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This study is concerned with supercritical rBegd—Marangoni flows of a high Prandtl number
(Pr=4000 fluid in cylinders of small to medium aspect ratiossB=<10. Laboratory experiments

and numerical simulations, handled with an accurate spectral solver of the unsteady
three-dimensional Boussinesq equations, are used to get a good understanding of the flow behavior.
Experimental and numerical results are successively presented and then discussed. The confinement
effects are especially pointed out and carefully analyzed.20©2 American Institute of Physics.
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I. INTRODUCTION depth, respectively. As already pointed 84€ in such ge-
ometries the flow may exhibit very different flow structures.
As is well known since the pioneering works of Pearson At the threshold of the convective motion, this results from
and Nield? a horizontal fluid layer heated from below with the fact that different convective patterns are associated with
an upper free surface, may show the so-callechaBe— values of the critical Rayleigh and Marangoni numbers very
Marangoni(BM) convection, due to the variations @f fluid  close to each othérLet us remind ourselves of the expres-
density(Rayleigh effectand(ii) surface tensiofiMarangoni  sions of these dimensionless numbers and also of the Biot
effec) with temperature. Numerous papers have been deand Prandtl numbers, respectively, required to model the heat
voted to the study of such convective flows, using theoretiexchange at the upper free surface with the surroundings and
cal, numerical, or experimental approaches. We refer t@o consider the inertial effects:
Koschmiedet and also to Dijkstrafor interesting reviews.

3
In the first theoretical studies on BM convection, the layer Ra— ﬂ, _— aTU—ATd,

was assumed to be infinitely extended in the horizontal di- VK pVvK

rection, i.e., the effect of lateral boundaries was neglected. hd v 1)
But experiments necessarily take place in finite vessels Bizy, Pr=;.

where the sidewalls can play an important role on the con-
vective structure. Actually, it can be decisive in small boxes.In these formulas, the usual notations are uskid:the fluid
For instance, experiments performed in small aspect ratitayer thicknessAT the vertical temperature gap,the kine-
cylinder vessels may show various very different pattérns. matic viscosity,«x the thermal diffusivity,« the volume ex-
This paper is concerned with BM convection in cylin- pansion coefficienty the gravity,p the densityg;o (<0) the
ders. Numerical works in such a confined geometry are notate of change of surface tension with temperatirehe
so numerous. Among them, Wagnetral® have performed mean heat transfer coefficient at the free surface, atite
calculations of supercritical BM flows in cylinders of aspectthermal conductivity.
ratio A<2, showing the sensitivity to initial disturbances and Papers on BM cylindrical convection are often devoted
some possibilities of transition from three-dimensiofg&D) to the study of the transition from the conductive to the con-
convective patterns to 2-D axisymmetrical ones. Zaman andective regime, by using stability analy§ésor numerical
Narayanah have studied the convective pattern formation,approache8’ Here our goal is different, since we are not
by numerical integration of linearized governing equationsinterested in the determination of the critical values of the
Daubyet al® have conducted a further study in circular ves- Rayleigh and Marangoni numbers, but of the study of super-
sels, but limited to the weakly nonlinear regime. More re-critical flows. Similarly, the initial flow pattern will not be
cently, using an amplitude equation, Dautyal® proposed  predicted or observed, e.g., in the celebrated experiments of
a theoretical analysis of a dynamic mode switching betweeiRef. 5 but rather induced, especially in the numerical experi-
two two-cell patterns related by a/2 rotation about the ments.
vertical symmetry axis of the system observed by Johnson Laboratory and numerical experiments are used to carry
and Narayanafl in a circular vessel. out the present study. The laboratory experiments, performed
Here we are interested in BM supercritical convection inin the late 1990's, follow similar ones done previously.
cylinders of small to medium aspect ratio=sB=<10, with  However, an infraredIR) thermography system with real
A=D/d and whereD and d are the cylinder diameter and time data processing is used here for the measurement of the
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vessel that contains the same oil acting as a guard ring. The
bottom is flat, horizontal, and made of copper. It is heated by
a regulated electric device. The layer depthjs measured
by using two micrometric comparatorgrecision =0.02
mm). The free surface of the liquid is horizontal and in con-
tact with the atmosphere, without a lid. This is the configu-
ration in which we are interested and, moreover, this allows
precise measurements of the surface temperature with the
thermovision system. The apparatus is placed in a tempera-
ture controlled atmosphefe-0.5 °C) and a double door pro-
tects the laboratory room from outer perturbations. More-
m R over, the regulator device maintains the temperature
‘ - 1 difference between the heating plane and the air, so that even
\ :jb\ . the above-mentioned temperature fluctuations have a negli-
gible influence on the experiment.
FIG. 1. Schematic of the experimental desiga. Container;(b) heating . To measure the t_emperature atthe bOt-tom we use a very
device; (c) central cells;(d) outer guard ring;e) 45° incline'd aluminum thin thermocouple(dlamgter 0.05 mm which ensures a
mirror; (f) 7° infrared lens;(g) AGEMA 880 SW — (3-5 um) infrared ~ 900d thermal contact with the copper plate. For the upper
scannerfh) PC frames of 64128 pixels at 6.25 Hz and 12 bits encoded; the free surface, we take an average temperature owing to the
2221;:;1:@ compared with 100 frame) detail of the scanned cells in the  tharmovision technique that provides instantaneously both
' the convective pattern and the whole surface temperature
field. Infrared thermography is indeed an efficient and non-
superficial temperature field. For the calculations we havdlisturbing means of investigation.
used a high accurate spectral Chebyshev—Fourier code, es- We used an infrared scanner AGEMA 880 Short-Wave,
pecially developed for the calculation of “Boussinesq flows” connected to a real time data acquisition system. The infrared
in cylinderst®>*Preliminary results for BM convection were Pictures are composed of 8428 pixels and the maximum
presented in Ref. 14. acquisition frequency is 25 Hz. However, four consecutive
Let us emphasize that we do not plan to produce numerirames are interlaced to obtain a good quality picture, so that
cal simulations of particular experiments. This would not befor a prescribed physical point a 6.25 Hz acquisition fre-
realistic, due to the assumptions used in the modeling: Thugjuency is the maximum one. All the measurements provided
the heat exchange at the interface oil-air is modeled in &Y the infrared picture are 12 bits encoded. A calibration,
simple way, by using a heat transfer coefficient and a meaHsing a blackbody within the temperature range 0 °C-50 °C,
temperature of the air, and the variations of the thermophysiPermits us to obtain the calibration equatiGt is then pos-
cal parameters with the temperature are not taken into agible to calculate a “blackbody equivalent temperature,”
count. Our goal is to investigate the BM convection of a highTos- The maximum error is 0.05°C in this range and the
Prandtl number fluid in cylinders of small to medium aspectresolution around 30 °C is about 0.03 °C.
ratio with two Comp|ementary approaches_ KnOWing the emiSSiVit}E Of the Scanned Surface and the
The plan of the paper is the following. In Sec. Il we deal ‘radiant environment temperaturel’e, the surface tempera-
with the experimental device and results. The numericafure Ts is calculated from the relation

NN NN “N<—b

study is presented in Sec. lll. In Sec. IV we discu.ss th_e engTﬁb—(l—e)Tg. 2

results of both approaches and finally offer conclusions in

Sec. V. The emissivity of the oil was identified by using the hemi-
sphere methotf We founde~0.9. To controlT,, the appa-

Il. EXPERIMENTS ratus is placed in a box and its temperature is measured with
a thermocouple connected to a digital multimeter. To keep a

A. Apparatus vertical position to the IR camera, we use an aluminum mir-

A schematic of the experimental apparatus is shown irfor with reflective factor equal to 0.97 in the SW wavelength
Fig. 1. It essentially consists of a cylinder vessel with anrange(3—5 um) of the IR system.
inner diameteD (7.4 or 11.2 cm filled with a silicone oil Note that in this SW range the air is transparent, so that
Rhodorsil 47V500 whose characteristics, at 25 °C and 45 °Ghere is nearly no attenuation of the IR fluxes. Moreover, the
are summarized in Table I. This cylinder is set in anotherdistance experiment camera is short, so that refraction effects
are quite negligible. Visualizing the motion of the air is pos-
sible by using the shadowgraph technique. This was done in
TABLE I. Approximate values in Sl units of the characteristic parameters ofear"er experiments: A “slow,” say 1-10 CI’TT%, and chaotic
the fluid at 25 °C and 45 °C. . . .
motion of the air can be observed, but in any cases the cou-

T p  wx10" ax10® «kx10' N drox10°  Pr pling between the convection phenomena in the air and in
25 970 50 0.45 113 016 5.8 4425 the o!I seems extremely Weak.'Thus, if one sllghtly disturbs
45 952 4.0 10.44 115 016 5.8 3a7g the air motion above the experiment, one cannot discern any

change in the BM pattern, even with the IR camera. In fact,
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cerning the uniformity of the heater temperature field, IR
measurements done without oil cannot reveal any nonunifor-
mity.
T The liquid movements and the convective pattern can
also be made visible by using aluminum powder. We also
used this classical technique, in order to obtain clearly vis-
ible convective cell§see Fig. 3. In all cases, the two tech-
38 nigues of visualization have shown the same BM patterns.
s One can only mention that the separation lines between the
cells appear generally thicker with the IR camera, which
shows a temperature field and not directly the sinking or
35 emerging parts of the convective pattern.

34

40

39

36

B. Experimental procedure

For each experiment, the liquid is heated during several
hours or days to reach a stable state. Then, two procedures
can be performedi) either a convective structure is imposed
according to the thermal technique described in Ref{gEn-
erally, it is a hexagon in the center surrounded by six gells
or (i) the oail is stirred with a rod. The evolution of the
pattern is then observed for a day at le@sime experiments
lasted 38 days Note that withd=1 cm, the viscous and a
thermal diffusive characteristic times associated to this
length scale are, respectively,=d?v»~0.25 s andt,
=d?/k~0.25 h. Of course, iD is used as a length scale,
these values should be increased by a fasforFor experi-
ments corresponding to proceduii¢, the central hexagon
first relaxes to an optimal siZeee Ref. 12that can be stable
or last several hours before rearranging progressively to the
final state. For the proceduf@) a disordered structure first
appears, then, after many modifications it reaches the final
pattern. In this study, we are only interested in the final pat-
tern.

FIG. 2. Surface temperature field from IR thermography.
C. Results

the time constants, velocities, etc., in the air and in the oil are  When both procedure§) and (ii) are performed, the
quite different, so that the influence of the air on the freesame final pattern is observed. When saying the “same” final
surface temperature field is averaged. From our point opattern we mean similar structures but not identical ones: for
view, the laminar convective motion in the liquid is thus notinstance, a pentagon surrounded by five cells in contact with
strongly coupled to the air turbulent motion but only sensi-the walls, but the orientation of the structure is different from
tive to its mean motion. One may think that this gives aone experiment to another an two “same” structures cannot
justification for simply using a heat transfer coefficient to be strictly superposed.
model the oil-air heat transfer. Also, in the limit of a very We performed 19 series of experiments. The character-
thin layer, such that the Rayleigh number of the air convecistics of the experiments, i.e., the aspect rafipthe depth
tion is below its critical value, then the phenomena are basilayer, d, the Rayleigh number, Ra, the Marangoni number,
cally different, since the heat transfer in the air is then purelyMa, and the final structure, FS, are gathered in Table II. Note
conductive. that in the present experiments the presence of a small me-
To improve the measurement accuracy, the data acquisiiscus along the vessel walls has no influence on the
tion system is able to average pictures during the recordingenard—Marangon{BM) patterns, due to the large sizes of
procedure. In all experiments we performed averages usintipe convective cells.
100 frames, so that the measurements are averaged during For the smallest values & (A<6.21) the vessel is al-
about 16 s. This time is negligible, even in the transientready sufficiently large to promote the existence of four
regime, considering that the evolutions of the phenomena argice-type cells, withm/2 periodicity[Fig. 3(a)]. In each cell
slow. Figure 2 shows an example of a surface temperaturthe fluid rises at the center of the cell and sinks along the
field measurement. Note that on this picture the cells appeaims. The pattern is approximately centered at the vessel
to be not exactly of the same size. We attribute this slightxis. If the container is slightly incline¢slope equal to 5
loss of symmetry to a small defect of the apparatus levelnesss 10 %), the number of cells is kept but the pattern becomes
that, however, is estimated better thar2x 10 3 rd. Con- = periodic. For larger values &k (6.92<A<7.72 a central
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FIG. 3. Flow visualizations with alu-
minum powder{a) the four slice-type;
(b) the 1-5;(c) the 1-6; and thed)
4-9 BM patterns.

cell can exist. It is the 1-5 BM pattern, i.e., a pentagon  One can note that the present results follow similar
surrounded by five cell§Fig. 3(b)]. For the larger aspect changes whenA is increased, as in the results of
ratio A=8.1, one obtains the 1-6 BM pattefRig. 3(c)]. Koschmieder and PrafIMoreover, the same single cell BM
Finally, for the greatest valuA=10.47, the flow structure flow was obtained for the smaller aspect ra4ie 3.63. Also,
becomes more complex, since the central cell is now refor the larger valuéA~14, the BM flow shows three concen-
placed by four pentagonal cellEig. 3(d)], surrounded by a tric rolls of cells. However, in the present study fluid depths
set of polygonal cells. Moreover, this structure is alwaysare such that 9.14 md<14.20 mm, so that the buoyancy
changing, showing alternatively both the 4—8 and 4—9 BMeffect is predominant compared to the surface tension effect.
patterns. To see that readily, one can consider the case of an infinite

layer. If Ra and Ma are the critical values of the Rayleigh

and Marangoni numbers and 8and Mg, those obtained
TABLE II. Series of experiments with characteristics and the final convec-With dro=0 and g=0, respectively, then the ratio
tive pattern A: aspect ratio —d; depth layefmm) Ra: Rayleigh number — = (Ra./Ra,p)/(Ma./Ma.y) gives an idea of the relative im-
Ma: Marangoni number — FS: final structuféhe first number shows the ortance of the buoyancy and surface tension effects. Here
number of cells at the vessel center and the second number shows ttﬁe ratio varies from 1.2 to 5.6. In comparison, for the ex-
number of cells along the vessel wall ’

periments of Koschmieder and Prahl it is about 0.065 to

Series A d Ra Ma FS 0.68, so that in their study the surface tension effect was
1 5.21 14.20 2500 80.4 4 predominant.

2 5.56 13.30 2030 74.5 4

3 6.17 12.00 1462 65.9 4

4 6.21 11.91 1537 70.6 4 IIl. NUMERICAL INVESTIGATIONS

5 6.21 11.91 1626 74.7 4 , . o .
6-12 6.92 10.70 054 539 1-5 The first part pf this section is devoted to the mo_dellng
13,14 6.92 10.70 1032 58.4 1-5 and to the numerical technique used to solve the fluid flow
15 6.95 10.65 1090 62.7 1-5 equations. Numerical results are then presented. In particular,
16 7.08 10.45 900 53.3 1-5 (a) we recover some classical results about the critical value
1 1.2 9.58 37 523 15 of the Marangoni numbexb) show how the flow develop-

18 8.10 9.14 1560 124 1-6 " . - :

19 10.47 10.70 099 56.6 a8/9 Mment may be sensitive to the initial conditiof® distur-

bances at the initial timje(c) analyze the change in the flow
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structure resulting from a change in the cylinder aspect ratioJ hus, the free surface and Marangoni effects are modeled in
and, finally,(d) focus on the possibility of a pentagonal struc- the simplest way, i.e., the deformations of the free surface are

ture of the central convective cell. not considered and the surface forces are assumed propor-
tional to the horizontal component of the thermal gradient. A
A. Modeling and numerical technique Robin condition for the temperature field is assumed: the

First we introduce the time-dependent governing equaheat flux den;ity, including bo.th its radiative and convec.tive
tions, with their boundary and initial conditions and then components, is taken.proporuonal to the temperature differ-
give the main features of the spectral method used to conf?n.ce between the environment temperafreand the super-
pute BM convective flows in cylinders. icial temper.at_u'reT(p, 0’. .1)' .
For the initial conditions we assume the conductive re-
gime, i.e., the fluid is at rest and the temperature field is
1. Modeling linear between the dimensionless temperatures of the bottom

) ] wall, T=1, and of the free surfac&=0. At t=0,
We assume that the velocity and temperature fields are

governed by the incompressible Navier—Stokes equations, Vo=0, (12
couple_d, Wi_thin_ the BOL_Jssinesq approximation, to an  T,=1-z (13)
advection—diffusing equation for the temperature. Then, in - _
dimensionless form, the so-called “Boussinesq equations™ e compatibility of Eqs(11) and(13) then requires that the

read as scaled environment temperature deviation is given by
1 1
5.DiV=—Vp+Ra Te,+V2V, in Ox(0tr), ) Te=—5- (14)
V-V=0, in QX (0tp), 4) However, si.nce the gonductive regime solves the ‘fBouss-
inesq equations,” a disturbance of the temperature field will
D, T=V?T, in OX(0tg), (5) be used in the numerical experiments to start the convective

motion. Moreover, as explained later, this initial disturbance

where g, is the unit vertical vectort<tg the time,V the . . ; .
€z =t will be used in order to induce specific structures of the flow.

velocity, p a pressure term, ant the deviation of the tem-
perature from a particular one, e.g., as done hereafter, the
surface temperature at the initial time. These variables havs
been made dimensionless by using the following character-
istic values:d, d?/«, «/d, px?/d?, and AT, respectively, For the sake of completeness we review the main char-
where AT, is the initial temperature difference in the fluid acteristics of the numerical solver, but details on this part can
layer. The operatoD; stands for the material derivative, i.e., be found in Refs. 13, 14. To enforce the divergence-free
D;=4d,+V-V. The cylindrical domain is notef), such as in feature of the velocity field, one solves the vorticity—vector
the cylindrical coordinate systenfp, 6, z), Q=]0, A/2[  potential (w—) formulation of the Navier—Stokes equa-
x10,27] x]0,1[. Hereafter we distinguish the Rayleigh and tions. Thus, with
Marangoni numbers, Rand Mg, based oA T, from the w=VXV (15)
time-dependent numbers Ra and Ma, which make use, at a ’
given time, of the mean temperature of the free surface. V=VXi, (16)
To define the boundary conditions, we split the boundary .
. . one obtains
I' of Q into three partsi’y, I',, andI"_, for the circular,
the upper, and the lower parts of the cylinder, respectively.
Then, we assume the following at the rigid walls:

V=0, T=1, onTl_, (6) 17
V2i+ w=0. (18

This set of vectorial equations must be associated with
ndary and initial conditions. The initial condition only
involves the vorticity and directly results from the one im-
posed on the velocity:

Numerical technique

Pir{ﬁtw+V><[w><(V>< #) 1 =Ra(V X Te) + Ve,

V=0, 4,T=0, onTy. (7

No-slip conditions are thus imposed to the velocity. For thebou
temperature, one uses Dirichlet conditionslat (the tem-
perature is imposed at the base of the cylin@ged homoge-
neous Neumann conditions Bt (adiabaticity.

With V=(V,, Vg, V,), at the free surface we assume wy=V XV,=0. (19
d,V,+Mag ,T=0, (8)  Choosing the boundary conditions is less straightforward
(see the earlier works of Refs. 17 and).1®vith n for the
ON .+ Maoiﬁ T=0 (9) outward unit vector normal tb, we have used the following
2o p’ ’ set of boundary conditions: everywhere bn
V,=0, (10 V-0=0, (20)
d,T—Bi(T,—T)=0. (12) V-4=0, (21
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PXn=0; (22 those of the experiments. These values of Ra and Ma take
o _ into account the increase of the dimensionless mean superfi-
at the rigid wallsl"— andI'o: cial temperaturd(z=1), so that
(VX ) Xn=0; (23 Ra=[1-T(z=1)]Ra and
. — 26
at the free surfacé#', : Ma=[1-T(z=1)]May. (26)
1 Moreover, knowing that for a particular fluid, with constant
w’”_MaOpa“’T’ (24) thermophysical parameters, Ra/MRa,/May>=d?, one can

check that herel~1 cm.
wo=~Magd,T. (25 Concerning the Biot number, as described in Sec. Il the

Conditions (20)—(21) make e and i solenédal, (21)—(22) upper surface is open to the laboratory room atmosphere. In
ensure the uniqueness @, (23) is the no-slip boundary such a situation, the heat exchange between the oil and the

condition and24)—(25) result from the definition of the vor- &I can only be approximated through the use of a global heat

ticity and from the boundary conditions for the velocity at transfer coefficient and a mean temperature of the air, as,
the free surface. e.g., in Ref. 15. One cannot think indeed to compute the

The partial differential equationd?), (18), (5), associ- turbulent motion of the ambient air or the radiative ex-
ated with the previously mentioned initial and boundary con-changes between the experimental device and the room. Of
ditions for both the vorticity and temperature fields, areCOUrSe; the value of such a heat transfer coefficient can only

solved as described in Refs. 13, 14. Essentially we have tHe® estimated, without taking into account any time or space
following. variations. We have generally used values yielding results in

satisfactory agreement with the experimental measurements,
(i)  Integration in time is performed with a second-orderessentially B0.4 and Bi=0.5. Especially, we have tried to

finite difference scheme: Linear terms are treated impreserve the ratio:
plicitly (backward Euler approximatigrand nonlin- —
ear terms explicitly (Adams—Bashforth extrapola- . [1-T(z=1)] @7

tion). (1-T,)

(i)  The approximation in space makes use of a Fourier— ; - ;
of the temperature difference in the fluid layer over the tem-
Chebyshev pseudospectral method. Thanks to th b y

e : LT 5erature difference between the basis of the cylinder and the
natural peT'Od'C'ty n 6, the azimuthal direction is ambient temperature. Note that wil-1 cm, such values of
handled W'th F_ourler series. Consequently, the 3'Dthe Biot number yield a heat transfer coefficient such that
problem _sphts into a set of 2-D _problems, that areg 4<n<s8 Wm 2K L, which may be considered as a rea-
solved W.'th a Chebyshev COHO.C.at'On methoc_j._ sonable estimate to represent both the radiative and convec-
(if) Concernmg the boundary co_r_1d|t|ons, at the rigid WaIIStive components of the heat flux density. Finally, let us men-
one has five boundary condlpqns forthe vector PONYion that qualitatively we have not observed a high influence
tial but only one for the vorticity. To recover a more

tandard situati ith three bound giti p of the Biot number value, i.e., the BM pattern has not ap-
standard situation, Wi ree boundary conditions Orpeared very sensitive to this parameter in our numerical ex-
each variable, an influence matrix technique is used.

. e - . periments.
() :)zsartg]:m?:]:o%;ﬁﬁ;ifor}g'“?ES are dilggtci)jr?d t?]tethe The calculations are also characterized by the numerical
: p

i arameters, namely, for the time discretization: the time step
C_hebyshev—Gaus_s—Lob_atto mesh maps the _cylmdéit’ and, for the space approximation: the maximum values of
diameter and not its radius. Thus, the grid points ar

\v clustered at th | bound £ th ‘ She Fourier modeK, and of the degrees of the polynomial
only clustered at the real boundary of the compu a'approximationj andJ, in thep andz directions, respectively.
tional domain. However, the required regularity prop-

i ¢ d at th . that the Laplaci he corresponding mesh is theh{1) XK X (J+1). If the
erties are enforced at the axis, so that the Laplacian Ol o qp, js oo coarse, the numerical results may strongly de-
each scalar or vector field is not singular.

pend on the space discretization, e.g., yielding a 3-D flow
rather than an axisymmetric one, as mentioned in Ref. 6.
This is the reason why fine grids have been used in all the
Many calculations have been carried out to study thecomputations.
BM flow observed in the laboratory experiments. Neglecting  In order to favor the emergence of a particular azimuthal
the dependence of the physical parameters on the tempenaode, we use a slight perturbation of the temperature field at
ture, these calculations are mainly characterized by the vathe initial time. Such an approach may be compared to the
ues of the dimensionless Rayleigh and Marangoni number&hermal method” mentioned in Sec. Il. It avoids the forma-
at the initial time of calculation, Raand Mg, and by the tion of a disorganized flow, which actually needs a long time
Biot and Prandtl numbers, Bi and Pr. (and so a high computational cpsb structure itself more or
For the Prandt number we use=R¥270. For the pair less arbitrarily in a particular organized flow, which in fact,
(Ray, May), we essentially present results obtained withwould be nothing but a particular solution of the Boussinesq
(2800, 200 or (2400, 150, such that the final values of the equations. Thus, rather than letting the flow evolve under the
Rayleigh and Marangoni numbers, Ra and Ma, compare tsole effects of the round-off errors, or under the effects of a

B. Numerical results
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FIG. 4. Maximum velocity versus time for Ma {75, 77, 79, with initial
disturbances of amplitud@) 1078 and (b) 1074.

random perturbation, we prefer to introduce an additive pa-
rameter, say,, equal to the azimuthal wave number of a
sinusoidal perturbation of the initial temperaﬂ]?@. More- FIG. 5. Isolines of the co'mponent' of the velocity &=0.5 and isotherms

. - on the free surface at different times. For{0.4, 1, 1.6; at left: V,(z
over, ina sm_ular way we have often fav_ored an upflow at_thezo_s); 8V,—3, V,<0 in dashed lines and at the right(z=1), oT
axis, essentially to recover the experimental observations:g o5 1<0.2 in dashed line¢A=6.27, k,=1, Ra=2800, Ma=200, Pr
However, this must be done in a slight manner to not induce=4270, Bi=2).
an axisymmetric flow.

For the values of the dimensionless numbers used in this

Study, we have a|WayS obtained, after the transient part, aver, such results depend on the amplitude of the initial dis-
steady flow and not, e.g., an oscillatory one, like in Ref. 10turbance. Thus, when using a perturbation of amplitude
for smaller aspect ratios or, for a larger one, in the series 180 %, Fig. 1(b) shows that a convective motion also devel-

of the present experiments. ops for Mg="77. This points out the transcritical nature of
the threshold bifurcation point, as, e.g., mentioned in
Ref. 7.

1. BM convection at the threshold

First we show that for pure Marangoni convection and
with May, close to the critical value, our numerical results
are coherent with the predictions of the stability analyses of Here we show how the final steady flow pattern may be
Ref. 8. sensitive to the perturbations of the temperature field at the

In Table Il of Ref. 8, it is mentioned that fok=8 and initial time. To this end, we set the aspect ratioAe6.27.
insulating sidewalls, with B¥0.2, the critical Marangoni The Rayleigh and Marangoni numbers equa}-Ra800 and
number is associated with the azimuthal wave nuniset ~ Ma,= 200 att=0. For the Biot humber we use BP.

2. Sensitivity to initial conditions

and equals Ma=77.87. Moreover, it is noticed that this The amplitude of the temperature perturbation at the ini-
value is greater than Nield’s value, determined for an infinitetial time equals 10° and we vary the azimuthal wavelength
layer, which equals 75.544. number:ko=1, ... ,6. For thenumerical inputs we usat

Calculations have been performed for three values of the=102, 1=161, J=20, andK=90. The smaller valu¢=85
Marangoni number: Mg={75, 77, 79, using a perturbation was first used, but appeared too low to describe the flow
of amplitude 10° for the temperature. In Fig. 4, for each pattern evolution computed when starting wkp=1 and
value of Mg the evolution of the max norm of the velocity is ko= 3. The calculations have been carried out until the final
presented. As expected, one observes that foy=M& and  time tg=6.

May=77 the conductive state is going to be recovered, First we show how a quasisteady flow pattern may be
whereas for Mg=79 a convective motion develops. How- reached, by focusing on the transient flow inducedkgy
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FIG. 6. Isolines of the component of the velocity &=0.5 and isotherms ~ FIG- 7. Isolines of the component of the velocity at=0.5 and isotherms
on the free surface. Fdg,={0, 2, 3; at left: V,(z=0.5); 6V,=3,V,<0 in  On the free surface. Fd={4, 5, §; at the left:V,(z=0.5), 6V,=3, V,
dashed lines and at the right(z=1), 65T=0.05, T<0.2 in dashed lines _<0 in dashed lines and at the rigft(z=1), 5T=0.05,_T<0.2 in dashed
(A=6.27,t=6, Ra=2800, Ma= 200, Pr=4270, Bi=2). lines (A=6.27,t=6, Ra= 2800, Mg=200, P=4270, Bi=2).

(v)  ko=5 andky=6 lead to mixtures of th&=0 two

=1 and upflow at the axis. Figure 5 presents, at different rolls flow and the slice-typ&=5 andk=6 patterns
timest={0.4, 1, , the isolines of the component of the respectively. However, thie=5 structure is worse de-
velocity field at mid-depth of the cylinder and the isotherms fined than thek=6 and consequently appears very
at the free surface. Stiff changes of the flow structure may be close to the RB axisymmetric flow.

observed, especially because the flow pattern induced by the

temperature perturbations and the final one are very differ-  Note that fork,=5 we also tried to vary Mawhile
ent. Thus, the final flow pattern points ouka3 azimuthal keeping constant the ratio RdMa,. The patterns obtained
wave number, so th&+#ko, and a downflow rather than an with Ma,=120 and Mg= 160, with Ra/Ma=14, are simi-
upflow at the cylinder axis. lar to the one obtained with Mas 200.

The different final convective patterns, as Wgisolines
at the mid-depth and the superficial temperature fields, are. ypflow /downflow at the cylinder axis
shown in Figs. 6—7. Essentially, one observes that the azi-

- . For all the flows computed in the previous section a
muthal initial wave numbers:

downflow has been obtained at the axis of the cylinder. Fo-
(i) ko=0 yields a Rayleigh—B®ard (RB) axisymmetric cusing on thek,=6 calculation, we want to go from the
two rolls flow. situation where the fluid sinks at the cylinder axis to the one
(i) k=3 yields ak=3 BM structure, similar by 2/3  where it rises.
rotation. This structure is characterized by three main  Such different behaviors may be found for cylinders of
convective cells around the cylinder axis and threeaspect raticA=7 and A=8, Rayleigh and Marangoni num-

secondary cells squeezed along the circular wall.  bers equal to Rg= 2400 and Mg= 150, and a Biot number
(i) ko=4 yields a slice-typek=4 structure, similar by Bi=0.4. At the initial time ak,=6 perturbation of the tem-
7r/2 rotation. perature field is used to induce thé3 periodicity. Moreover,

(iv) ko=1 andky=2 are inducing BM structures similar an upflow is favored at the axis. For the numerical inputs we
to those obtained withy=3 andk,=4, respectively. useAt=10 3, 1=161,J=20, andK=90.
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FIG. 8. Vertical velocity at a grid point close to the cylinder axis versus time FIG. 10. Vertical velocity at a grid point close to the cylinder axis versus
for A=7 andA=8 (ko=6, Ra/May,= 16, Pr=4270. time for A={7, 6, 8, 8.4 (ky=5, Rg=2800, Mg =200, Pr=4270, Bi=0.4).

Figure 8 shows the evolution &, at a point close to the ~0-396, Ra=1547, Ma=96.7, andr~0.184. Such values of

center of the cylinder, for both casés=7 andA=8. One Ra and Ma may be compared to those of series 18, which
observes, fot~1, that a stiff sign change occurs fée=7,  Shows the 1-6 BM pattern.

whereasV, remains positive forA=8. Note that computa-

tions done with BF2 and Ma=300, R3/May,=16, also 4. On the 1-5 BM pattern

result in ak=6 pattern with downflow at the axis, so that one

may think that confinement effects are here really preponder- The experiments described in Sec. Il have shown that for
anty y prep intermediate values of the aspect ratio a 1-5 BM flow could

- - be easily obtained. Here we try to recover this BM pattern,
The two *final” flow structures are compared in Fig. 9. since with an aspect ratia=6.27 and an initial wavelength
Clearly, due to confinement effects f&=7 one obtains a P ) 9

k=6 slice-type structure, whereas f8=8 one obtains the numberk, =5 we havg obtained a mixture of the=0 two
rolls flow and ak=5 slice-type structure.
1-6 BM pattern.

For A7 (=150, 500, at the el i of the  F1O 1 conlusionsof e previous secon e aspoct
computation one gefB(z=1)~0.343, so that Ra1577, Ma ' : P

B ) N formed for A={7.6, 8, 8.4, for Rayleigh, Marangoni, and
~98.6, andr~0.188. For A=8, one obtainsT(z=1)  gjot numbers equal to Ra 2800, Mg =200, and Bi0.4,

respectively. For the calculation parameters we Ase 2
X103, 1=161,J=20, andK=90.

Figure 10 shows, for the three valuesfgfthe evolutions
of V, at a grid point close to the cylinder center. As could be
expected, the results are similar to those obtained for the 1-6
BM flow: for the two smallest values of the aspect ratio, one
observes a downflow at the cylinder axis, but #s+8.4 one
gets the desired upflow.

In Fig. 11 are shown th¥, isolines at mid-depth and the
isotherms at the free surface #4+=8.4. The central pentagon

FIG. 9. Isolines of the component of the velocity &=0.5 and isotherms  FIG. 11. Isolines of the component of the velocity &=0.5 and isotherms
on the free surface. Foh=7 and A=8; at the left:V,(z=0.5); 6V,=3, on the free surface. Fgk=8.4; at the left:\V,(z=0.5), §V,=3, V,<0 in
V,<0 in dashed lines and at the right{z=1), T=0.05,T<0.2 in dashed  dashed lines and at the righk{z=1), 6T=0.05, T<0.2 in dashed lines
lines (ko=6, Ra=2400, Ma= 150, Pr=4270, Bi=0.4). (ko=5, Rgy=2800, Mg =200, Pr=4270, Bi=0.4).
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can be discerned. However, as previously the 3-D flow struc-  Third, the final time of the computation generally corre-
ture seems not well defined and now close to a three-roll RBponds to a few hour@bout 1.5 h with=6 andd=1 cm).
flow. This in, in fact, too short to consider the long time scale
At the final times of computation we have obtained thedynamics of BM convection. In order to outline this feature,
following: For A=7.6 andA=8, T(z=1)~0.373, Ra=1755, the evolution of the max norm of the temperature time de-
Ma~125, andr~0.179; ForA=8.4, T(z=1)~0.386, Ra rivative, for the simulations described in Secs. llIB2, IlI B 3,
~1719, Ma~123, andr~0.175. and 111 B4, are plotted in Fig. 10. The first of these graphs
clearly shows that the patterns obtainedKg+ 0, ko= 3, and
ko=6 are close to the asymptotic ones. Even the
IV. DISCUSSION exponential-like decay, fot>4, allows an estimate of the
time constants, say, such that maxd,T|xexp(—t/7). We
This section is devoted to the comparison of the numerifind, for k=0, 7=0.414, forky,=3, 7=~0.666, and fork,
cal and experimental results. Some features of the computed 6, 7=0.759. For each of these three valuekgthe flow
and observed flows are in satisfactory agreement, whereagems to behave linearly around the nonlinear asymptotic
for some others discrepancies occur, as discussed now. state, which lends credit to the fact that this asymptotic state
For 5.2kA<7.72, the experiments have shown two is stable. This is less obvious for the other simulations, for
flow structures, namely the slice-tyfre=4 structure and the which the patterns go on in evolving more strongly. When
1-5 BM pattern. Moreover, the 1-5 BM pattern has ap-looking at these patternsee Figs. 5-)7 this is visible for
peared robust, since it was generally obtained without need¢;=1 andk,=2, since then/3 and #/4 periodicity, respec-
ing to enforce it. ForA=6.27, the numerical calculations tively, are not yet obtained. Fd{=4, one may guess that
have yieldedk=3 to 6 slice-type structures, depending on thethe 7/4 periodicity will be preserved, in agreement with the
value of the initial azimuthal wave numbé&p, and it has experiments. In order to be more confident in this assump-
been pointed out that increasing the aspect ratio was needédn the calculation has been continued: At timrel2 the
to obtain the 1-5 and 1-6 BM patterns. Moreover, the 1-50rm of the temperature time derivative goes on in decreas-
BM pattern has appeared weakly structured, since the flovng and equals maxT|=0.865< 10" 3. A large time constant
computed withA=8.4 andk,=5 looks close to an axisym- is obtained for the 1-6 BM pattern withA==8.4 (the third
metric RB flow, with three concentric rolls. More generally, graph of Fig. 12 Again one can observe an exponential-like
confinement effects due to the lateral wall seem to act differdecay, characterized by a time constant2.094, which
ently in the numerical simulations and in the experimentameans that the numerical zero is to be obtained4es0.
and have appeared more constraining for the former than for  Fourth, using boundary conditions for the temperature in
the latter. Thus, the 1-5 BM pattern was experimentally ob-order to isolate the fluid layer from its environment here
served forA=6.92, whereas a value #=8.4 was required probably results in an oversimplified modeling. At the free
for the calculations. surface, using a mean temperature for the air and a constant
First, it should be reminded that the characteristic paheat transfer coefficient supposes that no interactions occur
rameters of the flow are not accurately known and, moreovehetween the turbulent air motion and the convective motion
temperature dependent. Especially, uncertainty on the kingn the liquid. Considering a bilayer oil—air configuration, in
matic viscosity,v, as given by the manufacturer, may reachRef. 19 it is pointed out that convection motions in the air
30%. Also, the value of the rate of change of surface tensioand in the liqguid may be coupled and that such a coupling
with temperaturegro, is approximate. Of course, such in- has a drastic effect on the critical values of the Rayleigh and
accuracies have a direct influence on the Prandtl, RayleigiMarangoni numbers: the convection in the air sets up trans-
and Marangoni numbers. Also, one can only have a crudeerse temperature gradients at the interface, so that for an air
estimate of the Biot number, which depends on the heatlayer thicker than 10 mm the critical Rayleigh and Ma-
transfer coefficient, which itself results from a modeling of rangoni numbers are nearly zero. Although the present ex-
the heat exchanges at the free surface. However, changimgriments and the bilayer ones of Ref. 19 are very different,
the control parameters of the flow was easy to do in thesuch a phenomenon may explain why the RB axisymmetric
numerical calculations. This has not permitted us to obtairflow was never obtained in the experiments, whereas it ap-
the 1-5 BM pattern in a vessel of small aspect ratio. pears very stable in the calculations. Combined with the con-
Second, an explanation to the fact that the computationBnement effects it may also enforce the well-structured 1-5
have shown more different patterns than the experimentBM pattern, when the calculations rather yield a mixture of
may be found in the transient development of the flow. OnRB and slice-type flows. Note that this is not in contradiction
the numerical side, a particular structure is induced by enwith the fact that small disturbances of the air motion has no
forcing at the initial time an azimuthal wavelength number.influence on the BM pattern, if one assumes that the convec-
In the experiments the “thermal technique” was rarely usedtive maotion in the fluid layer is only sensitive to the mean
except sometimes to induce the hexagonal pattern. Then, theotion of the air. Also, assuming adiabaticity at the circular
flow can only form according to the threshold pattern selecwall of the cylinder is probably crude. Although the radial
tion and further to the nonlinear interactions. As a result, théheat transfer through the sidewall is probably very weak, the
numerical procedure used to induce a particular convectiveircular part of the cylinder behaves like a cooling fin, with a
structure may yield computed flows never observed in theransfer of thermal energy from the heating plate to the am-
experiments. bient air. Moreover, due to the high conductivity of the cyl-
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100 , , , , , _ sisteady state is quickly reached. Concerning the third point,
0 09 ] despite the fact that some structures are still evolving, the
ko=2 - ] final BM pattern seems always reached, even if one cannot
1 ‘;;g:i T be sure that some structures may not yet suddenly change.
= 0.1 t—g:g T Thus, from our opinion, the last point is decisive. Assuming
5 001 b T B standard boundary conditions for the temperature yields an
3 T oversimplified model, which, on one hand, can yield struc-
E 0001 ¢ tures never obtained in the experiments, like the RB axisym-
0.0001 metric flow or thek=3 flow with primary and secondary
16-05 L convective cells, but, on the other hand, can only yield, in a
] vessel of larger aspect ratio, a poorly structured 1-5 BM
108 g 1 2 3 4 5 6 pattern.
time
100 N L V. CONCLUSION
10l A=g 1 In this paper we have focused on supercritical BM flows
. ] of a high Prandtl number fluid and with predominant buoy-
= ancy effects, obtained in cylindrical vessel. Both experimen-
° 1F E .
E tal and numerical approaches have been used to study such
% flows. Thus, we have given a set of experimental results,
€ 0.1 7 meaningful of the numerous experiments that have been per-
T formed, and numerical results have been presented, to check
0.01 \‘ 7 the numerical solver, to point out the influence of low-
amplitude disturbances of the temperature field at the initial
0.0t - 1‘ ; ; "‘ ; é ; é 0 time, to focus on the transition from the=6 BM structure to
time the 1-6 BM pattern and, finally, to look for the 1-5 BM
100 ¢ ' ! ' ' A-84 — ] pattern found in the experiments.
A Az8Y In cylinders of small aspect ratio BM convection exhib-
0F i ' 3 its very rich phenomena, so that, as already mentioned, e.g.,
‘. ] in Refs. 5, 7, 8, full agreement between theoretical, numeri-
§ 1F 3 cal, and experimental approaches is often difficult to obtain.
2 Here again, a surprising discrepancy has occurred in the in-
g 0.1 ! : termediate range 6.92A<7.72: the 1-5 BM pattern, robust
] and easy to obtain experimentally was not captured numeri-
0.01 4 cally. Instead we have obtained slice-type flows or the RB
] axisymmetric flow. However, the four slice-type flow ob-
0.001 L ! . ! ! ! s ] served in the experiments has been computed andi\+@,
0 1 2 3 ime 4 5 6 7 both experiments and calculations have yielded similar well-

structured 1-6 BM patterns.
FIG. 12. Max norm of the temperature time derivative versus time for the Our explanation of the discrepancies between experi-
simulations of Secs. IllB 2, Il B3, and lll B 4. ments and calculations is that using Robin and homogeneous
Neumann conditions for the temperature, at the free surface

inder wall, azimuthal variations of the temperature are im_and at the lateral wall of the cylinder, respectively, has led us

. . . : to an oversimplified modeling. The full modeling of both the
mediately damped. This may explain why te3 slice-type . . . :
. : . fluid layer and its environment being presently out of reach,
structure, with primary and secondary cekee Fig. 6, for . . . ; i
: : > it would be especially of interest to find our more appropriate
which maxima and minima of temperature occur at the cyl- -
. . ; . boundary conditions to model the heat transfers at the free
inder wall, was never obtained in the experiments.

Coming back to the first point of the present discussion,surface'

changing the control parameters of the flow was easy to do in

the numerical calculations. However, this has not permitted\CKNOWLEDGMENT

us to obtain the 1-5 BM pattern in a vessel of small aspect We are pleased to thank S. M. Lacroix, engineer of the

ratio. In such vessels we have always obtained slice-typ€NRS (UMR 6621), for his helpful technical support.

convective flows, depending on thg value, like thek=4

one,.whlch has also b?en observed in the experlments.. CO“’J. R. A. Pearson, “On convection cells induced by surface tension,” J.

cerning the second point, one should remark that despite therluid Mech.4, 489 (1958.

fact that Rayleigh effects were dominant, tkkeO RB axi- 2D. A. Nield, “Surface tension and buoyancy effects in cellular convec-
; ; ; tion,” J. Fluid Mech. 19, 341(1964.

symmetric flow was never obs_erved in the e).(pe”ments' On;E. L. KoschmiederBenard Cells and Taylor Vortice€Cambridge Univer-

the contrary, such a RB flow is very stable in the calcula- gjty press, cambridge, 1993

tions. Once the flow has become axisymmetric then the qua*H. A. Dijkstra, “Pattern selection in surface tension driven flowBree

Downloaded 28 Sep 2007 to 134.59.10.172. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



288 Phys. Fluids, Vol. 14, No. 1, January 2002 Pasquetti, Cerisier, and Le Niliot

Surface FlowsCourse, Udine, Italy, 1-5 September 1997, edited by C. H. mental method to select hexagonal patterns inaBé—Marangoni convec-
Hendrik et al. (Springer-Verlag, Wien, 1998 CISM, Courses Lect. Vol. tion,” Phys. Lett. A112, 366 (1985.

5391, p. 101-144. _ o R, Pasquetti and R. Bwemba, “A spectral algorithm for the Stokes prob-
E. L. Koschmieder and S. A. Prahl, “Surface-tension-drivem#ée con- lem in vorticity-vector potential formulation and cylindrical geometry,”
vection in small containers,” J. Fluid MecR15 571 (1990. Comput. Methods Appl. Mech. Eng17, 71 (1994.

G_C- Wagner, R. Friedrich, and R. Narayanan, “Comments on the numericalsr pasquetti, “Vorticity-vector potential formulation of the Navier—Stokes
mv_estlgatlon of Ra)_/lelgh and Marangoni convection in a vertical circular equations: A numerical studyCFD'94, Conference Proceeding#viley,
cylinder,” Phys. Fluids6, 1425(1994. New York, 1994, pp. 642—649.

A A zaman and R. Narayanan, ‘Interfacial and buoyancy-driven 15y “paniaioni R, Bailleux, J. Salan, and M. G. Valarde “Rayleigh—
convect_lon—The effec_t of geometry and comparisons with experiments, Bénard—Marangoni instability, new experimental results,” J. Non-Equilib.
J. Colloid Interface Sci179, 151(2000. h d
8p. C. Dauby, G. Lebon, and E. Bouhy, “Linear iB&d—Marangoni con- 16?:- eprmq _yn.4,dZ(|)Dl (énggt.Th hic Inf M F
vection in rigid circular containers,” Phys. Rev.36, 520(1997). - Papini and P. GalletThermographic Infrarouge(Masson, France,
%P, C. Dauby, P. Colinet, and D. Johnson, “Theoretical analysis of a dy- 1993. . . .
namic thermoconvective pattern in a circular container,” Phys. Rebl,E 1G. J. Hirazaki and J. D. Hellums, “A general formulation of the boundary
2663(2000. conditions on the vector potential in three-dimensional hydrodynamics,”

19D. Johnson and R. Narayanan, “Experimental observations of dynamicng- Appl. Math.26, 331 (1968. ) ) _ _
mode switching in interfacial tension convection near a codimension-two S M. Richardson and A. R. H. Cornish, “Solution of three-dimensional
point,” Phys. Rev. E54, R3102(1996. incompressible flow problems,” J. Fluid Mec82, 309 (1977).

15, Rosenblat, S. H. Davis, and G. H. Homsy, “Nonlinear Marangoni con-"°D. T. Johnson, R. Narayanan, and P. C. Dauby, “The effect of air on the
vection in bounded layers Part 1—Circular cylindrical containers,” J. pattern formation in liquid—air bilayer convection—How passive is air?”
Fluid Mech.120, 91 (1982. in Fluid Dynamics at Interface@Cambridge University Press, Cambridge,

12p, Cerisier, C. Aez-Garcia, C. Jamond, and J. Pantaloni, “A new experi- 1999.

Downloaded 28 Sep 2007 to 134.59.10.172. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



