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Laboratory and numerical investigations on Be ´nard–Marangoni convection
in circular vessels
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This study is concerned with supercritical Be´nard–Marangoni flows of a high Prandtl number
~Pr'4000! fluid in cylinders of small to medium aspect ratio, 5<A<10. Laboratory experiments
and numerical simulations, handled with an accurate spectral solver of the unsteady
three-dimensional Boussinesq equations, are used to get a good understanding of the flow behavior.
Experimental and numerical results are successively presented and then discussed. The confinement
effects are especially pointed out and carefully analyzed. ©2002 American Institute of Physics.
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I. INTRODUCTION

As is well known since the pioneering works of Pearso1

and Nield,2 a horizontal fluid layer heated from below wit
an upper free surface, may show the so-called Be´nard–
Marangoni~BM! convection, due to the variations of~i! fluid
density~Rayleigh effect! and~ii ! surface tension~Marangoni
effect! with temperature. Numerous papers have been
voted to the study of such convective flows, using theor
cal, numerical, or experimental approaches. We refer
Koschmieder3 and also to Dijkstra4 for interesting reviews.
In the first theoretical studies on BM convection, the lay
was assumed to be infinitely extended in the horizontal
rection, i.e., the effect of lateral boundaries was neglec
But experiments necessarily take place in finite vess
where the sidewalls can play an important role on the c
vective structure. Actually, it can be decisive in small box
For instance, experiments performed in small aspect r
cylinder vessels may show various very different pattern5

This paper is concerned with BM convection in cyli
ders. Numerical works in such a confined geometry are
so numerous. Among them, Wagneret al.6 have performed
calculations of supercritical BM flows in cylinders of aspe
ratio A<2, showing the sensitivity to initial disturbances a
some possibilities of transition from three-dimensional~3-D!
convective patterns to 2-D axisymmetrical ones. Zaman
Narayanan7 have studied the convective pattern formatio
by numerical integration of linearized governing equatio
Daubyet al.8 have conducted a further study in circular ve
sels, but limited to the weakly nonlinear regime. More
cently, using an amplitude equation, Daubyet al.9 proposed
a theoretical analysis of a dynamic mode switching betw
two two-cell patterns related by ap/2 rotation about the
vertical symmetry axis of the system observed by John
and Narayanan10 in a circular vessel.

Here we are interested in BM supercritical convection
cylinders of small to medium aspect ratio: 5<A<10, with
A5D/d and whereD and d are the cylinder diameter an
2771070-6631/2002/14(1)/277/12/$19.00
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depth, respectively. As already pointed out,5,7,8 in such ge-
ometries the flow may exhibit very different flow structure
At the threshold of the convective motion, this results fro
the fact that different convective patterns are associated
values of the critical Rayleigh and Marangoni numbers v
close to each other.8 Let us remind ourselves of the expre
sions of these dimensionless numbers and also of the
and Prandtl numbers, respectively, required to model the
exchange at the upper free surface with the surroundings
to consider the inertial effects:

Ra5
agDTd3

nk
, Ma52

]TsDTd

rnk
,

~1!

Bi5
hd

l
, Pr5

n

k
.

In these formulas, the usual notations are used:d is the fluid
layer thickness,DT the vertical temperature gap,n the kine-
matic viscosity,k the thermal diffusivity,a the volume ex-
pansion coefficient,g the gravity,r the density,]Ts ~,0! the
rate of change of surface tension with temperature,h the
mean heat transfer coefficient at the free surface, andl the
thermal conductivity.

Papers on BM cylindrical convection are often devot
to the study of the transition from the conductive to the co
vective regime, by using stability analyses8,11 or numerical
approaches.6,7 Here our goal is different, since we are n
interested in the determination of the critical values of t
Rayleigh and Marangoni numbers, but of the study of sup
critical flows. Similarly, the initial flow pattern will not be
predicted or observed, e.g., in the celebrated experimen
Ref. 5 but rather induced, especially in the numerical exp
ments.

Laboratory and numerical experiments are used to ca
out the present study. The laboratory experiments, perform
in the late 1990’s, follow similar ones done previously12

However, an infrared~IR! thermography system with rea
time data processing is used here for the measurement o
© 2002 American Institute of Physics
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superficial temperature field. For the calculations we h
used a high accurate spectral Chebyshev–Fourier code
pecially developed for the calculation of ‘‘Boussinesq flow
in cylinders.13,14Preliminary results for BM convection wer
presented in Ref. 14.

Let us emphasize that we do not plan to produce num
cal simulations of particular experiments. This would not
realistic, due to the assumptions used in the modeling: T
the heat exchange at the interface oil–air is modeled i
simple way, by using a heat transfer coefficient and a m
temperature of the air, and the variations of the thermoph
cal parameters with the temperature are not taken into
count. Our goal is to investigate the BM convection of a hi
Prandtl number fluid in cylinders of small to medium asp
ratio with two complementary approaches.

The plan of the paper is the following. In Sec. II we de
with the experimental device and results. The numer
study is presented in Sec. III. In Sec. IV we discuss
results of both approaches and finally offer conclusions
Sec. V.

II. EXPERIMENTS

A. Apparatus

A schematic of the experimental apparatus is shown
Fig. 1. It essentially consists of a cylinder vessel with
inner diameterD ~7.4 or 11.2 cm! filled with a silicone oil
Rhodorsil 47V500 whose characteristics, at 25 °C and 45
are summarized in Table I. This cylinder is set in anoth

FIG. 1. Schematic of the experimental design.~a! Container;~b! heating
device; ~c! central cells;~d! outer guard ring;~e! 45° inclined aluminum
mirror; ~f! 7° infrared lens;~g! AGEMA 880 SW — ~3–5 mm! infrared
scanner;~h! PC frames of 64*128 pixels at 6.25 Hz and 12 bits encoded; t
final picture compared with 100 frames;~i! detail of the scanned cells in th
container.

TABLE I. Approximate values in SI units of the characteristic parameter
the fluid at 25 °C and 45 °C.

T r n3104 a3104 k3107 l ]Ts3105 Pr

25 970 5.0 9.45 1.13 0.16 5.8 4425
45 952 4.0 10.44 1.15 0.16 5.8 3478
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vessel that contains the same oil acting as a guard ring.
bottom is flat, horizontal, and made of copper. It is heated
a regulated electric device. The layer depth,d, is measured
by using two micrometric comparators~precision 60.02
mm!. The free surface of the liquid is horizontal and in co
tact with the atmosphere, without a lid. This is the config
ration in which we are interested and, moreover, this allo
precise measurements of the surface temperature with
thermovision system. The apparatus is placed in a temp
ture controlled atmosphere~60.5 °C! and a double door pro
tects the laboratory room from outer perturbations. Mo
over, the regulator device maintains the temperat
difference between the heating plane and the air, so that e
the above-mentioned temperature fluctuations have a n
gible influence on the experiment.

To measure the temperature at the bottom we use a
thin thermocouple~diameter 0.05 mm!, which ensures a
good thermal contact with the copper plate. For the up
free surface, we take an average temperature owing to
thermovision technique that provides instantaneously b
the convective pattern and the whole surface tempera
field. Infrared thermography is indeed an efficient and no
disturbing means of investigation.

We used an infrared scanner AGEMA 880 Short-Wa
connected to a real time data acquisition system. The infra
pictures are composed of 643128 pixels and the maximum
acquisition frequency is 25 Hz. However, four consecut
frames are interlaced to obtain a good quality picture, so
for a prescribed physical point a 6.25 Hz acquisition fr
quency is the maximum one. All the measurements provi
by the infrared picture are 12 bits encoded. A calibratio
using a blackbody within the temperature range 0 °C–50
permits us to obtain the calibration equation.16 It is then pos-
sible to calculate a ‘‘blackbody equivalent temperature
Tbb. The maximum error is 0.05 °C in this range and t
resolution around 30 °C is about 0.03 °C.

Knowing the emissivitye of the scanned surface and th
‘‘radiant environment temperature’’Te , the surface tempera
ture Ts is calculated from the relation

eTs
45Tbb

4 2~12e!Te
4 . ~2!

The emissivity of the oil was identified by using the hem
sphere method.16 We founde'0.9. To controlTe , the appa-
ratus is placed in a box and its temperature is measured
a thermocouple connected to a digital multimeter. To kee
vertical position to the IR camera, we use an aluminum m
ror with reflective factor equal to 0.97 in the SW waveleng
range~3–5 mm! of the IR system.

Note that in this SW range the air is transparent, so t
there is nearly no attenuation of the IR fluxes. Moreover,
distance experiment camera is short, so that refraction eff
are quite negligible. Visualizing the motion of the air is po
sible by using the shadowgraph technique. This was don
earlier experiments: A ‘‘slow,’’ say 1–10 cm s21, and chaotic
motion of the air can be observed, but in any cases the c
pling between the convection phenomena in the air and
the oil seems extremely weak. Thus, if one slightly distu
the air motion above the experiment, one cannot discern
change in the BM pattern, even with the IR camera. In fa

f
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279Phys. Fluids, Vol. 14, No. 1, January 2002 Bénard–Marangoni convection in circular vessels
the time constants, velocities, etc., in the air and in the oil
quite different, so that the influence of the air on the fr
surface temperature field is averaged. From our point
view, the laminar convective motion in the liquid is thus n
strongly coupled to the air turbulent motion but only sen
tive to its mean motion. One may think that this gives
justification for simply using a heat transfer coefficient
model the oil–air heat transfer. Also, in the limit of a ve
thin layer, such that the Rayleigh number of the air conv
tion is below its critical value, then the phenomena are b
cally different, since the heat transfer in the air is then pur
conductive.

To improve the measurement accuracy, the data acq
tion system is able to average pictures during the record
procedure. In all experiments we performed averages u
100 frames, so that the measurements are averaged d
about 16 s. This time is negligible, even in the transi
regime, considering that the evolutions of the phenomena
slow. Figure 2 shows an example of a surface tempera
field measurement. Note that on this picture the cells app
to be not exactly of the same size. We attribute this sli
loss of symmetry to a small defect of the apparatus leveln
that, however, is estimated better than6231023 rd. Con-

FIG. 2. Surface temperature field from IR thermography.
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cerning the uniformity of the heater temperature field,
measurements done without oil cannot reveal any nonuni
mity.

The liquid movements and the convective pattern c
also be made visible by using aluminum powder. We a
used this classical technique, in order to obtain clearly v
ible convective cells~see Fig. 3!. In all cases, the two tech
niques of visualization have shown the same BM patter
One can only mention that the separation lines between
cells appear generally thicker with the IR camera, wh
shows a temperature field and not directly the sinking
emerging parts of the convective pattern.

B. Experimental procedure

For each experiment, the liquid is heated during seve
hours or days to reach a stable state. Then, two proced
can be performed:~i! either a convective structure is impose
according to the thermal technique described in Ref. 12~gen-
erally, it is a hexagon in the center surrounded by six cel!;
or ~ii ! the oil is stirred with a rod. The evolution of th
pattern is then observed for a day at least~some experiments
lasted 38 days!. Note that withd51 cm, the viscous and a
thermal diffusive characteristic times associated to t
length scale are, respectively,tn5d2/n'0.25 s and tk

5d2/k'0.25 h. Of course, ifD is used as a length scale
these values should be increased by a factorA2. For experi-
ments corresponding to procedure~i!, the central hexagon
first relaxes to an optimal size~see Ref. 12! that can be stable
or last several hours before rearranging progressively to
final state. For the procedure~ii ! a disordered structure firs
appears, then, after many modifications it reaches the fi
pattern. In this study, we are only interested in the final p
tern.

C. Results

When both procedures~i! and ~ii ! are performed, the
same final pattern is observed. When saying the ‘‘same’’ fi
pattern we mean similar structures but not identical ones:
instance, a pentagon surrounded by five cells in contact w
the walls, but the orientation of the structure is different fro
one experiment to another an two ‘‘same’’ structures can
be strictly superposed.

We performed 19 series of experiments. The charac
istics of the experiments, i.e., the aspect ratio,A, the depth
layer, d, the Rayleigh number, Ra, the Marangoni numb
Ma, and the final structure, FS, are gathered in Table II. N
that in the present experiments the presence of a small
niscus along the vessel walls has no influence on
Bénard–Marangoni~BM! patterns, due to the large sizes
the convective cells.

For the smallest values ofA ~A<6.21! the vessel is al-
ready sufficiently large to promote the existence of fo
slice-type cells, withp/2 periodicity@Fig. 3~a!#. In each cell
the fluid rises at the center of the cell and sinks along
rims. The pattern is approximately centered at the ves
axis. If the container is slightly inclined~slope equal to 5
31023), the number of cells is kept but the pattern becom
p periodic. For larger values ofA ~6.92<A<7.72! a central
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Flow visualizations with alu-
minum powder:~a! the four slice-type;
~b! the 1–5;~c! the 1–6; and the~d!
4–9 BM patterns.
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cell can exist. It is the 1–5 BM pattern, i.e., a pentag
surrounded by five cells@Fig. 3~b!#. For the larger aspec
ratio A58.1, one obtains the 1–6 BM pattern@Fig. 3~c!#.
Finally, for the greatest valueA510.47, the flow structure
becomes more complex, since the central cell is now
placed by four pentagonal cells@Fig. 3~d!#, surrounded by a
set of polygonal cells. Moreover, this structure is alwa
changing, showing alternatively both the 4–8 and 4–9 B
patterns.

TABLE II. Series of experiments with characteristics and the final conv
tive pattern.A: aspect ratio —d; depth layer~mm! Ra: Rayleigh number —
Ma: Marangoni number — FS: final structure~the first number shows the
number of cells at the vessel center and the second number show
number of cells along the vessel wall!.

Series A d Ra Ma FS

1 5.21 14.20 2500 80.4 4
2 5.56 13.30 2030 74.5 4
3 6.17 12.00 1462 65.9 4
4 6.21 11.91 1537 70.6 4
5 6.21 11.91 1626 74.7 4
6-12 6.92 10.70 954 53.9 1-5
13,14 6.92 10.70 1032 58.4 1-5
15 6.95 10.65 1090 62.7 1-5
16 7.08 10.45 900 53.3 1-5
17 7.72 9.58 737 52.3 1-5
18 8.10 9.14 1560 124 1-6
19 10.47 10.70 999 56.6 4-8/9
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One can note that the present results follow simi
changes whenA is increased, as in the results o
Koschmieder and Prahl.5 Moreover, the same single cell BM
flow was obtained for the smaller aspect ratioA53.63. Also,
for the larger valueA'14, the BM flow shows three concen
tric rolls of cells. However, in the present study fluid dept
are such that 9.14 mm<d<14.20 mm, so that the buoyanc
effect is predominant compared to the surface tension eff
To see that readily, one can consider the case of an infi
layer. If Rac and Mac are the critical values of the Rayleig
and Marangoni numbers and Rac0 and Mac0 those obtained
with ]Ts50 and g50, respectively, then the ratior
5(Rac /Rac0)/(Mac /Mac0) gives an idea of the relative im
portance of the buoyancy and surface tension effects. H
the ratio varies from 1.2 to 5.6. In comparison, for the e
periments of Koschmieder and Prahl it is about 0.065
0.68, so that in their study the surface tension effect w
predominant.

III. NUMERICAL INVESTIGATIONS

The first part of this section is devoted to the modeli
and to the numerical technique used to solve the fluid fl
equations. Numerical results are then presented. In partic
~a! we recover some classical results about the critical va
of the Marangoni number,~b! show how the flow develop-
ment may be sensitive to the initial conditions~to distur-
bances at the initial time!, ~c! analyze the change in the flow

-
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structure resulting from a change in the cylinder aspect ra
and, finally,~d! focus on the possibility of a pentagonal stru
ture of the central convective cell.

A. Modeling and numerical technique

First we introduce the time-dependent governing eq
tions, with their boundary and initial conditions and th
give the main features of the spectral method used to c
pute BM convective flows in cylinders.

1. Modeling

We assume that the velocity and temperature fields
governed by the incompressible Navier–Stokes equati
coupled, within the Boussinesq approximation, to
advection–diffusing equation for the temperature. Then
dimensionless form, the so-called ‘‘Boussinesq equatio
read as

1

Pr
DtV52“p1Ra0 Tez1¹2V, in V3~0,tF!, ~3!

“"V50, in V3~0,tF!, ~4!

DtT5¹2T, in V3~0,tF!, ~5!

where ez is the unit vertical vector,t<tF the time, V the
velocity, p a pressure term, andT the deviation of the tem-
perature from a particular one, e.g., as done hereafter,
surface temperature at the initial time. These variables h
been made dimensionless by using the following charac
istic values:d, d2/k, k/d, rk2/d2, and DT0 , respectively,
whereDT0 is the initial temperature difference in the flu
layer. The operatorDt stands for the material derivative, i.e
Dt5] t1V"“. The cylindrical domain is notedV, such as in
the cylindrical coordinate system~r, u, z!, V5#0, A/2@
3#0,2p@3#0,1@. Hereafter we distinguish the Rayleigh an
Marangoni numbers, Ra0 and Ma0, based onDT0 , from the
time-dependent numbers Ra and Ma, which make use,
given time, of the mean temperature of the free surface.

To define the boundary conditions, we split the bound
G of V into three parts:G0 , G1 , andG2 , for the circular,
the upper, and the lower parts of the cylinder, respective

Then, we assume the following at the rigid walls:

V50, T51, on G2 , ~6!

V50, ]rT50, on G0 . ~7!

No-slip conditions are thus imposed to the velocity. For
temperature, one uses Dirichlet conditions atG2 ~the tem-
perature is imposed at the base of the cylinder! and homoge-
neous Neumann conditions atG0 ~adiabaticity!.

With V5(Vr , Vu , Vz), at the free surface we assume

]zVr1Ma0 ]rT50, ~8!

]zVu1Ma0

1

r
]uT50, ~9!

Vz50, ~10!

]zT2Bi~T`2T!50. ~11!
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Thus, the free surface and Marangoni effects are modele
the simplest way, i.e., the deformations of the free surface
not considered and the surface forces are assumed pro
tional to the horizontal component of the thermal gradient
Robin condition for the temperature field is assumed:
heat flux density, including both its radiative and convect
components, is taken proportional to the temperature dif
ence between the environment temperatureT` and the super-
ficial temperatureT~r, u, 1!.

For the initial conditions we assume the conductive
gime, i.e., the fluid is at rest and the temperature field
linear between the dimensionless temperatures of the bo
wall, T51, and of the free surface,T50. At t50,

V050, ~12!

T0512z. ~13!

The compatibility of Eqs.~11! and~13! then requires that the
scaled environment temperature deviation is given by

T`52
1

Bi
. ~14!

However, since the conductive regime solves the ‘‘Bou
inesq equations,’’ a disturbance of the temperature field w
be used in the numerical experiments to start the convec
motion. Moreover, as explained later, this initial disturban
will be used in order to induce specific structures of the flo

2. Numerical technique

For the sake of completeness we review the main ch
acteristics of the numerical solver, but details on this part
be found in Refs. 13, 14. To enforce the divergence-f
feature of the velocity field, one solves the vorticity–vect
potential ~v2c! formulation of the Navier–Stokes equa
tions. Thus, with

v5“3V, ~15!

V5“3c, ~16!

one obtains

1

Pr
$] tv1“3@v3~“3c!#%5Ra0~“3Tez!1¹2v,

~17!

¹2c1v50. ~18!

This set of vectorial equations must be associated w
boundary and initial conditions. The initial condition on
involves the vorticity and directly results from the one im
posed on the velocity:

v05“3V050. ~19!

Choosing the boundary conditions is less straightforw
~see the earlier works of Refs. 17 and 18!. With n for the
outward unit vector normal toG, we have used the following
set of boundary conditions: everywhere onG,

“"v50, ~20!

“"c50, ~21!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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c3n50; ~22!

at the rigid wallsG2 andG0 :

~“3c!3n50; ~23!

at the free surfaceG1 :

vr5Ma0

1

r
]uT, ~24!

v052Ma0]rT. ~25!

Conditions~20!–~21! makev and c solenoı¨dal, ~21!–~22!
ensure the uniqueness ofc, ~23! is the no-slip boundary
condition and~24!–~25! result from the definition of the vor
ticity and from the boundary conditions for the velocity
the free surface.

The partial differential equations~17!, ~18!, ~5!, associ-
ated with the previously mentioned initial and boundary co
ditions for both the vorticity and temperature fields, a
solved as described in Refs. 13, 14. Essentially we have
following.

~i! Integration in time is performed with a second-ord
finite difference scheme: Linear terms are treated
plicitly ~backward Euler approximation! and nonlin-
ear terms explicitly ~Adams–Bashforth extrapola
tion!.

~ii ! The approximation in space makes use of a Fouri
Chebyshev pseudospectral method. Thanks to
natural periodicity inu, the azimuthal direction is
handled with Fourier series. Consequently, the 3
problem splits into a set of 2-D problems, that a
solved with a Chebyshev collocation method.

~iii ! Concerning the boundary conditions, at the rigid wa
one has five boundary conditions for the vector pot
tial but only one for the vorticity. To recover a mor
standard situation, with three boundary conditions
each variable, an influence matrix technique is use

~iv! No artificial boundary conditions are imposed at t
axis of the cylinder: in the r direction the
Chebyshev–Gauss–Lobatto mesh maps the cylin
diameter and not its radius. Thus, the grid points
only clustered at the real boundary of the compu
tional domain. However, the required regularity pro
erties are enforced at the axis, so that the Laplacia
each scalar or vector field is not singular.

B. Numerical results

Many calculations have been carried out to study
BM flow observed in the laboratory experiments. Neglect
the dependence of the physical parameters on the temp
ture, these calculations are mainly characterized by the
ues of the dimensionless Rayleigh and Marangoni numb
at the initial time of calculation, Ra0 and Ma0, and by the
Biot and Prandtl numbers, Bi and Pr.

For the Prandt number we use Pr54270. For the pair
(Ra0 , Ma0), we essentially present results obtained w
~2800, 200! or ~2400, 150!, such that the final values of th
Rayleigh and Marangoni numbers, Ra and Ma, compar
Downloaded 28 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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those of the experiments. These values of Ra and Ma
into account the increase of the dimensionless mean sup
cial temperatureT̄(z51), so that

Ra5@12T̄~z51!#Ra0 and
~26!

Ma5@12T̄~z51!#Ma0.

Moreover, knowing that for a particular fluid, with consta
thermophysical parameters, Ra/Ma5Ra0/Ma0}d2, one can
check that hered'1 cm.

Concerning the Biot number, as described in Sec. II
upper surface is open to the laboratory room atmosphere
such a situation, the heat exchange between the oil and
air can only be approximated through the use of a global h
transfer coefficient and a mean temperature of the air,
e.g., in Ref. 15. One cannot think indeed to compute
turbulent motion of the ambient air or the radiative e
changes between the experimental device and the room
course, the value of such a heat transfer coefficient can o
be estimated, without taking into account any time or sp
variations. We have generally used values yielding result
satisfactory agreement with the experimental measureme
essentially Bi50.4 and Bi50.5. Especially, we have tried to
preserve the ratior:

r 5
@12T̄~z51!#

~12T`!
, ~27!

of the temperature difference in the fluid layer over the te
perature difference between the basis of the cylinder and
ambient temperature. Note that withd51 cm, such values of
the Biot number yield a heat transfer coefficient such t
6.4<h<8 W m22 K21, which may be considered as a re
sonable estimate to represent both the radiative and con
tive components of the heat flux density. Finally, let us me
tion that qualitatively we have not observed a high influen
of the Biot number value, i.e., the BM pattern has not a
peared very sensitive to this parameter in our numerical
periments.

The calculations are also characterized by the numer
parameters, namely, for the time discretization: the time s
Dt, and, for the space approximation: the maximum values
the Fourier mode,K, and of the degrees of the polynomi
approximation,I andJ, in ther andz directions, respectively
The corresponding mesh is then (I 11)3K3(J11). If the
mesh is too coarse, the numerical results may strongly
pend on the space discretization, e.g., yielding a 3-D fl
rather than an axisymmetric one, as mentioned in Ref
This is the reason why fine grids have been used in all
computations.

In order to favor the emergence of a particular azimut
mode, we use a slight perturbation of the temperature fiel
the initial time. Such an approach may be compared to
‘‘thermal method’’ mentioned in Sec. II. It avoids the forma
tion of a disorganized flow, which actually needs a long tim
~and so a high computational cost! to structure itself more or
less arbitrarily in a particular organized flow, which in fac
would be nothing but a particular solution of the Boussine
equations. Thus, rather than letting the flow evolve under
sole effects of the round-off errors, or under the effects o
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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random perturbation, we prefer to introduce an additive
rameter, sayk0 , equal to the azimuthal wave number of
sinusoidal perturbation of the initial temperatureT0 . More-
over, in a similar way we have often favored an upflow at
axis, essentially to recover the experimental observatio
However, this must be done in a slight manner to not ind
an axisymmetric flow.

For the values of the dimensionless numbers used in
study, we have always obtained, after the transient par
steady flow and not, e.g., an oscillatory one, like in Ref.
for smaller aspect ratios or, for a larger one, in the series
of the present experiments.

1. BM convection at the threshold

First we show that for pure Marangoni convection a
with Ma0, close to the critical value, our numerical resu
are coherent with the predictions of the stability analyses
Ref. 8.

In Table II of Ref. 8, it is mentioned that forA58 and
insulating sidewalls, with Bi50.2, the critical Marangon
number is associated with the azimuthal wave numberk51
and equals Mac577.87. Moreover, it is noticed that thi
value is greater than Nield’s value, determined for an infin
layer, which equals 75.544.

Calculations have been performed for three values of
Marangoni number: Ma05$75, 77, 79%, using a perturbation
of amplitude 1026 for the temperature. In Fig. 4, for eac
value of Ma0 the evolution of the max norm of the velocity
presented. As expected, one observes that for Ma0575 and
Ma0577 the conductive state is going to be recover
whereas for Ma0579 a convective motion develops. How

FIG. 4. Maximum velocity versus time for Ma05$75, 77, 79%, with initial
disturbances of amplitude~a! 1026 and ~b! 1024.
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ever, such results depend on the amplitude of the initial d
turbance. Thus, when using a perturbation of amplitu
1024, Fig. 1~b! shows that a convective motion also deve
ops for Ma0577. This points out the transcritical nature
the threshold bifurcation point, as, e.g., mentioned
Ref. 7.

2. Sensitivity to initial conditions

Here we show how the final steady flow pattern may
sensitive to the perturbations of the temperature field at
initial time. To this end, we set the aspect ratio toA56.27.
The Rayleigh and Marangoni numbers equal Ra052800 and
Ma05200 att50. For the Biot number we use Bi52.

The amplitude of the temperature perturbation at the
tial time equals 1023 and we vary the azimuthal waveleng
number:k051, . . . ,6. For thenumerical inputs we useDt
51023, I5161, J520, andK590. The smaller valueI585
was first used, but appeared too low to describe the fl
pattern evolution computed when starting withk051 and
k053. The calculations have been carried out until the fi
time tF56.

First we show how a quasisteady flow pattern may
reached, by focusing on the transient flow induced byk0

FIG. 5. Isolines of thez component of the velocity atz50.5 and isotherms
on the free surface at different times. Fort5$0.4, 1, 1.6%; at left: Vz(z
50.5); dVz53, Vz,0 in dashed lines and at the right:T(z51), dT
50.05, T,0.2 in dashed lines~A56.27, k051, Ra052800, Ma05200, Pr
54270, Bi52!.
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51 and upflow at the axis. Figure 5 presents, at differ
times t5$0.4, 1, 6%, the isolines of thez component of the
velocity field at mid-depth of the cylinder and the isotherm
at the free surface. Stiff changes of the flow structure may
observed, especially because the flow pattern induced by
temperature perturbations and the final one are very dif
ent. Thus, the final flow pattern points out ak53 azimuthal
wave number, so thatkÞk0 , and a downflow rather than a
upflow at the cylinder axis.

The different final convective patterns, as theVz isolines
at the mid-depth and the superficial temperature fields,
shown in Figs. 6–7. Essentially, one observes that the
muthal initial wave numbers:

~i! k050 yields a Rayleigh–Be´nard ~RB! axisymmetric
two rolls flow.

~ii ! k053 yields ak53 BM structure, similar by 2p/3
rotation. This structure is characterized by three m
convective cells around the cylinder axis and thr
secondary cells squeezed along the circular wall.

~iii ! k054 yields a slice-typek54 structure, similar by
p/2 rotation.

~iv! k051 andk052 are inducing BM structures simila
to those obtained withk053 andk054, respectively.

FIG. 6. Isolines of thez component of the velocity atz50.5 and isotherms
on the free surface. Fork05$0, 2, 3%; at left: Vz(z50.5); dVz53, Vz,0 in
dashed lines and at the right:T(z51), dT50.05, T,0.2 in dashed lines
~A56.27, t56, Ra052800, Ma05200, Pr54270, Bi52!.
Downloaded 28 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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~v! k055 and k056 lead to mixtures of thek50 two
rolls flow and the slice-typek55 andk56 patterns,
respectively. However, thek55 structure is worse de
fined than thek56 and consequently appears ve
close to the RB axisymmetric flow.

Note that fork055 we also tried to vary Ma0 while
keeping constant the ratio Ra0 /Ma0 . The patterns obtained
with Ma05120 and Ma05160, with Ra0 /Ma514, are simi-
lar to the one obtained with Ma05200.

3. Upflow Õdownflow at the cylinder axis

For all the flows computed in the previous section
downflow has been obtained at the axis of the cylinder.
cusing on thek056 calculation, we want to go from the
situation where the fluid sinks at the cylinder axis to the o
where it rises.

Such different behaviors may be found for cylinders
aspect ratioA57 andA58, Rayleigh and Marangoni num
bers equal to Ra052400 and Ma05150, and a Biot number
Bi50.4. At the initial time ak056 perturbation of the tem-
perature field is used to induce thep/3 periodicity. Moreover,
an upflow is favored at the axis. For the numerical inputs
useDt51023, I5161,J520, andK590.

FIG. 7. Isolines of thez component of the velocity atz50.5 and isotherms
on the free surface. Fork05$4, 5, 6%; at the left:Vz(z50.5), dVz53, Vz

,0 in dashed lines and at the right:T(z51), dT50.05,T,0.2 in dashed
lines ~A56.27, t56, Ra052800, Ma05200, Pr54270, Bi52!.
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Figure 8 shows the evolution ofVz at a point close to the
center of the cylinder, for both casesA57 and A58. One
observes, fort'1, that a stiff sign change occurs forA57,
whereasVz remains positive forA58. Note that computa-
tions done with Bi52 and Ma05300, Ra0 /Ma0516, also
result in ak56 pattern with downflow at the axis, so that on
may think that confinement effects are here really prepon
ant.

The two ‘‘final’’ flow structures are compared in Fig. 9
Clearly, due to confinement effects forA57 one obtains a
k56 slice-type structure, whereas forA58 one obtains the
1–6 BM pattern.

For A57 (Ma05150, Bi50.4!, at the final time of the
computation one getsT̄(z51)'0.343, so that Ra'1577, Ma
'98.6, and r'0.188. For A58, one obtains T̄(z51)

FIG. 8. Vertical velocity at a grid point close to the cylinder axis versus ti
for A57 andA58 (k056, Ra0 /Ma0516, Pr54270!.

FIG. 9. Isolines of thez component of the velocity atz50.5 and isotherms
on the free surface. ForA57 and A58; at the left:Vz(z50.5); dVz53,
Vz,0 in dashed lines and at the right:T(z51), dT50.05,T,0.2 in dashed
lines (k056, Ra052400, Ma05150, Pr54270, Bi50.4!.
Downloaded 28 Sep 2007 to 134.59.10.172. Redistribution subject to AIP
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'0.356, Ra'1547, Ma'96.7, andr'0.184. Such values o
Ra and Ma may be compared to those of series 18, wh
shows the 1–6 BM pattern.

4. On the 1 –5 BM pattern

The experiments described in Sec. II have shown that
intermediate values of the aspect ratio a 1–5 BM flow co
be easily obtained. Here we try to recover this BM patte
since with an aspect ratioA56.27 and an initial wavelength
numberk055 we have obtained a mixture of thek50 two
rolls flow and ak55 slice-type structure.

From the conclusions of the previous section, the asp
ratio must be increased. Thus, calculations have been
formed for A5$7.6, 8, 8.4%, for Rayleigh, Marangoni, and
Biot numbers equal to Ra052800, Ma05200, and Bi50.4,
respectively. For the calculation parameters we useDt52
31023, I5161,J520, andK590.

Figure 10 shows, for the three values ofA, the evolutions
of Vz at a grid point close to the cylinder center. As could
expected, the results are similar to those obtained for the
BM flow: for the two smallest values of the aspect ratio, o
observes a downflow at the cylinder axis, but forA58.4 one
gets the desired upflow.

In Fig. 11 are shown theVz isolines at mid-depth and th
isotherms at the free surface forA58.4. The central pentago

FIG. 10. Vertical velocity at a grid point close to the cylinder axis vers
time for A5$7, 6, 8, 8.4% (k055, Ra052800, Ma05200, Pr54270, Bi50.4!.

FIG. 11. Isolines of thez component of the velocity atz50.5 and isotherms
on the free surface. ForA58.4; at the left:Vz(z50.5), dVz53, Vz,0 in
dashed lines and at the right:T(z51), dT50.05, T,0.2 in dashed lines
(k055, Ra052800, Ma05200, Pr54270, Bi50.4!.
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can be discerned. However, as previously the 3-D flow str
ture seems not well defined and now close to a three-roll
flow.

At the final times of computation we have obtained t
following: For A57.6 andA58, T̄(z51)'0.373, Ra'1755,
Ma'125, and r'0.179; For A58.4, T̄(z51)'0.386, Ra
'1719, Ma'123, andr'0.175.

IV. DISCUSSION

This section is devoted to the comparison of the num
cal and experimental results. Some features of the comp
and observed flows are in satisfactory agreement, whe
for some others discrepancies occur, as discussed now.

For 5.21<A<7.72, the experiments have shown tw
flow structures, namely the slice-typek54 structure and the
1–5 BM pattern. Moreover, the 1–5 BM pattern has a
peared robust, since it was generally obtained without ne
ing to enforce it. ForA56.27, the numerical calculation
have yieldedk53 to 6 slice-type structures, depending on t
value of the initial azimuthal wave numberk0 , and it has
been pointed out that increasing the aspect ratio was ne
to obtain the 1–5 and 1–6 BM patterns. Moreover, the 1
BM pattern has appeared weakly structured, since the fl
computed withA58.4 andk055 looks close to an axisym
metric RB flow, with three concentric rolls. More general
confinement effects due to the lateral wall seem to act dif
ently in the numerical simulations and in the experime
and have appeared more constraining for the former than
the latter. Thus, the 1–5 BM pattern was experimentally
served forA>6.92, whereas a value ofA58.4 was required
for the calculations.

First, it should be reminded that the characteristic
rameters of the flow are not accurately known and, moreo
temperature dependent. Especially, uncertainty on the k
matic viscosity,n, as given by the manufacturer, may rea
30%. Also, the value of the rate of change of surface tens
with temperature,]Ts, is approximate. Of course, such in
accuracies have a direct influence on the Prandtl, Rayle
and Marangoni numbers. Also, one can only have a cr
estimate of the Biot number, which depends on the he
transfer coefficient, which itself results from a modeling
the heat exchanges at the free surface. However, chan
the control parameters of the flow was easy to do in
numerical calculations. This has not permitted us to obt
the 1–5 BM pattern in a vessel of small aspect ratio.

Second, an explanation to the fact that the computati
have shown more different patterns than the experime
may be found in the transient development of the flow.
the numerical side, a particular structure is induced by
forcing at the initial time an azimuthal wavelength numb
In the experiments the ‘‘thermal technique’’ was rarely us
except sometimes to induce the hexagonal pattern. Then
flow can only form according to the threshold pattern sel
tion and further to the nonlinear interactions. As a result,
numerical procedure used to induce a particular convec
structure may yield computed flows never observed in
experiments.
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Third, the final time of the computation generally corr
sponds to a few hours~about 1.5 h withtF56 andd51 cm!.
This in, in fact, too short to consider the long time sca
dynamics of BM convection. In order to outline this featur
the evolution of the max norm of the temperature time d
rivative, for the simulations described in Secs. III B 2, III B
and III B 4, are plotted in Fig. 10. The first of these grap
clearly shows that the patterns obtained fork050, k053, and
k056 are close to the asymptotic ones. Even t
exponential-like decay, fort.4, allows an estimate of the
time constants, sayt, such that maxu] tTu}exp(2t/t). We
find, for k050, t'0.414, for k053, t'0.666, and fork0

56, t'0.759. For each of these three values ofk0 the flow
seems to behave linearly around the nonlinear asympt
state, which lends credit to the fact that this asymptotic s
is stable. This is less obvious for the other simulations,
which the patterns go on in evolving more strongly. Wh
looking at these patterns~see Figs. 5–7!, this is visible for
k051 andk052, since thep/3 andp/4 periodicity, respec-
tively, are not yet obtained. Fork054, one may guess tha
the p/4 periodicity will be preserved, in agreement with th
experiments. In order to be more confident in this assum
tion the calculation has been continued: At timet512 the
norm of the temperature time derivative goes on in decre
ing and equals maxu]tTu50.86531023. A large time constant
is obtained for the 1–6 BM pattern withA58.4 ~the third
graph of Fig. 12!: Again one can observe an exponential-li
decay, characterized by a time constantt'2.094, which
means that the numerical zero is to be obtained fort'50.

Fourth, using boundary conditions for the temperature
order to isolate the fluid layer from its environment he
probably results in an oversimplified modeling. At the fr
surface, using a mean temperature for the air and a cons
heat transfer coefficient supposes that no interactions o
between the turbulent air motion and the convective mot
in the liquid. Considering a bilayer oil–air configuration,
Ref. 19 it is pointed out that convection motions in the
and in the liquid may be coupled and that such a coupl
has a drastic effect on the critical values of the Rayleigh a
Marangoni numbers: the convection in the air sets up tra
verse temperature gradients at the interface, so that for a
layer thicker than 10 mm the critical Rayleigh and M
rangoni numbers are nearly zero. Although the present
periments and the bilayer ones of Ref. 19 are very differe
such a phenomenon may explain why the RB axisymme
flow was never obtained in the experiments, whereas it
pears very stable in the calculations. Combined with the c
finement effects it may also enforce the well-structured 1
BM pattern, when the calculations rather yield a mixture
RB and slice-type flows. Note that this is not in contradicti
with the fact that small disturbances of the air motion has
influence on the BM pattern, if one assumes that the conv
tive motion in the fluid layer is only sensitive to the mea
motion of the air. Also, assuming adiabaticity at the circu
wall of the cylinder is probably crude. Although the radi
heat transfer through the sidewall is probably very weak,
circular part of the cylinder behaves like a cooling fin, with
transfer of thermal energy from the heating plate to the a
bient air. Moreover, due to the high conductivity of the cy
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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inder wall, azimuthal variations of the temperature are i
mediately damped. This may explain why thek53 slice-type
structure, with primary and secondary cells~see Fig. 6!, for
which maxima and minima of temperature occur at the c
inder wall, was never obtained in the experiments.

Coming back to the first point of the present discussi
changing the control parameters of the flow was easy to d
the numerical calculations. However, this has not permit
us to obtain the 1–5 BM pattern in a vessel of small asp
ratio. In such vessels we have always obtained slice-t
convective flows, depending on thek0 value, like thek54
one, which has also been observed in the experiments. C
cerning the second point, one should remark that despite
fact that Rayleigh effects were dominant, thek50 RB axi-
symmetric flow was never observed in the experiments.
the contrary, such a RB flow is very stable in the calcu
tions. Once the flow has become axisymmetric then the q

FIG. 12. Max norm of the temperature time derivative versus time for
simulations of Secs. III B 2, III B 3, and III B 4.
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sisteady state is quickly reached. Concerning the third po
despite the fact that some structures are still evolving,
final BM pattern seems always reached, even if one can
be sure that some structures may not yet suddenly cha
Thus, from our opinion, the last point is decisive. Assumi
standard boundary conditions for the temperature yields
oversimplified model, which, on one hand, can yield stru
tures never obtained in the experiments, like the RB axisy
metric flow or thek53 flow with primary and secondary
convective cells, but, on the other hand, can only yield, i
vessel of larger aspect ratio, a poorly structured 1–5 B
pattern.

V. CONCLUSION

In this paper we have focused on supercritical BM flo
of a high Prandtl number fluid and with predominant buo
ancy effects, obtained in cylindrical vessel. Both experim
tal and numerical approaches have been used to study
flows. Thus, we have given a set of experimental resu
meaningful of the numerous experiments that have been
formed, and numerical results have been presented, to c
the numerical solver, to point out the influence of low
amplitude disturbances of the temperature field at the in
time, to focus on the transition from thek56 BM structure to
the 1–6 BM pattern and, finally, to look for the 1–5 BM
pattern found in the experiments.

In cylinders of small aspect ratio BM convection exhi
its very rich phenomena, so that, as already mentioned,
in Refs. 5, 7, 8, full agreement between theoretical, num
cal, and experimental approaches is often difficult to obta
Here again, a surprising discrepancy has occurred in the
termediate range 6.92<A<7.72: the 1–5 BM pattern, robus
and easy to obtain experimentally was not captured num
cally. Instead we have obtained slice-type flows or the
axisymmetric flow. However, the four slice-type flow ob
served in the experiments has been computed and, forA'8,
both experiments and calculations have yielded similar w
structured 1–6 BM patterns.

Our explanation of the discrepancies between exp
ments and calculations is that using Robin and homogene
Neumann conditions for the temperature, at the free surf
and at the lateral wall of the cylinder, respectively, has led
to an oversimplified modeling. The full modeling of both th
fluid layer and its environment being presently out of rea
it would be especially of interest to find our more appropria
boundary conditions to model the heat transfers at the
surface.
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