frame of the conforming TSEM discussed here, the approximate Fekete
distribution has been modified on the boundary to coincide with the GLL one,
in order to recover an usual edge point distribution. Despite this modification
on the boundary, the approximate Fekete distribution leads to rather good
results.
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2.4 Lobatto grid [3]

A competitive alternative to the previous distributions is the one presented
in [3]. The proposed grid is generated by deploying Lobatto interpolation
nodes along the three edges of the triangle, and then computing interior nodes
by averaged intersections to achieve a three-fold rotational symmetry. Let us
consider the GLL nodes ti, 0 ≤ i ≤ N, over [−1, 1], defined as the zeros of
(1 − t2)L′

N+1(t), where L′
N+1(t) denotes the first derivative of the Legendre

polynomial of degree N + 1. Then, we set

vij = 2

3

[

t j − (ti + tN−i− j)

2

]

− 1

3
, 1 ≤ i ≤ N, 0 ≤ j ≤ N − i.

The boundary and interior nodes on Tref are identified by the coordinates

rk = vij, sk = v ji,

for 0 ≤ i ≤ N, 0 ≤ j ≤ N − i, and k = k(i, j). This configuration is simple to
generate, characterized by relatively low Lebesgue constants (see Table 1)
and generalized Vandermonde matrix conditioning (see Table 3), and does
not compromise the interpolation accuracy (see Table 4).

2.5 Recursive grid

The idea of defining interpolation nodes on concentric triangles was firstly
analysed in [6]. The author envisioned a series of concentric triangles of the
same arrangement as a uniform grid yet with varying circumradii and then
spaced nodes unevenly along each edge. By specifying an edge distribution of
Gauss-Lobatto-Legendre points and optimizing the circumradii to maximize
the determinant, the author provided Fekete nodes which are exact for N ≤ 4
and approximate for 4 < N ≤ 7. An alternative to this construction, which
results in a very easy recursive generation algorithm, has been later generalized
to arbitrarily shaped domains in [11]. We present it for the triangle with
degrees N that are multiple of 3 and we set m = N/3. We then consider
m concentric triangles, with edges parallel to the ones of Tref, starting from
the external one coincident with Tref, and going towards the barycenter G =
(− 1

3 , − 1
3 ). Let tk, k = 0, 2m, be GLL points on [−1, 1]. The ith concentric

triangle is homothetic to Tref with center G and homothety factor t2m−i, 0 ≤
i ≤ m. The last concentric triangle degenerates to the barycenter point G, since
for i = m we have tm = 0. On the edges of the ith triangle of the collection, we
then define the 3i + 1 GLL nodes. Note that, as expected, the total number of
interpolation points is

n = 1+3

(
m∑

i=1

3i

)

=1 + 9

2
m(m + 1)= 1

2
(3m + 1)(3m + 2)= 1

2
(N + 1)(N + 2).
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Once again, this distribution is characterized by relatively low Lebesgue con-
stants (see Table 1) and generalized Vandermonde matrix conditioning (see
Table 3), and does not compromise the interpolation accuracy (see Table 4).

2.6 The warp & blend grid [27]

The final construction we consider has its point in the simple observation of the
following fact: Given any set of n nodes {zi}, it is always possible to construct
a mapping g defined on Tref such that the zi are the images through g of the
uniform grid nodes defined in Section 2.2. The question of constructing a set
of nodes is then reformulated in terms of constructing such a mapping. To
narrow the choice of how the construction of this mapping should be done, the
following properties are required:

• The image of the uniform grid nodes on an edge should be the GLL
distribution;

• The transform should be bijective;
• The transform should be symmetric with respect to the symmetries of Tref;
• The transform should be explicit in barycentric coordinates.

Given the locations ti of the N + 1 GLL points on [−1, 1], we construct a one
dimensional deformation function w : [−1, 1] → [−1, 1], called the warp func-
tion, as the Lagrange interpolant function which interpolates the deformation
to the GLL points from the uniform grid points u j:

w(x) =
N∑

i=0

(ti − ui)

N∏

k�=i,k=0

(x − uk)

(ui − uk)
.

They extend the edge warp into the triangle by blending in the edge normal
direction, achieving a warp & blend transform g1 which satisfies the coordinate
transform requirements for the considered edge, say edge 1 (λ0 = 0). In terms
of barycentric coordinates,

w1(λ0, λ1, λ2) = w(λ2 − λ1)v1,

b 1(λ0, λ1, λ2) =
(

2λ2

2λ2 + λ0

) (
2λ1

2λ1 + λ0

)

,

where v1 denotes the unit tangent vector to the edge 1 of Tref, and g1 = b 1w1.
Constructing analogous transformations on the other two edges, the final
coordinate mapping g = ∑3

i=1 gi. The constraint that the mapping should be
isoparametric has been relaxed by introducing a parameter α and considering
g = ∑3

i=1(1 + (αλi−1)
2)gi. The choice of the optimal value for α as well as

the programs which construct the points are given in [27]. The (symmetric)
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point distribution obtained with this technique performs well, as shown by
the obtained numerical results, up to rather high values of the polynomial
approximation degree (N ≈ 15).

3 The model problem and TSEM formulation

We now explore how one can construct a spectral element method on non-
tensor product domains. Let � ∈ R

d, d = 2, 3, be a bounded Lipschitz domain
with piecewise smooth boundary ∂�. For simplicity, we consider a model
elliptic problem in the plane (d = 2), with homogeneous Dirichlet boundary
data (although the numerical methods and results presented in this paper can
be generalized to three dimensions and to more general elliptic problems):

−div(α grad u) + βu = f in �, u = 0 on ∂�, (5)

where α, β > 0 are piecewise constant in � and f is a given function in L2(�).
We denote by L2(�) the space of square integrable measurable functions in �,
and by H1(�) the space of functions in L2(�) whose gradient is in [L2(�)]2.
Then let V be the Sobolev space

V ≡ H1
0(�) = {v ∈ H1(�), v = 0 on ∂�}.

The weak formulation of (5) reads (see, e.g., [19]): Find u ∈ V such that

a�(u, v) :=
∫

�

(
α gradu · gradv + β u v

) = ( f, v)� :=
∫

�

f v, ∀v ∈ V. (6)

The variational problem (6) is discretized by the standard conforming
spectral element method, triangle-based (TSEM). To this end, we assume that
the original domain � is decomposed into K triangular spectral elements Tk,

� =
K⋃

k=1

Tk.

This is a conforming finite element partition, i.e., the intersection between two
distinct elements Tk is either the empty set or a common vertex or a common
side. Each element Tk is the image of the reference triangle Tref by means of
a suitable mapping gk, 1 ≤ k ≤ K, i.e., Tk = gk(Tref). Finally, the space V is
discretized by continuous piecewise polynomials of total degree ≤ N,

VK,N = {v ∈ V : v|�k ◦ gk ∈ PN(Tref), 1 ≤ k ≤ K}.

The spectral element approximation of the variational elliptic problem (6)
is obtained for the TSEM by replacing the L2-inner product and the bilinear
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form defined in (6) with their approximations based on Gauss points. Note that
in the classical quadrilateral-based SEM version (QSEM), the GLL points of
the quadrilateral are used both as quadrature and interpolation points. In the
following we explain why this is no longer possible in TSEM.

Unlike GLL points, a quadrature formula based on the considered inter-
polation points of the triangle is exact only for integrands in PN(Tref). As a
result, the spectral accuracy gets lost. Due to this fact, it has been suggested
for the TSEM to separate the sets of interpolation and quadrature points, say
{x̂i}n

i=1 for the first set and Gauss points {ŷ j}m
j=1 for the second set, obtained

by imposing an exact integration of polynomials, e.g., in P2N(Tref); see [18].
Given the values of a polynomial uN ∈ PN(Tref) at the interpolation points,
one can set up interpolation and differentiation matrices to compute, at the
Gauss points, the values of uN and of its derivatives, respectively. For instance,
denoting by u the vector of the uN(x̂i), 1 ≤ i ≤ n, and by u′ that of the uN(ŷ j),
1 ≤ j ≤ m, we have u′ = V ′V−1u, where V ′

ij = ψ j(ŷi). On a generic triangle
Tk = gk(Tref), the same relation between u′ and u holds true, provided that
ui = (uN ◦ gk)(x̂i) and u′

j = (uN ◦ gk)(ŷ j). Similarly, in Tref one has (∂u)′ =
W ′V−1u, where ∂ stands for differentiation with respect to any coordinate and
where W ′

ij = ∂ψ j(ŷi). Then, using the chain rule, one can compute derivatives
in the generic triangle.

The TSEM thus requires the use of highly accurate integration rules based
on Gauss points, which is still an open subject of research for high values of N.
At a higher computational price, one can however use integration rules based
on Gauss points for the quadrilateral and then map them to Tref; see [15]. On
a generic triangle Tk = gk(Tref),

(u, v)Tk ≈ (u, v)Tk,N =
m∑

j=1

u′
j v

′
j |JT

k (ŷ j)| ω j,

where ω j > 0, j = 1, m, are the quadrature weights and |JT
k | is the Jacobian of

the mapping gk between Tref and Tk, and in general on �,

(u, v)�,N =
K∑

k=1

(u, v)Tk,N. (7)

We then obtain a discrete problem

a�,N(u, v) = ( f, v)�,N ∀v ∈ VK,N, (8)

which can be written in matrix form as a linear system Au = b. The TSEM
matrix A is less sparse than the QSEM one and more ill-conditioned, since its
condition number grows as O(N4h−2) rather than O(N3h−2) for d = 2, where
h denotes the maximal diameter of the mesh elements; see [16].
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4 Results

4.1 On the reference triangle

To compute the Lebesgue constant, we introduce a uniform Cartesian grid,
calculate the Lebesgue function at the grid nodes and perform a direct search
for the maximum. The rough maximum is subsequently refined three times
to get a more precise estimation. The 4-level algorithm steps are visualized in
Fig. 3.

Table 1 shows the approximated values of the Lebesgue constants for the
previously considered distributions of nodes over the triangle Tref (Fig. 2).
Concerning the value of �N for N < 9, the considered different interpolation
sets are similar (apart from the uniform one which gives the worst result).
Then, their behavior diverge radically at higher order. To provide much
more insight on this, we have analysed the profile and the location of the
maxima of the Lebesgue functions, for N = 9, 12, 15, 18. The success of a
given interpolation set in terms of �N may be rephrased by saying that the
cardinal functions should have moderate peaks. This fact holds for Fekete
type distributions, such as Fekete, warp & blend, approx. Fekete and those
in [12]. For the other considered distributions, the interpolation nodes are
loosely packed near the edges and the cardinal functions have peaks higher
than 1, as shown in Table 2, thus yielding high value of �N . Note that in [20],
the magnitude of a node’s cardinal function is used as a mesure of the node’s
influence on the domain. As a result, particular Voronoi tessellations of the
triangle are constructed, and excellent interpolatory points occupy barycentric
positions in the tessellation cells. The Lebesgue constants computed in [12]
are the lowest known. We can conjecture that a break of the node symmetry
at the interior of the triangle yields moderate peaks in the cardinal functions,
as shown in Table 2 for the degrees which are available in [12] (see also for

Fig. 2 Node distribution for N = 9. Top line: uniform (left), Fekete (center), approximate Fekete
(right). Bottom line: recursive (left), warp & blend (center), Lobatto (right)
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Fig. 3 Results of the 4-level algorithm for the computation of the Lebesgue constant for the
Fekete distribution with N = 9. Starting from the Lebesgue function value at the grid nodes on
the reference triangle (top line, left), we refine three times in a square area centered in the rough
maximum (colored in white on a greyscale). At the most refined level (bottom line, right), all
isolines carry the same value which is the computed Lebesgue constant, here 6.80

the approximated Fekete point distribution when N = 15 and N = 18 versus
the Lobatto or the recursive ones). In Fig. 4 are presented the contour plot of
the Lebesgue function on the reference triangle on a grey scale for N = 12. As
an example, by looking at the warp & blend and Lobatto point distributions,

Table 2 Maximal values of the cardinal functions on the reference triangle computed on a coarse
grid

N Fekete Lobatto warp & blend recursive approx. Fekete Sym. [12]

9 1.0 1.0749 1.0120 1.1078 1.2502 1.0480
12 1.0 1.1340 1.0149 1.2010 1.4572 1.1007
15 1.0 2.3020 1.0156 3.1213 1.4434 –
18 1.0 6.6384 1.8257 8.6355 1.3568 –

Note that the true maximal values can be higher than the ones reported here
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� Fig. 4 Contour plot of the Lebesgue function on the reference triangle associated to, from top
to bottom, Fekete, [12], recursive, on the left column, and approximated Fekete, warp & blend,
Lobatto, on the right column, respectively, with N = 12. The grey scale is the same for the six plots,
from black corresponding to 1 to white associated to 19, and black dots denote the interpolation
point locations

it can be observed that peaks form close to the edges for the Lobatto grid thus
yielding higher values of the Lebesgue constant.

Furthermore, in Table 3 we report the condition numbers for the general-
ized Vandermonde matrices built up on the KD polynomials evaluated at the
previously considered distributions. As pointed out in Section 2, the condition
number of the generalized Vandermonde matrix is important because of the
pivotal role that the inverse of this matrix plays in constructing a Lagrange
interpolating basis for the nodes.

4.2 On an unstructured simplicial mesh

So far, we have used the Lebesgue constant for nodal sets as an interpolation
quality indicator. To further compare the considered nodal sets, we have
carried out a convergence test for the TSEM applied to the equation −�u +
u = f , with mixed Dirichlet-Neumann boundary conditions. To this end, we
have used the analytical solution uexact = sin(2x + y) sin(x + 1) sin(1 − y) in the
domain � = (−10, 10)2 \ H, where H is a square hole, and � is discretized with
the unstructured mesh presented in Fig. 5. The source term f and the values
for the Dirichlet conditions on the outer boundary and Neumann conditions
on the (interior) hole boundary are chosen to match with u = uexact.

We recall that the rate of convergence of the TSEM with respect to N is
essentially determined by s, the smoothness degree of the solution. Thus for
uexact ∈ Hs(�), one can expect the optimal error estimate

||uexact − uN||L2(�) = O(N−s). (9)

Here uexact is analytic and hence we expect to obtain the so-called spectral
accuracy, i.e., an exponentially decreasing error as a function of N. Results
(Table 4 and Fig. 6) show the the spectral accuracy is achieved with the
considered nodal sets, apart of course from the uniform grid set.

Table 3 Condition numbers for generalized Vandermonde matrices formed using the KD
polynomials

N Uniform Fekete Lobatto warp & blend recursive approx. Fekete

3 5.8283 5.9028 5.9028 5.9028 5.9028 6.0924
6 14.6583 9.7989 9.8422 9.5912 10.6440 16.6100
9 59.9489 18.1216 18.0994 16.8964 23.3936 23.9434
12 344.9770 22.4680 43.3978 36.1322 71.2535 56.1093
15 2,194.3821 29.4571 130.2558 85.6920 256.1860 92.5440
18 15,597.3340 45.2705 454.6435 224.8035 978.1363 110.8875
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Fig. 5 Unstructured
simplicial mesh for the TSEM
convergence tests. Despite
the low number of elements
(163) of the mesh, the number
of degree of freedom may be
considerable, namely 12,042
with N = 12 and 26,865
with N = 18

Table 4 L2-norm of the approximation error for different nodal sets

N Uniform Fekete Lobatto warp & blend recursive approx. Fekete

3 5.2655e–0 3.5267e–0 3.5267e–0 3.5267e–0 3.5267e–0 3.9673e–0
6 0.4297e–0 0.1297e–0 0.1565e–0 0.1457e–0 0.1501e–0 0.1447e–0
9 0.3048e–0 5.9582e–3 6.7836e–3 6.3634e–3 5.1638e–3 6.7333e–3
12 0.3146e–0 5.1437e–5 8.9881e–5 9.0467e–5 6.2198e–5 8.4629e–5
15 0.3215e–0 3.6078e–7 8.7952e–7 7.3335e–7 5.0189e–7 5.7335e–7
18 0.3257e–0 1.5364e–9 3.9642e–9 1.0021e–8 4.6452e–9 3.9897e–8

Fig. 6 Semi-logarithmic plot
of the L2-error versus the
polynomial order N for
different distributions of
interpolation points in
the mesh triangles
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4.3 Conclusions

In the field of conforming spectral element approximation, the treatment
of complex geometries requires the generalization to simplicial meshes of
the well-known GLL approach on quadrilaterals. The definition of a set of
nodal interpolation points is a delicate step in non-tensorial domains as the
triangle/tetrahedron. This subject has been widely studied in the last years,
and is still open to research. We have presented the most recent constructions
proposed by several authors we were aware of, comparing them in terms
of Lebesgue constant, Vandermonde matrix conditioning and L2-error on a
model problem.

This selection is certainly non exhaustive. For reasonable values of the poly-
nomial interpolation degree, say N ≤ 10, these constructions appear rather
equivalent and so yields to think that simplicity in the construction should
prevail. Note however that the recursive grid [11] could be of special interest
when Schwarz overlapping domain decomposition techniques are considered
in preconditioning the final algebraic system Au = b: the overlap is here
easy to define, as opposed to what happens with the Fekete [17] and other
considered interpolation points. Moreover, the distributions presented in
[3, 11, 22, 27] have already been extended to the tetrahedron.
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