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Department of Mathematics, Universitá di Milano, Via Saldini 50, 20133 Milano,

Italy. E-mail: Luca.Pavarino@mat.unimi.it, Elena.Zampieri@mat.unimi.it

Abstract. For the iterative solution of the Schur complement system associated
with the discretization of an elliptic problem by means of a triangular spectral
element method (TSEM), Neumann-Neumann type preconditioners are constructed
and studied. The TSEM approximation, based on Fekete nodes, is a generaliza-
tion to non-tensorial elements of the classical Gauss-Lobatto-Legendre quadrilateral
spectral elements. Numerical experiments show that the TSEM Schur complement
condition number grows linearly with the polynomial approximation degree, N , and
quadratically with the inverse of the mesh size, h. Neumann-Neumann precondition-
ers for the Schur complement allow to reduce the N -dependence of the condition
number, by solving local Neumann problems on each spectral element, and to elim-
inate the h-dependence if an additional coarse solver is employed. Numerical results
indicate that, in spite of the more severe ill-conditioning, the condition number of
the TSEM preconditioned operator satisfies the same bound as that of the standard
SEM, i.e., Ch−2(1 + log N)2 for one-level Neumann-Neumann preconditioning and
C(1 + log N)2 for two-level balancing Neumann-Neumann preconditioning.

Keywords: Simplicial spectral elements, Fekete nodes, Schur complement, Neumann-
Neumann preconditioners

1. Introduction

When complex geometries are involved the implementation of high-
order methods is a challenging task. Todate, the most successful ap-
proaches are the so-called hp−finite element methods and spectral
element methods (e.g., [1, 2, 3]). Both are based on polynomial approx-
imations of high degree; The former uses a modal approach, whereas
the latter uses a nodal approach. In standard spectral element meth-
ods (SEM), the set of nodes are provided by the tensorial product of
one-dimensional Gauss-Lobatto-Legendre (GLL) points.

The development of spectral element formulations for complex ge-
ometries naturally leads to unstructured meshes. Accordingly, spectral
elements methods based on triangular/tetrahedral elements (TSEM)
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have been introduced [4, 5, 6, 7] and applied to large-scale simulations,
as e.g. in [8]. However, because the choice of nodes is less straightfor-
ward for triangles than for quadrangles (2D case), different possibilities
have been investigated (e.g., [9, 10, 11]). In this work, we consider the
Fekete points [12, 13] as in our previous works [14, 15, 16].

Once an accurate and suitable TSEM approximation has been pro-
vided, efficient solvers for the resulting algebraic system must be de-
veloped. This task is quite challenging for high-order discretizations,
especially in our case, since the TSEM algebraic system is more ill-
conditioned than its standard element counterpart. Despite efforts made
to fine-tune the approximation points, the condition number deterio-
rates rapidly when increasing the polynomial approximation degree, N .
Previously, we discussed the use of overlapping Schwarz precondition-
ers, with each spectral element being considered as a subdomain [16]. In
the 2D (3D) case, one spectral element may indeed contain more than
100 (1000) nodes. Our numerical results show that Schwarz precondi-
tioners with generous overlap, defined by all adjacent spectral elements,
are optimal, i.e., the condition number of the preconditioned operator
is bounded by a constant independent of both N and element size, h.
While in the SEM case it is possible to construct Schwarz precondition-
ers with small overlap by extending each element (subdomain) with a
few rows of GLL nodes of the neighboring elements [17, 18, 19, 20], a
similar technique can not be designed straightforwardly for the TSEM
case since the element Fekete points are not distributed as a tensor
product.

In this paper, we consider instead algorithms that belong to the
family of nonoverlapping domain decomposition methods, more pre-
cisely the so-called Neumann-Neumann family; see [21, Chapter 6]
for a general introduction and [22, 23] for the SEM case. As pre-
viously, we consider each spectral element as a different subdomain
and set up the Schur complement system for the boundary nodes of
the triangles. The one-level Neumann-Neumann (NN) preconditioner
allows us to achieve a convergence rate that is nearly independent of
the polynomial approximation degree N and the two-level Balancing
Neumann-Neumann (BNN) preconditioner, which additionally employs
a coarse solver (balancing stands here for coarse grid solving), further
eliminates the dependence on the number of spectral elements, yielding
a scalable preconditioner. This approach does not suffer from high
computational cost due to the forced generous overlap of the TSEM
Schwarz preconditioner, and therefore presents a computational cost
comparable to that of BNN for standard SEM. Our results indicate that
the condition number of the TSEM preconditioned operator satisfies
the same bound as that of the standard SEM, i.e. Ch−2(1 + logN)2
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for one-level NN preconditioning and C(1 + logN)2 for two-level BNN
preconditioning.

We center our discussion on the model elliptic Helmholtz problem:

−ν∆u+ u = f in Ω (1)

u = 0 on ∂Ω

where ν is a positive coefficient, Ω the computational domain and ∂Ω its
boundary. Note that the inhomogeneous Dirichlet case can immediately
be recovered by a suitable lifting. For simplicity, we only consider the
2D case, though the techniques presented in this paper apply equally
well to more general 3D elliptic problems. This model equation must
be solved at each time step when implicit time discretizations of the
unsteady diffusion or Navier-Stokes equations are considered. In Section
2, we recall some basics of the TSEM and make some remarks on its
implementation (see [15] for details). In Section 3, we introduce the
NN and BNN Schur complement methods for TSEM approximations.
In Section 4, we provide numerical examples to check the efficiency of
these methods. Finally, we present some conclusions in Section 5.

2. The Fekete-Gauss spectral element method

The weak formulation of problem (1) reads: Given f ∈ L2(Ω), find
u ∈ E = H1

0 (Ω) (standard notations are used for these spaces, see e.g.
[24]) such that

a(u, v) :=

∫

Ω
(ν∇u · ∇ v + u v) dx =

∫

Ω
f v dx ∀ v ∈ E. (2)

The variational formulation (2) is discretized by a conforming spectral
element method based on triangles. This Galerkin method employs a
discrete space consisting of continuous piecewise polynomials of degree
N (e.g., [2] for a general introduction). Let T = {(r, s) : −1 ≤ r, s ≤
+1, r + s ≤ 0} be the reference triangle and PN (T ) the set of poly-
nomials on T of total degree ≤ N . We assume that Ω is decomposed
into K nonoverlapping triangular finite elements Ωk, Ω =

⋃K
k=1 Ωk,

each of which is the image of T by means of a suitable mapping, i.e.,
Ωk = gk(T ). The intersection between two distinct Ωk is either the
empty set or a common vertex or a common side. For the approxima-
tion space, say E

K,N
, we use continuous, piecewise polynomials of total

degree ≤ N ,

E
K,N

= {v ∈ E : v|Ωk
◦ gk ∈ PN (T ), 1 ≤ k ≤ K}. (3)
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Let n = (N + 1)(N + 2)/2 and {ψj}
n
j=1 be an orthonormal basis of

PN (T ) for the usual L2(T ) inner product (for example, the Koornwinder-
Dubiner polynomials may be used to constitute such a basis [25]). The
Fekete points on T are defined as the points {x̂i}

n
i=1 that maximize the

determinant of the Vandermonde matrix V with elements Vij = ψj(x̂i),
1 ≤ i, j ≤ n. Among the main properties of Fekete points proved in
[12, 13, 26], one has that on the sides of the triangle the Fekete and
GLL points coincide and that Fekete points are GLL points for the
cube, thus providing a strong link with the usual SEM.

Unlikely GLL points, a quadrature formula based on Fekete points
is only exact for integrands in PN (T ). This observation suggests to
separate the sets of approximation and quadrature points, using the
Fekete points {x̂i}

n
i=1 for the first set and other points {ŷi}

m
i=1 for

the second set, defined by imposing an exact integration of polynomi-
als, e.g., in P2N (T ); see [15]. Given the values at the approximation
points of a polynomial uN ∈ PN (T ), one can set up interpolation and
differentiation matrices to compute the values of uN and its deriva-
tives, respectively, at the quadrature points. The interpolation matrix
is simply V ′V −1, where V ′ is a matrix of dimension (m,n) such that
V ′

ij = ψj(ŷi). To compute derivatives, e.g., with respect to r, at the
quadrature points we use again the Koornwinder-Dubiner polynomials
to obtain Dr = V ′rV −1, with (V ′r)ij = ∂rψj(ŷi). Once such differen-
tiation matrices are known, Dr and Ds, it is an easy task to compute
derivatives at the quadrature points starting from the values at the
approximation points by applying the chain rule.

Our TSEM approach makes use of highly accurate integration rules
based on Gauss points [27, 28, 29]. If such integration rules are un-
known, e.g. for large values of N , it is possible, but at a higher com-
putational cost, to use integration rules based on Gauss points for the
quadrangle and then map them to T (e.g., [2, 30]). On a generic triangle
Ωk = gk(T ):

(u, v)Ωk ,N =
m

∑

j=1

u(gk(ŷj)) v(gk(ŷj)) |Jk(ŷj)|ωj , (4)

where ωj > 0, 1 ≤ j ≤ m, are the quadrature weights and |Jk|
the Jacobian of the mapping gk between T and Ωk. Knowing how to
compute derivatives and integrals, we can use the usual finite element
methodology to set the discrete problem

k=K
∑

k=1

ak,N (u, v) =

k=K
∑

k=1

(f, v)k,N ∀ v ∈ E
K,N

, (5)
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where ak,N(·, ·) is obtained from a(·, ·) by replacing each integral with
the quadrature rule (4). Equation (5) can be written in matrix form
as a linear system Au = b. Note that the TSEM matrix A is less
sparse than the standard SEM matrix and more ill-conditioned. As
for some related choices of the basis functions, its condition number is
expected to grow as O(N 4h−2), where h is a characteristic diameter of
the triangular spectral elements (e.g., [31, 32]).

3. Neumann-Neumann methods for Fekete spectral

elements

There are several approaches to the numerical solution of the lin-
ear system Au = b. Besides direct methods, which can be very ex-
pensive and far from being optimal for large-scale problems, common
approaches are based on the iterative solution by a preconditioned
Krylov subspace method such as the preconditioned conjugate gra-
dient (PCG) for symmetric and positive definite matrices A. Among
all possible preconditioning techniques, we consider methods that use
nonoverlapping subdomains, namely, Schur complement or substructur-
ing methods [21, 33]. The specificity here is that each spectral element
is assimilated to a subdomain. The basic idea is to set up an equation
for the boundary nodes of the spectral elements, solve the resulting al-
gebraic system with a PCG method and finally compute independently
the solution at the interior nodes of each spectral element.

Let us denote by Γ the skeleton of the domain decomposition, i.e.,
the set of interfaces of the spectral elements Γ = ∪∂Ωk\∂Ω, and use (i)
the subscript I for the block of unknowns associated with the Fekete
nodes in the interior and on the true exterior boundary of any substruc-
ture and (ii) the subscript Γ for the block of unknowns associated with
the interior boundary of a substructure facing one or more neighboring
substructures. By reordering the interior nodes and then the exterior
ones, the matrix system Au = b can be rewritten as

(

AII AIΓ

AΓI AΓΓ

)(

uI

uΓ

)

=

(

bI

bΓ

)

. (6)

Assuming now that AII is not singular, we can eliminate the variables
uI associated with the interior of the substructures, and set up the
following equation for uΓ:

SuΓ = g with (7)

S = (AΓΓ −AΓIA
−1
II AIΓ) (8)

g = bΓ −AΓIA
−1
II bI . (9)
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The so-called Schur complement matrix S is of smaller dimension than
matrix A, being of dimension (nΓ, nΓ) where nΓ is the number of nodes
on Γ, and moreover is better conditioned. This is because:

xTAx = xT
ΓSxΓ if (10)

AIIxI +AIΓxΓ = 0 (11)

so that the maximum (minimum) eigenvalue of A, equal to the maxi-
mun (minimum) of the Rayleigh quotient xTAx/xT x, is certainly greater
(smaller) than the maximum (minimum) eigenvalue of S [33]. In the
framework of domain decomposition methods and P1 finite elements
the following theorem can be shown [21],

THEOREM 1. The condition number of the Schur operator is bounded

by

κ(S) ≤
C

hH
, (12)

where H and h are the diameters of subdomains and finite elements,

respectively.

If each spectral element is regarded as a subdomain, one has κ(S) ≤
C(N)/h2. Knowing that on each edge the Fekete nodes coincide with
the GLL nodes, the behavior of C(N) is in fact assessed in [32]. In
this paper, it is proved that, for both the triangle and the quadrangle,
if the basis functions are Lagrangian polynomials and if the side and
vertex basis functions are based on the GLL points, then C(N) ∼ N .
Consequently one can state:

THEOREM 2. For a Fekete spectral element approximation of problem

(1), the condition number of the Schur operator is bounded by

κ(S) ≤
CN

h2
, (13)

where C is a constant, h the diameter of the finite element and N the

degree of the polynomial approximation.

Let us note that by setting h = H/N in (12), which is an average mesh
size of the Fekete (or GLL) “ micromesh”, and then using the usual
notation h for the spectral element diameter, we recover the bound
(13).

Similarly to matrix A and vector b, S and g may be set up by assem-
bling the local contributions, i.e., by the so-called stiffness summation
technique. If we denote by

∑

′ this operation, we thus have:

S =
∑

k

′

Sk , Sk = (AΓΓ,k −AΓI,kA
−1
II,kAIΓ,k) , (14)

g =
∑

k

′

gk , gk = bΓ,k −AΓI,kA
−1
II,kbI,k , (15)
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where Ak, k = 1,K, denotes the contribution of the spectral element
k to A. It remains to provide efficient preconditioners for the Schur
complement matrix S.

3.1. A one-level Neumann-Neumann preconditioner

Suppose that Ω is a square simply divided into two triangles. Then, by
symmetry, S1 = S2 and the stiff summation resumes to the usual sum,
S = S1+S2 = 2S1. In this case, S1 is clearly a perfect preconditioner to
S. From this naive observation, one can deduce the Dirichlet-Neumann
preconditioner as well as the Neumann-Neumann (NN) preconditioner
and these standard denominations indeed trace back to the two sub-
domains case. The NN preconditioner is especially well adapted when
many subdomains are involved. This involves using the preconditioner:

F
NN

=
∑

k

′

DkS
−1
k
Dk , (16)

where Dk is a diagonal matrix such that D−1
k gives the number of

spectral elements shared by the Fekete boundary nodes (2, for an edge
node, 3 or more for a vertex node). Better convergence is obtained when
using such weighting matrices. Of course :

∑

k

′

Dk = I , (17)

where I is the identity matrix.
Let us recall that the local Schur complements and their inverses

are generally not set up:
- The action of the Schur complement Sk is mediated by three

matrix-vector multiplications and one matrix solve, corresponding to
solving a Dirichlet problem in Ωk; see eq. (14).

- The action of S−1
k is mediated by solving a Neumann problem.

Indeed, one can show that (see [33] for details):

A−1
k

=

(

· · · · · ·

· · · S−1
k

)

, (18)

so that the action of S−1
k

on a vector vΓ,k can be computed like :

S−1
k vΓ,k = (0 I)A−1

k

(

0
vΓ,k

)

. (19)

In the framework of our approach, i.e., each Fekete spectral element
constitutes a subdomain, it is also possible to set up the local Schur
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complements and their inverses. But despite the increasing storage
capacity of modern computers, this remains unrealistic in 3D.

For P1 finite elements, one has the following upper bound for the
condition number of the matrix F

NN
S [21] :

THEOREM 3. The condition number of the Neumann-Neumann op-

erator is bounded by

κ(F
NN
S) ≤ C

1

H2

(

1 + log
H

h

)q

, (20)

where H and h are the diameters of subdomains and finite elements,

respectively, with q = 2 for finite element meshes with cross points and

when using the weighting matrices Dk.

For Fekete spectral elements, one may then expect :

κ(F
NN
S) ≤ C

1

h2
(1 + logN)2 (21)

and this result in fact holds for standard GLL quadrilateral spectral
elements [22].

The h−2 dependence of the condition number is typical of finite ele-
ment iterative solvers that do not use a coarse solver. The NN algorithm
is thus not scalable and this may be very penalizing when H is mini-
mum, as it is when each spectral element is considered as a subdomain.
The inclusion of a coarse grid problem reduces this dependence on the
number of subdomains significantly. This is the reason for introducting
a balancing NN algorithm in the next section.

3.2. A two-level Balancing Neumann-Neumann

preconditioner

To avoid the O(1/h2) scaling of κ, a coarse solver is recommended.
The balancing Neumann-Neumann (BNN) method is simply the one-
level NN preconditioner with the addition of a particularly simple
coarse grid correction. The BNN algorithm makes use of the coarsest
one, since only one unknown is associated with each spectral element,
i.e., the correction is constructed by using a piecewise constant coarse
grid space. Moreover, the coarse correction operator, say A0, is very
simple to build as it results from a simple aggregation of the Schur
complement, S.

To this end, we introduce the restriction matrix R0 of dimension
(K,nΓ), where nΓ is the number of nodes at the spectral element
interfaces: [R0]

−1
ij gives the number of elements shared by the node

j of the element i. With v denoting a vector of boundary node values,
R0v is a vector of element values that provides local weighted sums
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of v. The extension operator is simply obtained by transposition. The
aggregated matrix A0 then reads

A0 = R0SR
T
0 . (22)

Note that such a matrix is generally singular. This is obvious if Ω
only shows two subdomains: because R0 has two identical lines, their
sum weighted with (1,−1) is the null vector. This idea may easily be
extended to a regular mesh of rectangles, as the one used in Section
4, by using the opposite weights (1,−1) to all pairs of triangles that
share an edge. In such cases, R0 is not of maximum rank and conse-
quently A0 is singular. However, for a mesh composed of 3 triangles
sharing a vertex, with the boundary Fekete points for N = 3, i.e., the
vertices and the middle of each edge, then one can check that R0 is
of rank 3. To eliminate the possible singularity of A0, one may use
a pseudo-inverse. Another possibility is to remove one subdomain, i.e.,
one spectral element, and set up a matrix A0 of dimension (K−1,K−1).

Since the Schur complement is not set up in practice, it may appear
problematic to build A0. However, with obvious notations,

A0 =

K
∑

k=1

A0k , A0k = R0kSkR
T
0k (23)

which means that each (Sk)ij must be equidistributed between the
(A0k)lm such that the node i (local index in element k) belongs to the
element l, and the node j belongs to the element m.

Once the matrix A0 has been set up, one can use the following
symmetric preconditioner, directly inspired from [34]:

F
BNN

= F0 + (I − F0A)F
NN

(I −AF0) , (24)

where F0 = RT
0 A

−1
0 R0. Applying such a preconditioner yields the three

steps algorithm:

u∗ = un + F0(b −Aun) , (25)

u∗∗ = u∗ + F
NN

(b −Au∗) , (26)

un+1 = u∗∗ + F0(b −Au∗∗) , (27)

where un is the value of u at iteration n [33].
For P1 finite elements, one can prove the following upper bound for

the condition number of the matrix F
BNN

S [21].

THEOREM 4. The condition number of the balancing Neumann-Neumann

operator is bounded by

κ(F
BNN

S) ≤ C

(

1 + log
H

h

)q

(28)
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where H and h are the diameters of subdomains and finite elements,

respectively, with q = 2 for finite element meshes with cross points and

using the weighting matrices Dk.

For Fekete spectral elements, one can then expect that

κ(F
BNN

S) ≤ C(1 + logN)2 . (29)

4. Numerical experiments

In this section, we report results obtained for the model problem (1)
with ν = 1 discretized into Fekete-Gauss spectral elements. We first
investigate numerically the N and h dependence of the condition num-
ber of the system matrix A and of the Schur complement S, without
and with the NN or BNN preconditioners. We then carry out conver-
gence tests of the numerical solution for a problem with a known exact
solution.

The spectral element mesh is simply obtained by first dividing Ω =
(−1, 1)2 in I2 rectangles and then by dividing each element into two tri-
angular spectral elements. Thus, K = 2I2 and the grid-size parameter
h equals 2/I. Computations have been carried out for different values of
the total polynomial approximation degree, i.e. N = {3, 6, 9, 12, 15, 18},
and varying the number of spectral elements, I = {4, 6, 8, 10} (i.e.,
1/h = {2, 3, 4, 5}).

For the convergence tests, the body force f is consistent with u(x, y) =
sin(π x) sin(π y) as an exact solution of (1). The resulting Schur comple-
ment problem is solved by the conjugate gradient (CG) method without
preconditioning, with the NN preconditioner (16) and with the BNN
preconditioner (24). The initial guess is zero and the stopping criterion
is |r(k)|/|r(0)| ≤ 10−8, where r(k) is the kth residual.

Results obtained with a deformed domain are also presented. In
this case, the computational domain Ω is deformed into a quadrilateral
with vertices (−1,−1), (1,−1), (0, 1), (−1, 1), so that all triangles are
different, using the mapping (x, y) 7→ ((−xy+ 3x− y− 1)/4, y). In the
convergence tests, the body force f corresponds to the exact solution
u(x, y) = sin(π x) sin(π y) (2x+ y − 1)/3.

4.1. Condition number

The ill-conditioning feature of Fekete spectral element approximations
is illustrated in Fig. 1 (left), where the variation of the condition number
κ(A) with N is given for different I = {4, 6, 8, 10}. For N ≥ 12, one
can check that κ(A) ∼ N 4. The same results are given in Fig. 1 (right),
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Figure 1. N - and h-dependence of the condition number of the Fekete system matrix
A.

in order to demonstrate the dependence of κ(A) with respect to h. As
expected, we obtain a quadratic increase with respect to 1/h.
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Figure 2. N - and h-dependence of the condition number of the Fekete Schur
complement S.

Similar results are given for the Schur complement, S, in Fig. 2. As
expected, one finds κ(S) ≤ κ(A) and a quadratic increase with respect
to 1/h. Moreover, it is numerically confirmed that, for Fekete spectral
elements κ(S) ∼ N , which is favorable by being similar to the one
obtained for the classical SEM.

Results for the NN algorithm are reported in Fig. 3. As discussed in
Section 3, we always have a quadratic variation of κ(F

NN
S) with 1/h.

We do not have a power law for the N -dependence and rather expect
that, similarly to the standard SEM, κ(F

NN
S) ∼ h−2(1 + logN)2. To

demonstrate this dependence, in Fig. 3 (left) we plot κ0.5(F
NN
S) with

respect to N in a semi-log plot. One may indeed observe that, for
N ≥ 6, the variation of κ0.5(F

NN
S) with respect to logN is close to

linear, so that one may conjecture that the GLL spectral elements be-
havior remains with Fekete spectral elements. However, note that even
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Figure 4. N - and h-dependence of the condition number of the BNN-preconditioned
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BNN
S.

though the NN preconditioning has a beneficial influence, especially
for the larger N , the condition numbers obtained with and without
NN preconditioning are of the same magnitude.

Finally, results obtained with the balancing NN algorithm are shown
in Fig. 4, revealing a strong influence on the condition number, which,
as expected, becomes independent of h and only weakly dependent
on N . Here again we observe that the variations of κ0.5(F

BNN
S) with

respect to N are close to linear.
Next, we demonstrate the influence of a mesh deformation on the

present results. In Fig. 5 we give the variations with respect to N of the
condition number of the system matrixA and of the non-preconditioned,
NN preconditioned and BNN preconditioned Schur complement matrix
S, for the non-deformed and deformed domains and the mesh obtained
with I = 4.

As expected, mesh deformation causes an increase in the condi-
tion number. However, a drastic influence of the deformation is not
observed.
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4.2. Convergence tests
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Table I. CG solutions for the matrices A and S, N = 12 and I = {4, 6, 8, 10}.
Rows 1-4 refer to the case Ω = [−1, 1]2, whereas rows 5-8 refer to the deformed
domain.

A S

1/h It. λmax λmin κ It. λmax λmin κ

2 360 90.69 1.01e-2 8899.93 62 10.76 4.05e-2 265.68

3 516 90.95 4.55e-3 19955.99 86 10.82 1.87e-2 576.12

4 641 91.04 2.56e-3 35439.02 105 10.84 1.07e-2 1011.57

5 755 91.09 1.64e-3 55345.76 123 10.84 6.90e-3 1571.64

2 574 97.56 1.01e-2 9645.53 116 18.81 4.20e-2 446.87

3 864 95.07 4.53e-3 20978.90 177 20.14 1.95e-2 1031.47

4 1151 93.97 2.55e-3 36746.56 243 20.92 1.11e-2 1876.63

5 1440 93.36 1.63e-3 56941.69 313 21.43 7.18e-3 2984.28

Table II. CG solutions for the matrices F
NN

S and F
BNN

S, N = 12 and
I = {4, 6, 8, 10}. Rows 1-4 refer to the case Ω = [−1, 1]2, whereas rows 5-8
refer to the deformed domain..

F
NN

S F
BNN

S

1/h It. λmax λmin κ It. λmax λmin κ

2 38 87.51 1.0044 87.12 18 7.04 1.0011 7.03

3 84 217.43 1.0066 215.98 25 7.64 1.0 7.64

4 129 396.63 1.0082 393.37 26 7.66 1.0 7.66

5 169 625.87 1.0090 620.25 26 7.68 1.0 7.68

2 68 150.25 1.0061 149.34 31 11.33 1.0 11.33

3 131 418.73 1.0081 415.35 34 12.55 1.0 12.55

4 206 834.33 1.0101 825.98 35 13.39 1.0 13.39

5 284 1406.97 1.0116 1390.82 36 13.99 1.0 13.99

In Fig. 6, the variations of the error with respect to the number itera-
tions are plotted for the Schur complement without preconditioning and
with the NN and BNN preconditioners. Results are given for N = 18
and I = 6. As expected, a large gain is obtained by using the BNN
preconditioner. However, only a small gain when using the NN precon-
ditioner is observed. This is consistent with the condition numbers of S
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Table III. CG solutions for A and S, I = 4 and N = {3, 6, 9, 12, 15, 18}. Rows
1-6 refer to the case Ω = [−1, 1]2, whereas rows 7-12 refer to the deformed
domain.

A S

N It. λmax λmin κ It. λmax λmin κ

3 33 13.77 0.16 84.34 24 9.25 0.20 45.04

6 103 29.76 4.08e-2 729.56 41 10.20 8.77e-2 116.26

9 251 87.25 1.81e-2 4820.56 50 10.54 5.55e-2 190.03

12 360 90.69 1.01e-2 8899.93 62 10.76 4.05e-2 265.68

15 550 141.76 6.52e-3 21739.58 70 10.91 3.18e-2 342.41

18 850 212.76 4.52e-3 47043.80 78 11.03 2.62e-2 419.88

3 57 14.77 0.16 91.15 46 13.93 0.21 65.23

6 167 32.36 4.04e-2 799.11 76 16.55 9.12e-2 181.50

9 411 96.15 1.79e-2 5351.92 96 17.94 5.76e-2 311.20

12 574 97.56 1.01e-2 9645.53 116 18.81 4.20e-2 446.87

15 875 152.56 6.47e-3 23568.96 132 19.40 3.31e-2 585.78

18 1348 233.78 4.48e-3 52075.53 148 19.83 2.72e-2 726.74

Table IV. CG solutions for F
NN

S and F
BNN

S, with I = 4 and
N = {3, 6, 9, 12, 15, 18}. Rows 1-6 refer to the case Ω = [−1, 1]2, whereas
rows 7-12 refer to the deformed domain.

F
NN

S F
BNN

S

N It. λmax λmin κ It. λmax λmin κ

3 20 37.85 1.0058 37.63 10 2.11 1.0 2.11

6 31 62.90 1.0044 62.62 14 3.90 1.0 3.90

9 36 76.49 1.0036 76.22 16 5.67 1.0013 5.67

12 38 87.51 1.0044 87.12 18 7.04 1.0011 7.03

15 44 95.72 1.0038 95.35 20 8.97 1.0011 8.96

18 45 102.92 1.0042 102.49 21 10.17 1.0015 10.16

3 40 65.87 1.0150 64.89 15 3.40 1.0 3.40

6 52 108.88 1.0074 108.08 23 6.29 1.0 6.29

9 62 131.68 1.0061 130.87 28 9.11 1.0 9.11

12 68 150.25 1.0061 149.34 31 11.33 1.0 11.33

15 73 164.00 1.0064 162.95 33 13.35 1.0011 13.33

18 76 176.07 1.0062 174.98 36 15.07 1.0012 15.06
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16 R. Pasquetti et al.

and F
NN
S being of the same magnitude. In terms of CPU time, using

the BNN preconditioner is only justified for large scale problems, which
is not the case here. An efficient implementation is also required.

Let us now carry out systematic comparisons between the perfor-
mances of the developed iterative solvers. For the fixed grid with I = 4
(1/h = 2), we vary the polynomial degree N = {3, 6, 9, 12, 15, 18}; For
the fixed polynomial degree N = 12, we vary the grid I = {2, 4, 6, 8}.
The study is carried out for the non-deformed and deformed domains.
The conjugate gradient method is used to solve systems based on the
matrices A, S, F

NN
S and F

BNN
S. Results are given in Tables I-IV,

where we report the iteration counts (It.), spectral condition number
(κ) and extreme eigenvalues (λmax, λmin).

Results obtained for N = 3 are not particularly significant, as in this
case there is only one interior Fekete node. For N ≥ 6, it appears effi-
cient to use the complement system, because, as previously mentioned,
κ(S) ∼ N . Using the one-level NN preconditioner allows to decrease the
condition number without real improvements on the the convergence
rate. Impressive results are only obtained for the BNN preconditioner.
In fact, it seems that for the solution strategy presented in this paper,
i.e. each Fekete spectral element is assimilated to a subdomain, the
efficiency of the preconditioner is essentially pivoted on the use of a
coarse solver. This point will be addressed in future work.

5. Conclusion

It is well known that solving efficiently the algebraic systems resulting
from a high-order spectral approximation is generally more challenging
than solving for low-order discretizations. In this paper, we have ap-
plied nonoverlapping domain decomposition techniques to the Schur
complement system arising from the Fekete-Gauss spectral element
approximation (TSEM). Considering each spectral element as a sub-
domain, we have derived the Schur complement system acting on the
grid point values of the triangle boundaries, studied its conditioning
properties and constructed efficient Neumann-Neumann precondition-
ers. The original TSEM system matrix is more ill-conditioned than
the standard SEM system matrix, with a condition number that scales
as N4 versus N 3. Nevertheless, the condition number of the TSEM
Schur complement was observed to still scale as N , just as in the stan-
dard SEM. In order to further improve the conditioning of the discrete
system, we focused on NN preconditioners for the Schur complement
that weaken the N -dependence of the condition number by solving
local Neumann problems on each spectral element and eliminate the
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h-dependence if an additional coarse solver is employed. Our results
indicate that, in spite of the original more severe ill-conditioning, the
condition number of the TSEM preconditioned operator satisfies the
same bound as in the case of standard SEM, i.e. Ch−2(1 + logN)2

for one-level NN preconditioning and C(1 + logN)2 for two-level BNN
preconditioning. In terms of convergence rates, the best results have
been obtained with the BNN preconditioner.
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