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Abstract Strategies we have recently proposed to efficiently address dispersive
equations and hyperbolic systems with high order continuous Galerkin schemes are
first recalled. Using the Spectral Element Method (SEM), we especially consider the
Korteweg-De Vries equation to explain how to handle the third order derivative term
with an only C%-continuous approximation. Moreover, we focus on the preservation
of two invariants, namely the mass and momentum invariants. With a stabilized
SEM, we then address the Saint-Venant system to show how a strongly non linear
viscous stabilization, namely the entropy viscosity method (EVM), can allow to
support the presence of dry-wet transitions and shocks. The new contribution of the
paper is a sensitivity study to the EVM parameters, for a shallow water problem
involving many interactions and shocks. A comparison with a computation carried
out with a second order Finite Volume scheme that implements a shock capturing
technique is also presented.

1 Introduction

The Spectral Element Method (SEM) allows a high order approximation of partial
differential equations (PDEs) and combines the advantages of spectral methods, that
is accuracy and rapid convergence, with those of the finite element method (FEM),
that is geometrical flexibility. The SEM has proved for a long time to be efficient
for the highly accurate resolution of elliptic or parabolic problems, but hyperbolic
problems and dispersive equations still remain challenging. As relevant examples
of such problems, here we consider the Korteweg-De Vries (KdV) and the shallow
water equations, and develop some strategies to address them.
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The SEM is based on a nodal Continuous Galerkin (CG) approach, such that
the approximation space contains all C” functions whose restriction in each element
is associated to a polynomial of degree N. More precisely, in the master element
(—1,1)4, with d for the space dimension, the basis functions are Lagrange poly-
nomials associated to the (N + 1)¢ Gauss-Lobatto-Legendre (GLL) points, which
are also used as quadrature points to evaluate the integrals obtained when using a
weak form of the problem. The fact that interpolation and quadrature points coin-
cide implies that the mass matrix is diagonal. The SEM algorithms that we describe
hereafter make strongly use of this property both (i) to address evolution problems
with explicit (or implicit-explicit) time schemes and (ii) to define high order differ-
entiation operators in the frame of C%-continuous approximations.

We describe in Sect. 2 the algorithms that we have developed for the KdV equa-
tion, which is a well known example of dispersive equation. In Sect. 3 we consider
an hyperbolic system of PDEs, namely the Saint-Venant system, using for stabiliza-
tion the Entropy Viscosity Method (EVM). In Sect. 4 we address an academic but
complex Saint-Venant problem to carry out a sensitivity study to the EVM control
parameters. A comparison with results obtained using a Finite Volume (FV) scheme
with shock capturing strategy is presented in Section 5, and we conclude in Section
6.

2 SEM approximation of the KdV equation

Here we summarize the SEM method that we have developed for the KdV equation.
Details and references may be found in [7].
The KdV problem writes: Find u(x,t), x € Q and r € R™, such that

du—+udu+ Boyu =0 €))

with the initial condition u(x, = 0) = up(x) and, e.g., periodic boundary conditions
(B given parameter). With KdV equation, the main difficulties are (i) the approxima-
tion of the dispersive term 3 dyu and (ii) the preservation of at least two invariants:

mass and energy
11:/ udx, 12:/ u?dx, )
Q Q

which is required to get correct results for long time computations. Due to the pres-
ence of the third order derivative term, the standard FEM approximation does not
apply. Indeed, after integration by parts a second order derivative remains on the un-
known function u or on the test function, say w. To overcome such a difficulty, one
generally makes use of a C!-continuous FEM or a Petrov-Galerkin approach with
C' test functions. Such approaches generally yield less efficient algorithms, due
to the increase of the bandwidth of the resulting algebraic systems, and are often
not easy to implement, especially in the multidimensional case or when non trivial



High order CG schemes for KdV and Saint-Venant flows 3

boundary conditions are involved. Moreover, the C 1-continuity is not sufficient for
PDE:s involving higher order derivative terms, since e.g. the C>-continuity would be
required for a fifth order derivative term.

Alternatively, one can introduce new variables. Thus, in the frame of CO-continuous
FEM it is natural to set f = dy,u, this is the so-called “natural approach” mentioned
hereafter. Then, if the convection term is treated explicitly, in such a way it can be
assimilated at each time-step to a source term, one obtains the semi-discrete prob-
lem:

Maﬂl“rﬁDfZ S
Mf+Bu =0

with M: mass matrix, B: stiffness matrix and D: Differentiation matrix, and where
the vectors of the grid-point values are denoted in bold. By elimination of f one
obtains:

Mou—BDM 'Bu=S. (3)

At this point the problem is that an inversion of the mass matrix is required. Such
an inversion is however trivial if using the SEM, because matrix M is diagonal.
Moreover, the DM~ B algebraic operator is sparse.

In the spirit of Discontinuous Galerkin (DG) methods, one can also use the fol-
lowing strategy: Set g = dyu and f = d,g, then a C°-continuous FEM approximation
yields:

Ma,u-i—ﬁDf:S
Mf = Dg
Mg = Du.

By elimination of f and g one obtains:
Mou+BDM ™ 'D)Yu=S. 4)

If using the SEM this new differentiation operator can be easily set up. Its bandwidth
is larger than for the previous natural approach, but one can check that its spectral
properties are similar.

Using the natural approach or the DG like one, the present definitions of the high
order differentiation operator are of course not restricted to 1D problems. When
using quadrangular or parrallelipipedic elements, the SEM mass matrices are also
diagonal, since the master element is defined by tensorial product. Moreover, a di-
agonal mass matrix can also be obtained with triangular elements, if using cubature
points of the triangle for both the interpolation and quadrature points, see e.g. [10]
and references herein.

In time, we suggest using high order implicit-explicit (IMEX) Runge-Kutta
(RK) schemes. Then, for stability reasons the dispersive term is handled implic-
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itly whereas the non linear convective term is handled explicitly, under the usual
Courant-Friedrich-Lewy (CFL) condition.

Concerning the non linear term, [uduwdx, where w is the test function, it is
of interest to exactly compute it by using the GLL quadrature rule associated to
polynomials of degree M such that 2M — 1 =3N — 1, i.e. M = 3N/2 . Indeed, our
numerical experiments have shown that this allows to get satisfactory results without
introducing any stabilization term, see [7]. This is interesting since the stabilizing
effect results from an improvement in the computation of the convective term and
not from the introduction of an artificial dissipation term. The same stabilizing effect
is observed in other contexts, see e. g. [6, 8] where theuseof M =N+ 1orM =N+2
allows to avoid the spurious oscillations.

As mentioned previously, for KdV equation the preservation of at least two in-
variants is important. Indeed, from a physical point of view it gives sense to the
numerical solution since it ensures mass conservation and energy conservation, and
from a mathematical point of view it ensures in some sense the stability of the
method since here the L2 norm of the discrete solution is preserved. As a direct con-
sequence of the weak formulation together with the accuracy of the GLL quadrature
rule, preserving the mass invariant is natural in the frame of the SEM. Concern-
ing the energy invariant two approaches have been investigated. First, one can take
into account the two invariants as constraints and introduce Lagrange multipliers.
Second, one can make use of two IMEX schemes, yielding two slightly different
solutions, say at time #,, ] and u}, and write u" as a linear combination of them:
u" = (1 —A)uf + Aujy. The mass invariant is then preserved and one must look for
A such that I, = Constant, see (2). It turns out that A solves

S[(u2 —u1)2]12+25[u1 (uz —ul)]l —i—S[uﬂ —L=0

where S[.] stands for a quadrature formula on the grid-points.

The computational price of such an approach is a priory twice greater, since it is
needed to compute #} and w5 to get u", but this is not true if using embedded IMEX
schemes, that only differ by the final recombination of the intermediate values. The
second IMEX scheme (giving u3) is then generally only first order accurate, but one
can demonstrate that the accuracy of the leading RK scheme (giving u}) is generally
preserved. All details are given in [7].

To conclude this Section we consider the KdV equation with 8 = 0.0222 in the
periodic domain (0,2) and assume the initial condition uo(x) = cos(7mx), see e.g.
[3, 13]. The numerical solution is computed with K = 160 elements, a polynomial
approximation degree N = 5 and a time step T = 2.5 10~%. The contour levels of the
numerical solution in the (x, ¢)-plane are plotted in Fig. 1 between times 0 and #; at
left, and between times 19tz and 20¢; at right, where 7 ~ 9.68 is the so called recur-
rence time, at which one expects to (approximately) recover the initial condition.

Additional test-cases, that e.g. show accuracy results in both periodic and non
periodic domains, are provided in [7].
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Fig. 1 Contour levels of the numerical solution in the (x,)-plane, between times 0 and # at left,
between times 19#; and 20z at right.

3 EVM-stabilized SEM of the Saint-Venant system

We consider now a more involved fluid flow model that also constitutes a challeng-
ing problem for high order CG approaches, namely the shallow water equations.
For the paper to be self contained, we give here some details of our EVM-stabilized
approximation of the Saint-Venant system, see [9, 11] for details, references and
examples of applications.

The Saint-Venant system results from an approximation of the incompressible
Euler equations which assumes that the pressure is hydrostatic and that the pertur-
bations of the free surface are small compared to the water height. Then, from the
mass and momentum conservation laws and with Q C R? for the computational do-
main, one obtains equations that describe the evolution of the height 4 : Q — R*
and of the horizontal velocity u : Q — R?: For (x,t) € 2 x R* :

Oh+V-(hu)=0
0, (hu) +V - (hu @u + gh*1/2) + ghVz =0 (5)
with I, identity tensor, g, gravity acceleration, and where z(x) describes the topogra-

phy, assumed such that Vz < 1. Moreover, for the saint-Venant system there exists
a convex entropy (actually the energy E) such that
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QE+V-(E4+gh®/2)u) <0, E=hu*/2+gh*/2+ghz. (©6)

so that one may think to implement the EVM for stabilization of the following SEM
discrete approximation.

Set ¢ = hu and let hy (t) (resp. qy(t)) to be the piecewise polynomial continuous
approximation of degree N of h(t) (resp. q(t)). The proposed stabilized SEM relies
on the Galerkin approximation of the Saint-Venant system completed with viscous
terms for both the mass and momentum equations. For any wy,wy (scalar and vector
valued functions, respectively) spanning the same approximation spaces, in semi-
discrete form:

(Ohy +V -qy,wn)N = —(ViVhy, Vwy)n
(Qgy+V - In(gy @qn/hn) + ghnV (hy +2n) wn)v = — (v Vay, Ywy)n (7)

where v, &< v, = v, with v : entropy viscosity (in the rest of the paper we simply
use V;, = V). The usual SEM approach is used here: Iy is the piecewise polynomial
interpolation operator, based for each element on the tensorial product of Gauss-
Lobatto-Legendre (GLL) points, and (.,.)y stands for the SEM approximation of
the L2(Q) inner product, using for each element the GLL quadrature formula which
is exact for polynomials of degree less than 2NV — 1 in each variable. Note that thanks
to using V- Iy (gh%1/2) ~ ghyVhy (while h is generally piecewise polynomial of
degree greater than V), and thus grouping in (7) the pressure and topography terms,
a well balanced scheme is obtained by construction: If gy = 0 and iy # 0, then
hy + zy = Constant. Of course, a difficulty comes from the required positivity of
hy, as discussed at the end of the present Section.

It remains to define the entropy viscosity v. To this end we make use of an en-
tropy that does not depend on z but on Vz, which is of interest, at the discrete level,
to get free of the choice of the coordinate system. Taking into account the mass
conservation equation (into the entropy equation) one obtains:

GE+V-(E+gh*/2)u)+ghu-Vz<0, E=hu*/2+gh*/2. (8)

At each time-step, we then compute the entropy viscosity v(x) at the GLL grid
points, using the following three steps procedure:

e Assuming all variables given at time f,, compute the entropy residual, using a
Backward Difference Formula, e.g. the BDF2 scheme, to approximate o, Ey

rg = (QIEN +V ‘IN((EN +gh]2V/2)qN/hN) +8qn-Van
where Ey = g% /(2hy) + gh% /2. Then set up a viscosity v such that:
VE = ﬁ|r5\5x2/AE,

where AE is a reference entropy, B a user defined control parameter and x the
local GLL grid-size, defined such that §x> equals the surface of the quadrilateral
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cell (of the dual GLL mesh) surrounding the GLL point, and using symmetry
assumptions for the points at the edges and vertices of the element.
e Define a viscosity upper bound based on the wave speeds : A = u=++/gh :

Viax = (xm!zzlx(|qN/hN| + v/ ghn)ox

where o is a O(1) user defined parameter (recall that for the advection equation
o = 1/2 is well suited).
e Compute the entropy viscosity:

v = min(Vyay, VE)

and smooth: (i) locally (in each element), e.g. in 1D: (Vi—; +2V; 4+ Vi+1)/4 —
v;; (ii) globally, by projection onto the space of the C? piecewise polynomials
of degree N. Note that operation (ii) is cheap because the SEM mass matrix is
diagonal.

The positivity of Ay is difficult to enforce as soon as N > 1, so that for problems
involving dry-wet transitions the present EVM methodology must be completed.
The algorithm that we propose is the following: In dry zones, i.e. for any element
Qury such that at one GLL point minhy < Aspresh, Where hyreg, is a user defined
threshold value (typically a thousandth of the reference height):

e Modify the entropy viscosity technique, by using in Qy,, the upper bound first
order viscosity:
V=V in Qg
e In the momentum equation assume that:
hngV(hy +2v) =0 in Qqpy

e Moreover, notice that the upper bound viscosity Vip,x is not local but global, and
that the entropy scaling AE used in the definition of v is time independent. This
has improved the robustness of the general approach described in [5].

Simulations with dry-wet transitions and comparisons to exact solutions are given
in [9] and [11], for 1D and 2D flows, respectively.

4 Sensitivity study to the EVM control parameters

We address a shallow water problem, the “falling columns” test proposed in [1],
whose solution is characterized by many interactions and shocks. Thus, it consti-
tutes a good benchmark to check the sensitivity of our SEM model to the control
parameters of the EVM. The flow is governed by the Saint-Venant system (5), in
which the dimensionless gravity acceleration is taken equal to 2. The computational
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domain is the square (—1,1)2, with free slip condition at the boundary. At the initial
time the fluid is at rest, u(¢ = 0) = 0, and the height is given by:

h(t =0) =3+ 1x_x <0152+ 1x-x,2<0.152 T2 lx2022

with x; = (0.5,0.5) and x, = (—0.5,—0.5), and where 1, is the indicator function
of subdomain .

A first computation has been carried out without the EVM stabilization. As ex-
pected, in this case the computation crashes, since a stabilization is needed when
shocks develop. Computations have been done for the following values of the pair
(a,8): (0.5, ), (1, 00), (0.5, 1), (0.5, 2), (0.5, 3), (1, 3) and (1,5). Mentioning 3 = oo
means that we simply use a first order viscosity everywhere. Note that choosing
o = 0.5 is very natural, since for an advection equation it yields a O(h) diffusion
term equivalent to the implicit one of the upwind scheme. The three pairs such that
1 < B < 3 show the influence of B, while keeping @ = 0.5. In the two last tests the
stabilization is strengthened, by increasing & up to 1 and 8 up to 5.

One uses a polynomial approximation of degree N =5 in each quadrangle of
a regular K = 100 x 100 mesh. This yields 255001 interpolation points in £, with
91001 of them at the quadrangle boundaries. All computations have been made with
a time step T = 10~*. Such time and space discretizations allow a fair comparison
with FV results in Section 5.

The height of the flow at the final time, 7y = 1.035, is visualized for the different
simulations in Fig. 2. As desired, the result obtained without EVM but only a first
order viscosity is very smooth, but clearly completely false. If implementing the
EVM, then the correct solution is captured. One observes that strengthening the sta-
bilization allows to filter some spurious oscillations. Note that the presence of such
oscillations is not surprising, since the discontinuities of the initial height enforces
the Gibbs phenomenon. The present study of the influence of the EVM control pa-
rameters is of course very qualitative, and moreover only based of the height at the
final time.

In order to complete such a qualitative study, we show in Fig. 3 the evolutions of
the extrema of the height during the simulation. Clearly, (i) the first order viscosity
result is not correct and (ii) the stronger is the EVM-stabilization, the smoother are
the extrema evolutions. Additionally, one observes the EVM-stabilization becomes
too strong for (¢ = 1,8 = 5), since the corresponding curve no longer coincides
with the other EVM ones.

S5 Comparison with a second order FV computation

For comparison purposes, we provide in this section the results obtained using a first
order and a second order FV scheme, that can be viewed as an extension to the 2D
and to the 2nd order accuracy of the scheme presented in [2]. These schemes work
on staggered Cartesian grids and, in contrast to the colocalized approach for conser-
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Fig. 2 Visualizations of the height at the final time 7, = 1.035 for the (a, B) pairs (0.5, =), (0.5,
1), (0.5, 2), (0.5, 3), (1, 3) and (1, 5), from up to down and left to right. For all graphics the color
bar is the same and the extrema are mentioned.

vative system, it make use of a discretization of the physical variables, the height and
the velocity separately, instead of a discretization of the conservative variables. The
height is stored at the cell centers whereas the horizontal (resp. vertical) component
of the velocity is stored at the vertical (resp. horizontal) edges like in the well-known
MAC (Marker-and-Cell) scheme. The numerical fluxes are derived using the frame-
work of the so-called (kinetic) Boltzmann schemes. In the spirit of hydrodynamic
limits which allow to derive the Euler equations from Boltzmann equation, the Saint
Venant system is seen as the limit of a vector BGK (Bhatnagar-Gross-Krook) equa-
tion, see e.g. [12]. This is a transport equation for a kinetic variable f (i.e. a variable
which depends on (x,7) but also on an auxiliary “ghost” velocity variable &) with a
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Fig. 3 Evolution of the maximum and minimum of the height when using the first order (8 = x)
and the EVM stabilization for different (a, 8) pairs. The influence of  is mainly shown in the left
panel and the influence of ¢ in the right one.

relaxation term towards a given equilibrium state which depends only on & and on
the zeroth moment of f. This equilibrium state is especially designed to ensure that,
at least formally, the zeroth moment of f satisfies the Saint-Venant equation when
the relaxation parameter goes to zero. A numerical scheme for the BGK equation
is obtained by decoupling into two successive steps the transport and the relaxation
process. A basic upwind scheme is then used for the (linear) transport step. Finally,
we get rid of the “ghost” velocity variable by integrating the formula with respect
to &: it provides formula of fluxes for updating the height and the momentum (see
[2]). Note that this formula, which may be written explicitly, can be viewed as an
upwinding of the transported variables (height and momentum) with respect to the
sign of the characteristic velocities, the pressure being centered. The second order
accuracy is reached thanks to a MUSCL-like (Monotonic Upwind Scheme for Con-
servation Laws) procedure using the MinMod limiter. The first order FV scheme
is coupled with an explicit Euler time discretization whereas a second order ERK
(explicit Runge-Kutta) scheme is used with the second order space discretization.
All the details can be found in [4].

The results obtained for the height at the final time z; = 1.035 are presented
in Fig. 4. The grid is a 512 x 512 Cartesian mesh and the time step is T = 1074,
so that the number of degrees of freedom for the height is 262144 allowing a fair
comparison with the results obtained using the SEM in Fig. 2. As expected, the result
obtained with the first order FV scheme is smooth and close to the one obtained with
the SEM when adding a first order viscosity whereas using the second FV scheme
allows to recover the correct solution (free of spurious oscillations) very close to the
one obtained with the EVM.

6 Conclusion

A lot of numerical methods have been developed in the past, and are still developed,
to address the KdV and Saint-Venant problems. In this spirit, but in contrast with



High order CG schemes for KdV and Saint-Venant flows 11

Fig. 4 Visualizations of the height at the final time ¢ = 1.035 using a first order FV scheme (at
left) and a second order FV scheme (at right). The color bar is the same as in Fig. 2.

studies based on the celebrated FV or DG methods, here we have proposed to use
a high order CG method, namely the SEM. For KdV the main advantage of the
SEM is the diagonal structure of the mass matrix. This indeed allows to simply
eliminate intermediate variables and thus set up efficient algorithms. For hyperbolic
problems a stabilization technique is however required. For Saint-Venant flows, we
have investigated the EVM capabilities and additionally provided a sensitivity study
to the EVM parameters as well as a comparison with FV results. Additional tests and
comparisons for less academical problems will be focused on in our future works.
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