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Abstract. The paper describes the high-order algorithms that we have developed for the simu-
lation of transitional to turbulent 3D wakes in stratified fluids, through the use of Direct Numerical
Simulation (DNS) or Large Eddy Simulation (LES), with applications to the wake of a sphere in a
thermally stratified liquid and to the wake of a cylinder respectively.
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1. Introduction. Wakes in stratified liquids may give rise to a large diversity
of complex phenomena: wake collapse, internal gravity waves (lee-waves, random
internal waves), various flow regimes, depending on the geometry of the obstacle, on
the fluid characteristics (Prandtl number), on the flow velocity (Reynolds number)
and on the stratification intensity characterized by the “Brunt-Väisälä frequency”
(Richardson number). The aim of this paper is to describe the high-order algorithms
that we have developed to describe such flows, using Direct Numerical Simulation
(DNS) or Large Eddy Simulation (LES). It is assumed that the flow is governed by
the “Boussinesq equations”: In the domain Ω (boundary Γ) and in the time-interval
(0, tF ):

Dtu = −∇p−RiTg +
1

Re
∇2u

∇.u = 0

DtT =
1

Pe
∇2T

+ I.C. & B.C.

with t: time, u : velocity vector, g: normalized gravity vector, p : pressure deviation
from the hydrostatic one, T : temperature deviation from a mean one, Re, Pe,Ri :
Reynolds, Péclet and Richardson numbers (Pe/Re = Pr, Pr: Prandtl number) and
Dt = ∂t + u.∇, material derivative. B.C. and I.C. stand for boundary conditions and
initial conditions respectively.

The computational domain Ω is of channel-type, with an obstacle inside. The
streamwise x-direction is assumed much larger than the y-cross-flow and z-spanwise
directions. The spanwise direction is assumed homogeneous.

The paper is divided in three parts. First, we focus on DNS and describe the
numerical method. Second, we go to LES, for which high-order approximations are
highly justified since with low-order methods the approximation errors and subgrid
scale modeling adjustments may show comparable amplitudes. Third, results obtained
for the DNS of the wake of a sphere in a stratified liquid and for the LES of the
turbulent wake of a cylinder are presented.
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2. Numerical method. Along the streamwise direction one uses a domain de-
composition technique and in each sub-domain a Chebyshev / Fourier spectral approx-
imation: The approximation in space makes use in x of S non-overlapping subdomains
with conforming meshes, Fourier expansions in z, Chebyshev polynomial approxima-
tions in x and y. The solver is parallelized (one subdomain / processor) and vectorial
calculation is used in each subdomain. For the modeling of the bluff body, inside
the channel, we use a smoothed penalty technique. At the outlet of the channel,
soft outflow boundary conditions are needed: We use the u − ω conditions that we
introduced in [7, 8] (u, streamwise component of the velocity, ω, the vorticity). Here
we focus on the time-scheme, which makes use of (i) a transport step, based on an
OIF (Operator Integration Factor) semi-Lagrangian method, (ii) a diffusion step and
(iii) a projection step, with a “unique grid PN − PN−2” approximation.

2.1. Transport step. Let us focus on the momentum equation. A BEQ
(backward Euler of order Q) approximation of the material derivative yields:

Dtu(tn+1) =
1

∆t
(α0u

n+1 +
q=Q∑
q=1

αqũ
n+1−q) + O (∆tQ)

with un+1 ≈ u(x, tn+1) and ũn+1−q ≈ u(χ(x, tn+1; tn+1−q), tn+1−q), where
χ(x, tn+1; t) solves the characteristics equation:

dχ(x, tn+1; t)
dt

= u(χ(x, tn+1; t), t)

χ(x, tn+1; tn+1) = x

To compute the ũn+1−q, the natural approach is then to use the “method of char-
acteristics”, i.e. to determine for each mesh-point xk the value of the velocity u at
the time-steps {tn, tn−1, .., tn+1−Q} and at the points χ(xk, tn+1; tn+1−q), q = 1, .., Q.
The main drawback is then that the spatial interpolation must be of low order: A
high-order interpolation would be too expensive and moreover would yield instabil-
ities on Gauss-Lobatto grids, as investigated both theoretically and numerically in
[12].

The “Operator Integration Factor” (OIF) Semi-Lagrangian method [15, 17, 21]
constitutes an alternative to the “method of characteristics”. It consists in determin-
ing the ũn+1−q by solving the Q auxiliary problems :{

∂tφ + u.∇φ = 0 tn+1−q ≤ t ≤ tn+1

φ(x, tn+1−q) = un+1−q(x)

Then ũn+1−q = φn+1.
Solving this set of problems constitutes what we call the transport step. The

basic idea is to transport the un+1−q(χ(xk, tn+1; tn+1−q)) at the mesh points, so
that interpolations / extrapolations are only needed in time (for u). Moreover, the
auxiliary problems may be solved by using an explicit scheme with large absolute
stability region (e.g. the RK4 scheme) with, if necessary, sub-time cycling.

2.2. Diffusion step. At each time tn+1 one computes in the diffusion step a
provisional velocity which solves:

(
1

Re
∇2 − α0

∆t
) u∗ = fn+1 inΩ

+B.C., e.g. u∗|Γ = un+1|Γ = uΓ
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where :

fn+1 =
1

∆t

q=Q∑
q=1

αqũ
n+1−q +∇p∗

with p∗ a provisional pressure. In the frame of a second order implementation: Q = 2
and p∗ = pn (“Goda scheme”).

Note that a similar elliptic but scalar equation is solved for the temperature.

2.3. Projection step. The goal is here to compute a divergence-free velocity
field. To this end we solve the Darcy problem:

un+1 +∇ϕ = u∗ in Ω
∇ · un+1 = 0 in Ω

un+1 · n|Γ = uΓ · n

and then update the pressure field pn+1 = pn + α0ϕ/∆t.
Solving the above Darcy problem is not straightforward. Following [1, 3] we use a

unique grid PN−PN−2 strategy (2D case). Thus, let us assume that Ω = (−1, 1)2 and
denote by: (i) PN , the space of the polynomials of maximum degree N1 in x and N2 in
y, i.e. N = (N1, N2), (ii) ΩN (ΓN ), the inner (boundary) Chebyshev Gauss-Lobatto
collocation points. Then, when using a Collocation method we are led to solve the
following discrete problem:

Find uN ∈ P 2
N and ϕN−2 ∈ PN−2, where N − 2 = (N1 − 2, N2 − 2), such that:

uN +∇ϕN−2 = u∗
N inΩN

∇ · uN = 0 inΩN

uN · n = uΓ · n on ΓN

This problem can be exactly solved by considering the following pseudo-Poisson prob-
lem for ϕ:

∇2ϕN−2 = ∇ · u∗
N +∇ · τN inΩN

τN = 0 in ΩN

∂nϕN−2 = τN · n on ΓN ,

where τN is nothing but the residual polynomial which results from the fact that the
equations are not enforced at the boundary points.

The above formulation holds in the one domain case. In the frame of our
unidimensional domain decomposition, there are S subdomains in the streamwise
x-direction. In order to enforce the natural C1 continuity of the pressure at the
subdomain-interfaces we use, in each subdomain Ωs, the pressure polynomial space
PN ′(Ωs) such that:

s = 1 or s = S 1 < s < S
N ′ = (N1 − 1, N2 − 2) N ′ = (N1, N2 − 2)

In the 3D case with one homogeneous direction, using the Fourier expansion of each
variable the 3D problem splits into a set of 2D-like problems.
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3. From DNS to LES. When turbulent flows are concerned, DNS approaches
generally fail and so one must go to statistical approaches or to large eddy simulation.
Here we show how the numerical method described in Section 2 may be modified to
handle turbulent flows. Especially we are going to focus on a defiltering - transport -
filtering (DTF) algorithm that we introduced in [16]. Such an algorithm makes use of
a stabilization technique, the spectral vanishing viscosity (SVV) method, which may
also be used alone to compute high-Reynolds number flows.

3.1. LES equations and the closure problem. For the LES of incompressible
flows one has to consider the filtered incompressible Navier-Stokes equations:{

∂tū +∇ · (ū⊗ ū) = −∇p̄ + ν∇2ū−∇ · τ
∇ · ū = 0

with ū = (ū1, ū2, ū3) and p̄ the filtered velocity and “pressure” respectively:

ūi = Gui and p̄ = Gp

where G is a convolution operator based on a filter function g of filter width ∆ and
with τ the “sub-grid-scale” stress (SGS) tensor:

τij = uiuj − ūiūj

Then occurs a closure problem, since the SGS tensor must be modeled.
One possible closure is offered by the Velocity estimation models or Approximate

Deconvolution Method (ADM) [6, 18, 19] which expresses the SGS tensor as:

τij = G+ūiG+ūj −G+ūi G+ūj

where G+ is an approximate inverse of G (“defiltering operator”). Note that with
G+ = 1 one recovers the Scale similarity model [2].

Such models are known to be not enough dissipative but better on “a priori tests”
than Eddy viscosity models, which state a proportionality between the SGS tensor and
the strain rate tensor. To overcome the stability problem, one often uses mixed models
which make use of both scale similarity and eddy viscosity.

3.2. A no-SGS model approach. Before going farther in the field of LES, let
us mention that the computation of turbulent flows can also be achieved by using
a stabilization technique. In the frame of spectral methods, the Spectral vanishing
viscosity (SVV) method [20, 14] is specially of interest, because it allows to enforce
the scheme stability while preserving the spectral accuracy.

The SVV method was first developed for the non-linear conservation law :

∂tu + ∂x(f(u)) = 0

for which one solves:

∂tuN + ∂xIN (f(uN )) = εN∂x(Q(∂xuN ))

with εN = O(1/N) and where IN denotes the polynomial interpolation onto PN and
Q the spectral viscosity operator such that (Lk: Legendre polynomial of degree k):

Qφ ≡
N∑

k=0

Q̂kφ̂kLk, ∀φ, φ =
N∑

k=0

φ̂kLk

with: Q̂k = 0 if k ≤ mN and 1 ≥ Q̂k ≥ 1− (mN/k)4 if k > mN , mN = O(
√

N).
The no-model approach suggested here was e.g. used in [10].
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3.3. DTF (Defiltering-Transport-Filtering) algorithm. The basic idea is
to combine (i) the ADM and (ii) the OIF “semi-Lagrangian method” described in
Section 2. In convective form the filtered Navier-Stokes equations read:{

Dtu = −∇p̄ + ν∇2ū,
∇ · ū = 0.

From the approximation of the material derivative introduced in Section 2 (BEQ
scheme) one obtains:

Dtu ≈ 1
∆t

(α0ū
n+1 +

q=Q∑
q=1

αq
¯̃un+1−q).

Then the closure problem consists in determining the ¯̃un+1−q from the ūn+1−q. In
[16] it is suggested to use:

¯̃un+1−q = (1 + G (T − 1) G+)ūn+1−q

where T (u) stands for the transport operator such that ũn+1−q = Tun+1−q. Note
that the straightforward approach:

¯̃un+1−q = G T G+ūn+1−q

yields a non-consistent algorithm, because in the limit ∆t = 0, for which T = 1, we
have GG+ 6= 1 (G+ is indeed only an approximate inverse of G).

As it stands, the DTF algorithm is of ADM type, which means that being not
enough dissipative it must be associated with a stabilization technique, just like the
mixed models which combine scale similarity and eddy viscosity [5]. To this end, we
will use the SVV method, which shows the essential property to preserve the spectral
accuracy of the approximation.

3.4. Choice of the filtering and defiltering operators. As developed in [11]
one can use Taylor expansions of the ui to get approximations of the Gaussian (or
“box”) filter and of its inverse and thus set up the filtering and defiltering operators.
Indeed, with a four’th order approximation (regular grid) :

G = 1 + A and G+ = 1−A,

where A = 1
24

∑3
i=1 ∆2

i ∂
2
i , with ∆i the space step size in i-direction.

However, as explained in [16], in the frame of spectral methods such an approach
fails due to the fact that the treatment of the highest frequencies is not adequate.
Nevertheless, keeping in mind the basic idea one can develop a filtering approach in
spectral space which effectively shows the properties of an usual filter and moreover
opens a way toward a two-level grid approach. The spectrum of the proposed filter,
G′, is shown in Fig. 3.1. It is essentially the one of G, but vanishes beyond a critical
wavenumber, say kc. Using such a filter is in fact close to using a two-level grid
approach, as promoted e.g. in [4], since at k = kc is implicitely associated a coarse
grid. Roughly speaking, the computational grid is then only fully used in the transport
step where the closure problem is handled.

For both the Fourier and Chebyshev approximations such a filter directly acts
on the Fourier or Chebyshev spectra. In case of the Chebyshev approximation
this corresponds to apply a filter of constant width to the 2π-periodic function
u(− cos(z)), z ∈ R.
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Fig. 3.1. Spectra of the Gaussian filter and of its approximations G and G′. The (non-plotted)
spectrum of G+ is symmetric to the one of G

4. Applications. First, we present results obtained for the wake of a sphere
in a stratified liquid (our early results were presented in [8]). The influence of the
stratification is pointed out by considering two different values of the Richardson
number, Ri = 0 and Ri = 0.25. In case Ri = 0, the temperature behaves as a passive
scalar. Second we compute the turbulent wake of a cylinder and compare results
obtained with the SVV method and the DTF algorithm combined with the SVV.

Fig. 4.1. Streamwise velocity (front and top views), temperature and pressure (front view) for
Ri = 0 (left) and Ri = 0.25 (right)

4.1. Wake of a sphere in a stratified liquid. Computations have been carried
out with: Control parameters: Re = 300 (based on the diameter and on the mean
flow velocity), Ri = {0, 0.25} (corresponding internal Froude number F = {∞, 2});
Initial conditions: constant temperature gradient, fluid at rest; Boundary conditions:
Dirichlet at the inlet, homogeneous Neumann for T and free-slip for u at the horizontal
boundaries, soft OBC at the outlet; Computational domain: Ω =]0, 29[×]−3, 3[×]0, 6[,
sphere of unit diameter centered at (8.5, 0, 3); Spatial and temporal approximations:
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Fig. 4.2. Vortical structures (Q criterion), front, top and perspective views for Ri = 0 (left)
and Ri = 0.25 (right)

Fig. 4.3. ωx = ±0.2, front and top views for Ri = 0 (left) and Ri = 0.25 (right)

S = 16, N1 = 30, N2 = 90, number of Fourier grid-points NF = 90, ∆t = 10−2, no
sub-cycling in the transport step.

In Fig. 4.1 are shown isolines of the streamwise velocity, of the temperature and
of the pressure for the two values of the Richardson number. Clearly one observes
the confinement effect (streamwise velocity) and the blocking effect (temperature) of
the stratification when it is active, i.e for Ri = 0.25. One notices that the pressure
fields are completely different. This results from the fact that for Ri = 0.25 one essen-
tially observes the background parabolic pressure field associated with the constant
temperature gradient.

Using the Q criterion (see e.g. [9]) the vortical structures are visualized in Fig.
4.2. Here again, the confinement effect is clearly visible. Moreover, one can discern
some horse-shoe type structures typically encountered for such wakes.

In Fig. 4.3 is visualized the streamwise component of the vorticity, which is the
relevant variable to understand the snake-like deformation of the wake. In a y − z
plane one can indeed discern two pairs of contra-rotating cells. Their effects cancel
each-other at the “nodes” of the wake whereas between them one contra-rotating cell
is dominating and so induces the deformation of the wake.

4.2. Wake of a cylinder. The calculations are characterized by: Control
parameters: Re = 3900 (based on the diameter and on the mean flow velocity), see
e.g. [13], Ri = 0; Initial and boundary conditions: same as those used in previous
subsection; Computational domain: Ω = (−6.5, 17.5) × (−4, 4) × (0, 4), cylinder of
unit diameter with axis at x = y = 0. Spatial and temporal approximations: S = 5,



8 L. COUSIN AND R. PASQUETTI

N1 = 60, N2 = 120, NF = 60, ∆t = 5 10−3, no sub-cycling in the transport step.
Visualizations at a given time of the strongly 3D flow computed with the SVV

Fig. 4.4. Isotherms (left) and Q criterion (right) with SVV

method are shown in Fig. 4.4. At left two isotherms are visualized and at right it
is the Q criterion. A qualitative idea of the difference between the results obtained

Fig. 4.5. Streamwise (left) and spanwise (right) components of the vorticity for DTF (top) and
SVV (bottom)

with the SVV and DTF (+SVV for stabilization) approaches may arise from the
Fig. 4.5 and 4.6. Fig. 4.5 compares the streamwise and spanwise components of
the vorticity, through their isolines in the central vertical plane z = 2 and Fig. 4.6
shows front views of the Q criterion. At this qualitative level, the results appear very

Fig. 4.6. Q criterion for DTF (left) and SVV (right)

similar. More detailed investigations will be carried out in next future.
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