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In a recent JCP paper [9], a higher order triangular spectral element method (T SEM) is proposed to address seismic 
wave field modeling. The main interest of this T SEM is that the mass matrix is diagonal, so that an explicit time marching 
becomes very cheap. This property results from the fact that, similarly to the usual SEM (say Q SEM), the basis functions 
are Lagrange polynomials based on a set of points that shows both nice interpolation and quadrature properties. In the 
quadrangle, i.e. for the Q SEM, the set of points is simply obtained by tensorial product of Gauss–Lobatto–Legendre (GLL) 
points. In the triangle, finding such an appropriate set of points is however not trivial. Thus, the work of [9] follows anterior 
works that started in 2000’s [2,6,11] and now provides cubature nodes and weights up to N = 9, where N is the total 
degree of the polynomial approximation. Here we wish to evaluate the accuracy of this cubature nodes T SEM with respect 
to the Fekete–Gauss one, see e.g. [12], that makes use of two sets of points, namely the Fekete points and the Gauss points 
of the triangle for interpolation and quadrature, respectively. Because the Fekete–Gauss T SEM is in the spirit of any nodal 
hp-finite element methods, one may expect that the conclusions of this Note will remain relevant if using other sets of 
carefully defined interpolation points.

First, recall that if two different sets of points are used for interpolation and quadrature, then the space PN (T̂ ) of poly-
nomials of maximal (total) degree N , defined on the reference triangle T̂ = {(r, s) : r ∈ (−1, 1), s ∈ (−1, −r)}, is usually used 
as approximation space. The cardinality of this space equals n = (N + 1)(N + 2)/2, that can be associated to n interpolation 
points if using Lagrange polynomials as basis functions. If 3 of these nodes coincide with the vertices of the element, then 
3N of these n points should belong to the edges of T̂ and the remaining (N − 1)(N − 2)/2 are the inner nodes. Usually, the 
edge nodes proposed in the literature coincide with the GLL points, see e.g. [1,5,14,15]. Since one does not know an explicit 
formulation of the Lagrange basis functions, say ϕi(r, s), 1 ≤ i ≤ n, to compute their values or those of their derivatives at 
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Fig. 1. Mesh of the computational domain (left) and max norm of the error (right) for the Poisson equation.

a given point one generally makes use the orthogonal Kornwinder–Dubiner (KD) basis [4], for which explicit formula exist. 
Gauss points for the triangle and the corresponding quadrature formula may be found in the literature, up to degree M ≈ 20
if a symmetric distribution of the points is desired [3]. In practice, one may choose M = 2N , so that both the stiffness and 
mass matrix are exactly computed, since their entries are polynomials of degree 2N and 2N − 2, respectively. For details on 
the implementation of the Fekete–Gauss approach, see e.g. [12].

If using a single set of points, as just mentioned, 3N of the interpolations points must belong to the triangle boundary 
with 3 of them at the vertices. As demonstrated in [7,16], such a strong constraint forbids the possibility of finding a set of 
cubature points providing a sufficiently accurate cubature formula, if looking for basis functions that span the space PN . To 
overcome this difficulty, as first developed in [2], the idea is then to enrich the space PN by polynomial bubble functions of 
degree N ′ > N . This indeed allows to include new cubature points inside the triangle while keeping the element boundary 
nodes number equal to 3N . In the reference triangle T̂ , this may be achieved by introducing the polynomial space PN ∪
b × PN ′−3, where b is the (unique) bubble function of P3(T̂ ), namely b(r, s) = (r + 1)(s + 1)(r + s). The cardinality of this 
space then equals n′ = 3N + (N ′ − 1)(N ′ − 2)/2. Now, to compute the Lagrange polynomials at a given points one should 
use an extended KD basis, composed of the usual KD basis of PN completed by those KD polynomials of PN ′−3 which 
once multiplied by the bubble function b are of degree strictly greater than N . Of course, N ′ should be chosen as small as 
possible to avoid a useless increase of the inner nodes number: In [2] and posterior works, N ′ is chosen such that it exists 
a cubature rule exact for polynomials of degree N + N ′ − 2. The determination of N ′ , together with the cubature points and 
weights gives rise to a difficult optimization problem, see [9] for details. It turns out that N ′ − N increases monotonically 
with N: N ′ = N + 1, for 1 < N < 5, N ′ = N + 2 for N = 5 and N ′ = N + 3 for 5 < N < 10. It should be noticed that with the 
cubature nodes based T SEM, neither the mass matrix nor the stiffness matrix are exactly computed, since their entries are 
of degree 2N ′ and 2N ′ − 2, respectively. This is why a comparative study of the accuracy of these two different T SEMs is of 
interest.

Such a comparison has been carried out for elliptic problems, using the Fekete–Gauss T SEM software that we have 
developed for a few years. A variant of this code has been easily implemented for the cubature points based T SEM: Indeed, 
using a single set of points provides a simplification and extending the KD basis only constitutes a minor task. Especially, 
the code makes use of the condensation technique, i.e. one first computes the unknowns associated to the edges of the 
elements and then reconstructs the numerical solution inside locally. Thus, the algebraic systems that result from the two 
T SEMs approximations are exactly of same size, and so the computational times compare very well. They are simply solved 
by using a standard conjugate gradient method, with Jacobi preconditionner in a matrix free implementation [8].

The comparison has first been carried out for the Poisson equation, using the exact solution uex = cos(10x) cos(10y)

and the source term f = −�uex , with a Dirichlet boundary condition. Computations have been made in a quasi-circular 
computational domain with the spectral element mesh shown in Fig. 1 (left). The max norm of the error, computed at the 
interpolation (cubature or Fekete) points, with respect to the polynomial degree is provided in Fig. 1 (right). In this semi-log 
scale plot, the expected exponential convergences are clearly observed. Moreover, the fact that for the cubature points based 
T SEM the stiffness matrix is only approximately computed has a negligible influence on the error.

Comparisons have also been carried out for the elliptic equation −�u + σ u = f , with σ = 1 and σ = 1000. The high 
value of σ is of interest when thinking to unsteady diffusion problems, for which at each time step one has to solve the 
equation with σ scaling like the inverse of the time step. Here again, see Fig. 2, one observes that the cubature T SEM 
compares very well with the Fekete–Gauss approach. Some remarks may be expressed:
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Fig. 2. Max norm of the error for σ = 1 (left) and σ = 1000 (right).

Table 1
Max norm of the error for the Laplace equation with exact solution of degree 2 and various N .

N 2 6 7 8 9

Error 1.2778 10−12 3.1523 10−12 2.8451 10−12 3.4641 10−12 1.1012 10−7

– For the smaller values of the polynomial degree N , the error is very large and the curves are a little bit erratic. Indeed, 
for small N the discretization is too rough to follow the oscillations of the exact solution.

– The two methods do not provide same errors for these small values of N . Indeed, the integrals are not computed in a 
same way and for N = 2 the cubature based T SEM makes use of an inner point.

– For N = 9, the cubature T SEM does not provide results better than those obtained for N = 8. To check that, we have 
made computations with the polynomial solution uex = (x2 + y2)/4, which of course is of degree 2. For 2 ≤ N ≤ 8
the error is close to the error associated to the iterative solve, but this is not the case for N = 9, see Table 1. An 
improvement in the determination of the cubature points and weights is here clearly needed, even if in practice a so 
high value of N is rarely used.

Till now a Dirichlet condition was used to compare the two different T SEMs. Addressing homogeneous Neumann condi-
tions, as in [11], is trivial, since the boundary integral that appears in the variational formulation cancels. This is however 
no longer true if the Neumann boundary value is not homogeneous or more generally if a mixed (say Robin) condition 
should be implemented. In case of the Fekete–Gauss T SEM, the boundary integrals can be easily computed since the edge 
Fekete nodes coincide with the GLL points. On the contrary, the edge cubature points are not of Gauss type. In [9], where 
the wave equation is considered, one only makes use of Dirichlet conditions via eventually a PML (perfectly matched layer) 
to address the absorbing wall case. This is why it is of interest to consider again the previous elliptic problem but with now 
the Robin condition ∂nu + αu = g on the boundary. Two different approaches are investigated hereafter for the cubature 
points T SEM.

The simplest (say naive) method consists in defining a quadrature rule based on the edge nodes. Since such a quadrature 
rule will be only exact for polynomials of degree N , one may however expect a loss of accuracy due to a not enough accurate 
computation of the boundary integrals of the products αϕiϕ j , where ϕi and ϕ j are two of the Lagrange polynomials based 
on the cubature points, and gNϕi , with gN for the piecewise polynomial approximation of degree N of g . For a more 
accurate method, the boundary integrals must be computed by using on each element edge of the boundary a Gauss 
quadrature rule, e.g. the one based on the GLL points. Since the restrictions of the Lagrange polynomials ϕi at the element 
edges of the boundary are polynomials of degree N , one can span this polynomial space with the Legendre polynomials, 
say Li(r) with r ∈ [−1, 1], for the reference edge, and 0 ≤ i ≤ N . Then, one can set up the Vandermonde matrices of size 
(N + 1) × (N + 1) based on the cubature and GLL points, say V Cub and V GLL . One has e.g. (V Cub)i j = L j(ri), with ri ∈ [−1, 1]
for the edge cubature points. Then, the matrix V GLL V −1

Cub allows to compute at the GLL points quantities known at the 
cubature points. Especially, each column of this matrix provides the values of the edge Lagrange polynomials at the GLL 
points. Note that for straight triangular elements, the edge Jacobian determinant is constant on each edge and proportional 
to its length. On the contrary, when considering curved triangular elements, see e.g. [13], some care is needed for a relevant 
computation of the edge Jacobian determinants at the GLL points from those at the cubature points (the edge Jacobian 
determinant being then a polynomial of degree greater than N). Finally, note that for the naive approach the quadrature 
weights are simply proportional to the entries of the first line of the matrix V −1

Cub .
Computations have been carried out for the equation −�u + u = f and the Robin condition ∂nu + u = g , with f and 

g defined from uex = cos(10x) cos(10y). In Fig. 3 (left) the results obtained with the Fekete–Gauss T SEM are compared 
to those obtained with the cubature points based one, using either the naive or the more accurate method. Clearly, when 
using the naive approach the spectral convergence gets lost, whereas with the accurate one the convergence curve compares 
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Fig. 3. Max norm of the error for the Robin problem (left) and when using hybrid approaches (right).

quite well with the Fekete–Gauss one (for N ≤ 8). Does the naive approach induce a similar loss of spectral accuracy for 
the pure Neumann problem, i.e. with ∂nu = g on the boundary? The answer of course depends on the boundary data: 
Thus, if g is piecewise constant then the boundary integrals can be exactly computed. However, for the highly oscillating g
associated to the present exact solution very similar results are obtained for the Robin and Neumann problems. Revisiting 
the Robin problem with hybrid approaches that consist of using the GLL quadrature rule only for integrating either the gNϕi
(hybrid 1) or the αϕiϕ j (hybrid 2) kernels, one can indeed observe that here the loss of accuracy is mainly associated with 
the boundary data, see Fig. 3 (right).

The cubature points based T SEM was essentially developed for the wave equation. However, as soon as an explicit time 
stepping is involved, this T SEM is useful. In another context, the fact that the SEM mass matrix is diagonal allows to define 
high order differential operators and thus to address efficiently dispersive equations [10]. As a conclusion, a cubature points 
based T SEM may find interest in various different situations, and progresses for the tetrahedron would be welcome.
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