Geometric Analysis of Metropolis Algorithm on Bounded Domain

L. Michel
(joint work with P. Diaconis and G. Lebeau)

Laboratoire J.-A. Dieudonné
Université de Nice

Fréjus, Août 2009

The problem fo hard spheres

Consider a fixed box in $\left.\mathbb{R}^{d}, B=\right]-1,1\left[{ }^{d}\right.$. We consider the problem of placement of N balls of radius $\epsilon>0$ with centers in B under the condition that the balls do not overlap. We denote $\mathcal{O}_{N, \epsilon} \subset B$ the set of all possible configurations. We endowe $\mathcal{O}_{N, \epsilon}$ with the Lebesgue measure $d L$.

Problem:

Build a sample of points $X^{1}, \ldots, X^{r} \in \mathcal{O}_{N, \epsilon}$ distributed uniformly with respect to $d L$.

- This problem occurs in statistical physics in phase transition studies.
- It can be formulated in a more abstract setting.

Metropolis and al (50's) proposed the following algorithm to solve this problem. Let $h>0$ being fixed and $X^{0} \in \mathcal{O}_{N, \epsilon}$.

- Starting from $X^{0}=\left(x_{1}^{0}, \ldots, x_{N}^{0}\right)$, move one of the ball say x_{k}^{0} uniformly at random in the ball $B\left(x_{k}^{0}, h\right)$, it results in a new position x_{k}^{1}. Denote $X^{1}=\left(x_{1}^{0}, \ldots, x_{k}^{1}, \ldots, x_{N}^{0}\right)$ the new configuration. If $X^{1} \in \mathcal{O}_{N, \epsilon}$, keep X^{1}.
- If $X^{1} \notin \mathcal{O}_{N, \epsilon}$, throw away X^{1} and restart the procedure from $X 0$.
- Once, X^{1} is constructed, define X^{2} by the same procedure starting from X^{1}, etc.
As r goes to infinity, the distribution of X^{0}, \ldots, X^{r} in $\mathcal{O}_{N, \epsilon}$ is close to the uniform distribution.

Abstract probabilistic setting

Let (X, d) be a metric space and \mathcal{B} the Borel σ-algebra on X. Let $K(x, d y)$ be a Markov kernel on X, i.e.

■ for all $x \in X, K(x, d y)$ is a probability measure on (X, \mathcal{B}).

- for all $B \in \mathcal{B}, x \mapsto K(x, B)$ is measurable.

For $n \in \mathbb{N}^{*}$ we define the iterated kernel $K^{n}(x, d y)$ by

$$
K^{m+n}(x, B)=\int K^{m}(y, B) K^{n}(x, d y), \forall B \in \mathcal{B}
$$

The kernel K induces an operator on continuous function by

$$
K f(x)=\int_{X} f(y) K(x, d y)
$$

and hence, its transpose acts on Borel measure on X.

Definition

A stationary distribution is a probability measure $\pi(d x)$ on X such that ${ }^{t} K(\pi)=\pi$. In other words:

$$
\forall B \in \mathcal{B}, \pi(B)=\int K(x, B) \pi(d x)
$$

example

Suppose that X is a finite space and let $n=\sharp X$. Then a Markov kernel is a matrix $(K(x, y)))_{1 \leq x, y \leq n}$ with non-negative coefficients and such that for any $x \in X, \Sigma_{y \in X} K(x, y)=1$. Hence, a stationary distribution is just an eigenvector of ${ }^{t} \mathrm{~K}$ associated to the eigenvalue 1.

Theorem

Suppose that $K(x, d y)$ is a strictly positive, regular Markov kernel and that $\pi(d x)$ is stationary for K. Then,

$$
\forall x \in X, \forall B \in \mathcal{B}, \lim _{n \rightarrow \infty} K^{n}(x, B)=\pi(B)
$$

A Markov kernel is strictly positive if $K(x, A)>0$ for any $x \in X, A \subset X$. We do not define the notion of regular Markov kernel. Think it as a density $k(x, y) d y$ on an open subset of \mathbb{R}^{d}, with k continuous w.r.t. (x, y) (enough to apply Ascoli's theorem).

Question

What can we say about the speed of convergence?

Given a probability distribution π on X we may be interested in sampling π. From the preceding theorem, it is clear that if $K(x, d y)$ is a Markov kernel for which π is stationary, we can build a sample by the following process:

- Start from $x^{0} \in X$ and buid $x^{1} \in X$ at random with the probability $K\left(x^{0}, d y\right)$.
- Knowing $x^{0}, \ldots, x^{n} \in X$ build x^{n+1} at random with the probability $K\left(x^{n}, d y\right)$.
Since $K^{n}(x, d y)$ converges to π, the distribution of the point x^{0}, \ldots, x^{n} "looks like" it was choosen according to π.

Question

Given a probability π, how can we construct a Markov kernel $K(x, d y)$ such that π is stationary for K ?

The Metropolis Algorithm on Lipschitz domain

Our framework is the following:
■ Ω denotes a bounded connected open subset of \mathbb{R}^{d} s.t. $\partial \Omega$ has Lipschitz regularity.

- ρ is a measurable function on $\bar{\Omega}$ such that
* there exists $m, M>0$, s.t. $m \leq \rho(x) \leq M, \forall x \in \Omega$.
* $\int_{\Omega} \rho(x) d x=1$
- B_{1} denotes the unit ball in \mathbb{R}^{d} and $\left|B_{1}\right|$ its volume.

We are willing to define a Markov kernel which permit to sample from $\rho(x) d x$.

Introduce the following kernel on Ω :

$$
K_{h, \rho}(x, y)=\frac{1}{h^{d}\left|B_{1}\right|} 1_{|x-y|<h} \min \left(\frac{\rho(y)}{\rho(x)}, 1\right)
$$

The Metropolis kernel is given by

$$
T_{h, \rho}(x, d y)=m_{h, \rho}(x) \delta_{x}+K_{h, \rho}(x, y) d y
$$

with

$$
m_{h, \rho}(x)=1-\int_{\Omega} K_{h, \rho}(x, y) d y
$$

The Metropolis operator associated to this kernel is

$$
T_{h, \rho} u(x)=m_{h, \rho}(x) u(x)+\int_{\Omega} u(y) K_{h, \rho}(x, y) d y
$$

Basic properties

- The Metropolis kernel $T_{h, \rho}(x, d y)$ is a Markov kernel ($T_{h, \rho}(1)=1$).
- The operator $T_{h, \rho}$ is self-adjoint on $L^{2}(\Omega, \rho(x) d x)$.
- The probability measure $\rho(x) d x$ is stationary for $T_{h, \rho}$.
- $\operatorname{Spec}\left(T_{h}\right)$ is discrete near 1 (use this).

Definition

We define the spectral gap of the Metropolis operator $T_{h, \rho}$ as $g(h, \rho)=\operatorname{dist}\left(1, \operatorname{spect}\left(T_{h}\right) \backslash\{1\}\right)$. This is the largest constant such that

$$
\|u\|_{L^{2}(\rho)}^{2}-\langle u, 1\rangle_{L^{2}(\rho)}^{2} \leq \frac{1}{g(h, \rho)}\left\langle u-T_{h, \rho} u, u\right\rangle_{L^{2}(\rho)}
$$

Theorem 1

Let Ω be an open, connected, bounded, Lipschitz subset of \mathbb{R}^{d}. There exists $\left.h_{0}>0, \delta_{0} \in\right] 0,1 / 2\left[\right.$ and constants $C_{i}>0$ such that the following holds true:

- $\operatorname{Spec}\left(T_{h, \rho}\right) \subset\left[-1+\delta_{0}, 1\right]$
- 1 is a simple eigenvalue of $T_{h, \rho}$
- $\forall \lambda \in\left[0, \delta_{0} h^{-2}\right]$,

$$
\sharp\left(\operatorname{Spect}\left(T_{h, \rho}\right) \cap\left[1-h^{2} \lambda, 1\right]\right) \leq C(1+\lambda)^{d / 2}
$$

- The spectral gap $g(h, \rho)$ satisfies

$$
C_{2} h^{2} \leq g(h, \rho) \leq C_{3} h^{2}
$$

Total variation estimate

The total variation distance between two probability measures μ, ν is defined by

$$
\|\mu-\nu\|_{T V}=\sup _{A \text { measurable }}|\mu(A)-\nu(A)|
$$

Theorem 2

Under the same assumption as above, the following estimate holds true for all $n \in \mathbb{N}$:

$$
C_{4} e^{-n g(h, \rho)} \leq \sup _{x \in \Omega}\left\|T_{h, \rho}^{n}(x, d y)-\rho(y) d y\right\|_{T V} \leq C_{5} e^{-n g(h, \rho)}
$$

Some references

- Diaconis-Lebeau (08) consider the case of the Metropolis kernel on $X=[0,1]$ and use semiclassical analysis.
- Lebeau-Michel (09) consider the case of a random walk operator on a Riemannian manifold.
■ For an introduction to this topics, see: Diaconis, The Markov chain Monte Carlo Revolution, proceeding of MSRI's 25th Anniversary conference, 2008.

Variational approach

Since, $m \leq \rho(x) \leq M$ on Ω, we can easily suppose that $\rho=1$ (and we denote T_{h} instead of $T_{h, \rho}$). The spectral gap is the largest constant such that

$$
\|u\|_{L^{2}}^{2}-\langle u, 1\rangle_{L^{2}}^{2} \leq \frac{1}{g(h, \rho)}\left\langle u-T_{h} u, u\right\rangle_{L^{2}}
$$

A standard computation shows that

$$
\begin{gathered}
\|u\|_{L^{2}}^{2}-\langle u, 1\rangle_{L^{2}}^{2}=\frac{1}{2} \int_{\Omega \times \Omega}|u(x)-u(y)|^{2} d x d y:=\operatorname{Var}(u) \\
\left\langle u-T_{h} u, u\right\rangle_{L^{2}}=\frac{h^{-d}}{2} \int_{\Omega \times \Omega} 1_{|x-y|<h}|u(x)-u(y)|^{2} d x d y:=\mathcal{E}_{h}(u) .
\end{gathered}
$$

Hence, the spectral gap is the largest constant s.t.

$$
\operatorname{Var}(u) \leq \frac{1}{\mathcal{E}_{h}(u)}
$$

The following properties are easy to prove:
■ 1 is a simple eigenvalue (use this)

- $g(h, \rho) \leq C h^{2}$ (take $u \in C_{0}^{\infty}(\Omega)$ such that $\int_{\Omega} u(x) d x=0$, make a Taylor expansion and use again this)

Lower bound for the spectral gap

Let us show the lower bound on the spectral gap when Ω is convex. For any $u \in L^{2}(\Omega)$, we have
$\int_{\Omega \times \Omega}|u(x)-u(y)|^{2} d x d y \leq$
$C h^{-1} \sum_{k=0}^{K(h)-1} \int_{\Omega \times \Omega}|u(x+k \hbar(y-x))-u(x+(k+1) \hbar(y-x))|^{2} d x d y$,
where $K(h)$ is the greatest integer $\leq h^{-1}$ and $K(h) \hbar=1$.

With the new variables $x^{\prime}=x+k \hbar(y-x)$,
$y^{\prime}=x+(k+1) \hbar(y-x)$, one has $d x^{\prime} d y^{\prime}=\hbar^{d} d x d y$ and we get

$$
\begin{aligned}
& \int_{\Omega \times \Omega}|u(x)-u(y)|^{2} d x d y \leq \\
& C h^{-d-1} K(h) \int_{\Omega \times \Omega} 1_{\left|x^{\prime}-y^{\prime}\right|<\hbar \operatorname{diam}(\Omega) \mid}\left|u\left(x^{\prime}\right)-u\left(y^{\prime}\right)\right|^{2} d x^{\prime} d y^{\prime}
\end{aligned}
$$

This yields to

$$
\operatorname{Var}(u) \leq C^{\prime} h^{-2} \mathcal{E}_{h}(u)
$$

and proves the lower bound.

Proof of total variation estimates

Let Π_{0} be the orthogonal projector in $L^{2}(\Omega)$ on the space of constant functions

$$
\begin{equation*}
\Pi_{0}(u)(x)=1_{\Omega}(x) \int_{\Omega} u(y) d y \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
2 \sup _{x_{0} \in \Omega}\left\|T_{h}^{n}\left(x_{0}, d y\right)-d y\right\|_{T V}=\left\|T_{h}^{n}-\Pi_{0}\right\|_{L^{\infty} \rightarrow L^{\infty}} . \tag{2}
\end{equation*}
$$

Thus, we have to prove that for $h>0$ small and any n, one has

$$
\begin{equation*}
\left\|T_{h}^{n}-\Pi_{0}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq C_{0} e^{-n g(h, \rho)} \tag{3}
\end{equation*}
$$

Since $g(h, \rho)=O\left(h^{2}\right)$, we can suppose that $n h^{2} \gg 1$.

Denote $\lambda_{j, h}$ the eigenvalues of T_{h} and Π_{j} the associated spectral projector. We fix $\alpha>0$ small and use the spectral decomposition $T_{h}-\Pi_{0}=T_{h, 1}+T_{h, 2}$ with

$$
T_{h, 1}=\sum_{1-h^{2-\alpha}<\lambda_{j, h}<1} \lambda_{j, h} \Pi j
$$

and $T_{h, 2}$ spectrally localized in $\left[-1+\delta_{0}, 1-h^{2-\alpha}\right]$. It is easy to see that

$$
\left\|T_{h}^{n}-\Pi_{0}\right\|_{L^{2} \rightarrow L^{2}} \leq C e^{-n g(h, \rho)}
$$

Since, we deal with $L^{\infty} \rightarrow L^{\infty}$ norm, we need:
■ to control $\left\|\Pi_{j}\right\|_{L^{2} \rightarrow L^{\infty}}$
■ a bound on the number of eigenvalues in any interval $\left[\alpha_{h}, 1\right]$ with $1-\delta_{0}<\alpha_{h}<1-C h^{2}$.
For this purpose, we compare our operator with a more simple one.

Comparaison with the random walk on the torus

Since Ω is bounded, it is contained in a large box $]-A, A\left[{ }^{d}\right.$. We denote $\Pi=(\mathbb{R} / 2 A \mathbb{Z})^{d}$. Since Ω is Lipschitz, using local coordinates, we can define an extension map

$$
P: L^{2}(\Omega) \rightarrow L^{2}(\Pi)
$$

which is also bounded from $H^{1}(\Omega)$ into $H^{1}(\Pi)$.
Any function $v \in L^{2}(\Pi)$ can be extended in Fourier series $v(x)=\sum_{k \in \mathbb{Z}^{d}} c_{k}(v) e^{2 i k \pi x / A}$. The L^{2} and H^{1} norm on Π can be expressed as follows

■ $\|v\|_{L^{2}(\Pi)}^{2}=\sum_{k}\left|c_{k}\right|^{2}$.

- $\|v\|_{H^{1}(\Pi)}^{2}=\sum_{k}\left(1+k^{2}\right)\left|c_{k}\right|^{2}$.

Recall that for $u \in L^{2}(\Omega)$,
$\mathcal{E}_{h}(u)=\left\langle u-T_{h} u, u\right\rangle_{L^{2}(\Omega)}=\frac{h^{-d}}{2} \int_{\Omega \times \Omega} 1_{|x-y|<h}|u(x)-u(y)|^{2} d x d y$.
For $v \in L^{2}(\Pi)$, we define
$\widetilde{\mathcal{E}}_{h}(v)=\left\langle u-\tilde{T}_{h} u, u\right\rangle_{L^{2}(\Pi)}=\frac{h^{-d}}{2} \int_{\Pi \times \Pi} 1_{|x-y|<h}|v(x)-v(y)|^{2} d x d y$.
where \tilde{T}_{h} is the metropolis operator on the torus.

Remark

A simple calculus using the Fourier expansion, shows that $\tilde{T}_{h}=\Gamma\left(-h^{2} \Delta\right)$ where Γ is a smooth function decreasing to 0 at infinity.

Lemma 1

There exist $C_{0}, C_{1}, h_{0}>0$ such that the following holds true for any $h \in] 0, h_{0}$] and any $u \in L^{2}(\rho)$.

$$
\begin{equation*}
\mathcal{E}_{h}(u) / C_{0} \leq \widetilde{\mathcal{E}}_{h}(P(u)) \leq C_{0}\left(\mathcal{E}_{h}(u)+h^{2}\|u\|_{L^{2}}^{2}\right) . \tag{4}
\end{equation*}
$$

As a by-product, any $u \in L^{2}(\rho)$ such that

$$
\|u\|_{L^{2}(\rho)}^{2}+h^{-2}\left\langle\left(1-T_{h}\right) u, u\right\rangle_{L^{2}(\rho)} \leq 1
$$

admits a decomposition $u=u_{L}+u_{H}$ with $u_{L} \in H^{1}(\Omega)$, $\left\|u_{L}\right\|_{H^{1}} \leq C_{1}$, and $\left\|u_{H}\right\|_{L^{2}} \leq C_{1} h$.

Proof.

- The first inequality is trivial. The second one is obtained by working in local coordinates for which the boundary is an half-space.

■ We observe that (thanks to Parseval identity)

$$
\begin{aligned}
\widetilde{\mathcal{E}}_{h}(v) & =\sum_{k}\left|c_{k}\right|^{2} \theta(h k) \\
\theta(\xi) & =\int_{|z| \leq 1}\left|e^{2 i \pi \xi z}-1\right|^{2} d z
\end{aligned}
$$

The by-product is obtained by projecting the extension $v=P(u)$ on low frequencies $h|k| \leq 1$ and high frequencies $h|k|>1$ and the fact that the function θ is quadratic near 0 and has a positive lower bound for $|\xi| \geq 1$.

Control of small eigenvalues

Using the preceding Lemma, we show that there exists $\delta_{0}>0$ s.t.
■ for any $0 \leq \lambda \leq \delta_{0} / h^{2}$,

$$
\sharp\left(S \operatorname{pec}\left(T_{h}\right) \cap\left[1-h^{2} \lambda, 1\right]\right) \leq C(1+\lambda)^{d / 2}
$$

■ any eigenfuntion $T_{h}(u)=\lambda u$ with $\lambda \in\left[1-\delta_{0}, 1\right]$ satisfies the bound

$$
\|u\|_{L^{\infty}} \leq C_{2} h^{-d / 2}\|u\|_{L^{2}} .
$$

Using these estimates we get easily:

$$
\left\|T_{2, h}^{n}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq C h^{-3 d / 2} e^{-n h^{2-\alpha}} \ll e^{-n g(h, \rho)}
$$

since $g(h, \rho) \sim h^{2}$.

Control of eigenvalues close to 1

- There exists $C, D, \alpha>0$, s.t. any eigenfuntion $T_{h}(u)=\lambda u$ with $\lambda \in\left[1-h^{2-\alpha}, 1\right]$ satisfies the Nash inequality:

$$
\|u\|_{L^{2}}^{2+1 / D} \leq C h^{-2}\left(\|u\|_{L^{2}}^{2}-\left\|T_{h} u\right\|_{L^{2}}^{2}+h^{2}\|u\|_{L^{2}}^{2}\right)\|u\|_{L^{1}}^{1 / D} .
$$

■ Take $g \in L^{2}$ s.t. $\|g\|_{L^{1}}=1$ and denote $c_{n}=\left\|T_{h, 1}^{n} g\right\|_{L^{2}}^{2}$, then

$$
c_{n}^{1+2 D} \leq C h^{-2}\left(c_{n}-c_{n+1}+h^{2} c_{n}\right)
$$

Hence, for $0 \leq n \leq h^{-2}, c_{n} \leq\left(h^{-2} /(1+n)\right)^{2 D}$.

- This permit to show that for some large $n \simeq h^{-2}$,

$$
\left\|T_{h, 1}^{n}\right\|_{L^{2} \rightarrow L^{\infty}}=\left\|T_{h, 1}^{n}\right\|_{L^{1} \rightarrow L^{2}}=O(1)
$$

Combined with $\left\|T_{h}^{p}\right\|_{L^{2} \rightarrow L^{2}} \leq C e^{-p g(h, \rho)}$, this completes the proof.

Case of a smooth density

If the density ρ is smooth on $\bar{\Omega}$ we can give a more precise description of the spectrum of $T_{h, \rho}$. For simplicity, we assume in this section that $\partial \Omega$ is smooth. Let us introduce the unbounded operator acting on $L^{2}(\Omega, \rho(x) d x)$, defined by

$$
\begin{aligned}
L_{\rho}(u) & =\frac{-\alpha_{d}}{2}\left(\Delta u+\frac{\nabla \rho}{\rho} \cdot \nabla u\right) \\
D\left(L_{\rho}\right) & =\left\{u \in H^{2}(\Omega),\left.\partial_{n} u\right|_{\partial \Omega}=0\right\}
\end{aligned}
$$

where

$$
\alpha_{d}=\frac{1}{\operatorname{vol}\left(B_{1}\right)} \int_{B_{1}} z_{1}^{2} d z=\frac{1}{d+2}
$$

■ L_{ρ} is the self-adjoint realization of the Dirichlet form

$$
\begin{equation*}
\frac{\alpha_{d}}{2} \int_{\Omega}|\nabla u(x)|^{2} \rho(x) d x \tag{5}
\end{equation*}
$$

- L_{ρ} has compact resolvant (thanks to Sobolev embeddings).

■ We denote

$$
\operatorname{Spec}\left(L_{\rho}\right)=\left\{\nu_{0}=0<\nu_{1}<\nu_{2}<\ldots\right\}
$$

and by $m_{j}=$ multiplicity $\left(\nu_{j}\right)$. Observe that $m_{0}=1$ since $\operatorname{Ker}\left(L_{\rho}\right)$ is spanned by the constant function equal to 1 .

Theorem 3

Let Ω be an open, connected, bounded and smooth subset of \mathbb{R}^{d}. Assume that the density ρ is smooth on $\bar{\Omega}$, then for any $R>0$ and $\varepsilon>0$ such that $\nu_{j+1}-\nu_{j}>2 \varepsilon$ for $\nu_{j+2}<R$, there exists $h_{1}>0$ such that one has for all $\left.h \in] 0, h_{1}\right]$,

$$
\begin{equation*}
\left.\left.\operatorname{Spec}\left(\frac{1-T_{h, \rho}}{h^{2}}\right) \cap\right] 0, R\right] \subset \cup_{j \geq 1}\left[\nu_{j}-\varepsilon, \nu_{j}+\varepsilon\right] \tag{6}
\end{equation*}
$$

and the number of eigenvalues of $\frac{1-T_{h, \rho}}{h^{2}}$ in the interval [$\nu_{j}-\varepsilon, \nu_{j}+\varepsilon$] is equal to m_{j}.

A simple quasimode calculus

Assume $\rho=1$ and $\partial \Omega$ is smooth. Let $\lambda>0$ and $u \in C^{\infty}(\bar{\Omega})$ satisfy

$$
\left(-\frac{\alpha_{d}}{2} \Delta-\lambda\right) u=0 \text { in } \Omega \quad \text { and } \quad \partial_{n} u_{\mid \partial \Omega}=0 .
$$

■ For $x \in \Omega$ s.t. $\operatorname{dist}(x, \partial \Omega)>h$, Taylor expansion shows that

$$
\begin{aligned}
& T_{h} u(x)-u(x)=\int_{|z|<1, x+h z \in \Omega}(u(x+h z)-u(x)) d z \\
& =h \sum_{j=1}^{d} \partial_{x_{j}} u(x) \int_{|z|<1} z_{j} d z+\alpha_{d} h^{2} \Delta u(x)+O_{L^{\infty}}\left(h^{4}\right) \\
& =\frac{\alpha_{d}}{2} h^{2} \Delta u(x)+O_{L^{\infty}}\left(h^{4}\right)
\end{aligned}
$$

where the term of order h and h^{3} vanish for parity reason,

■ For $x \in \Omega$ s.t. $\operatorname{dist}(x, \partial \Omega)<h$, we use local coordinates such that $\Omega=\left\{\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{d}, x_{1}>0\right\}$. Taylor expansion shows that

$$
\begin{aligned}
& T_{h} u(x)-u(x)=\int_{|z|<1, x_{1}+h z_{1}>0}(u(x+h z)-u(x)) d z \\
& =h \sum_{j=1}^{d} \partial_{x_{j}} u(x) \int_{|z|<1, x_{1}+h z_{1}>0} z_{j} d z+O_{L \infty}\left(h^{2}\right)
\end{aligned}
$$

- Parity argument \Longrightarrow term of index $j \geq 2$ vanish.
- $\partial_{n} u_{\mid \partial \Omega}=0$ and $\operatorname{dist}(x, \partial \Omega)<h \Longrightarrow$ term of index $j=1$ is $O_{L^{\infty}}\left(h^{2}\right)$.
Since meas $(\{\operatorname{dist}(x, \partial \Omega)<h\})=O(h)$, it follows that

$$
1_{\operatorname{dist}(x, \partial \Omega)<h}\left(T_{h} u-u\right)=O_{L^{2}}\left(h^{\frac{5}{2}}\right)
$$

Combining the two estimates, we get

$$
T_{h} u-\left(1-h^{2} \lambda\right) u=O\left(h^{\frac{5}{2}}\right) .
$$

Application to Random Placement of Non-Overlapping Balls

We consider the initial problem that motivated the works of Metropolis et al. Given an open set $\Omega \subset \mathbb{R}^{d}$ and $N \in \mathbb{N}$ we consider the set of all possible positions in Ω for N non-overlapping balls of radius $\epsilon>0$. This can be identified to the possible locations for their centers

$$
\mathcal{O}_{N, \epsilon}=\left\{x=\left(x_{1}, \ldots, x_{N}\right) \in \Omega^{N}, \forall 1 \leq i<j \leq N,\left|x_{i}-x_{j}\right|>\epsilon\right\} .
$$

The problem we adress is to sample from the uniform distribution, according with the following Metropolis algorithm: Starting from a configuration $\left(X_{1}, \ldots, X_{N}\right)$ we choose a ball at random and move it uniformly at random in a small ball of radius $h>0$. If it results in an admissible configuration, "we keep" the move. Otherwise we don't move and try again.

This is associated to the following Markov kernel (where $\left.\varphi=1_{B_{\mathbb{R}^{d}}(0,1)}\right)$
$K_{h}(x, d y)=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{1}} \otimes \cdots \otimes \delta_{x_{j-1}} \otimes h^{-d} \varphi\left(\frac{x_{j}-y_{j}}{h}\right) d y_{j} \otimes \delta_{x_{j+1}} \otimes \cdots \otimes \delta_{x_{N}}$,
and the associated Metropolis operator on $L^{2}\left(\mathcal{O}_{N, \epsilon}\right)$

$$
T_{h}(u)(x)=m_{h}(x) u(x)+\int_{\mathcal{O}_{N, \epsilon}} u(y) K_{h}(x, d y)
$$

with

$$
m_{h}(x)=1-\int_{\mathcal{O}_{N, \epsilon}} K_{h}(x, d y)
$$

Proposition

There exists $\alpha>0$ such that for $N \epsilon \leq \alpha$, the set $\mathcal{O}_{N, \epsilon}$ is connected, Lipschitz and quasi-regular.

Proof. The proof is rather technical. The quasiregularity is notion used to replace "smooth" by "Lipschitz".
To prove the "Lipschitz boundary" use the following caraterisation: A domain $\mathcal{O} \subset \mathbb{R}^{p}$ has Lipschitz boundary iff it satisfies the following cone property:
$\forall a \in \partial \mathcal{O}, \exists \delta>0, \exists \nu_{a} \in S^{p-1}, \forall b \in B(a, \delta) \cap \partial \mathcal{O}$ we have

$$
b+\Gamma_{+}\left(\nu_{a}, \delta\right) \subset \mathcal{O} \quad \text { and } \quad b+\Gamma_{-}\left(\nu_{a}, \delta\right) \subset \mathbb{R}^{p} \backslash \overline{\mathcal{O}}
$$

where for $\nu \in S^{p}$,

$$
\Gamma_{+}\left(\nu_{a}, \delta\right)=\left\{\xi \in \mathbb{R}^{p}, \pm\langle\xi, \nu\rangle>(1-\delta)|\xi|,|\langle\xi, \nu\rangle|<\delta\right\}
$$

Thanks to the preceding proposition, we can consider the Neumann Laplacian $|\Delta|_{N}$ on $\mathcal{O}_{N, \epsilon}$ defined by

$$
\begin{aligned}
|\Delta|_{N} & =-\frac{\alpha_{d}}{2 N} \Delta \\
D\left(|\Delta|_{N}\right) & =\left\{u \in H^{1}\left(\mathcal{O}_{N, \epsilon}\right),-\Delta u \in L^{2}\left(\mathcal{O}_{N, \epsilon}\right),\left.\partial_{n} u\right|_{\partial \mathcal{O}_{N, \epsilon}}=0\right\}
\end{aligned}
$$

We still denote $0=\nu_{0}<\nu_{1}<\nu_{2}<\ldots$ the spectrum of $|\Delta|_{N}$ and m_{j} the multiplicity of ν_{j}.

Theorem (part 1)

Let $N \geq 2$ and $\epsilon>0$ small be fixed. Let $R>0$ be given and $\beta>0$ small. Then, there exists $\left.h_{0}>0, \delta_{0} \in\right] 0,1 / 2\left[\right.$ and constants $C_{i}>0$ such that for any $\left.h \in] 0, h_{0}\right]$, the following hold true:
i) The spectrum of T_{h} is a subset of $\left[-1+\delta_{0}, 1\right], 1$ is a simple eigenvalue of T_{h}, and $\operatorname{Spec}\left(T_{h}\right) \cap\left[1-\delta_{0}, 1\right]$ is discrete. Moreover,

$$
\begin{aligned}
& \left.\left.\quad \operatorname{Spec}\left(\frac{1-T_{h}}{h^{2}}\right) \cap\right] 0, R\right] \subset \cup_{j \geq 1}\left[\nu_{j}-\beta, \nu_{j}+\beta\right] ; \\
& \sharp \operatorname{Spec}\left(\frac{1-T_{h}}{h^{2}}\right) \cap\left[\nu_{j}-\beta, \nu_{j}+\beta\right]=m_{j} \quad \forall \nu_{j} \leq R ;
\end{aligned}
$$

and for any $0 \leq \lambda \leq \delta_{0} h^{-2}$, the number of eigenvalues of T_{h} in $\left[1-h^{2} \lambda, 1\right]$ (with multiplicity) is bounded by $C_{1}(1+\lambda)^{d N / 2}$.

Theorem (part 2)

ii) The spectral gap $g(h)$ satisfies

$$
\lim _{h \rightarrow 0^{+}} h^{-2} g(h)=\nu_{1}
$$

and the following estimate holds true for all $n \in \mathbb{N}$:

$$
\sup _{x \in \mathcal{O}_{N, \epsilon}}\left\|T_{h}^{n}(x, d y)-\frac{d y}{\operatorname{vol}\left(\mathcal{O}_{N, \epsilon}\right)}\right\|_{T V} \leq C_{4} e^{-n g(h)}
$$

