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Université de Nice

Rearrangement vs Convection: – p.1/25



Outline

1. A toy-model for (very fast) convection based on
rearrangement theory

Rearrangement vs Convection: – p.2/25



Outline

1. A toy-model for (very fast) convection based on
rearrangement theory

2. Multidimensional rearrangement theory and
generalization of the toy model

Rearrangement vs Convection: – p.2/25



Outline

1. A toy-model for (very fast) convection based on
rearrangement theory

2. Multidimensional rearrangement theory and
generalization of the toy model

3. Interpretation of the model as a hydrostatic limit of the
Navier-Sokes Boussinesq equations
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A reminder

Given a scalar function z(x), x ∈ D = [0,1], there is a unique

non decreasing function Z(x) = Rearrange(z)(x) such that,

∫
D

f(Z(x))dx =

∫
D

f(z(x))dx

for all test function f .
Notice that in the discrete case when

z(x) = zj, j/N < x < (j + 1)/N, j = 0, ...,N − 1

then Z(x) = Zj where (Z1, ...,ZN) is just (z1, ..., zN) sorted in
increasing order.
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A function and its rearrangement

N = 200 grid points in x
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A toy-model for (very fast) convection

Model:
-vertical coordinate only: x = x3 ∈ D = [0,1]
-temperature field: y(t,x)
-heat source term: G = G(t,x,y)
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A toy-model for (very fast) convection

Model:
-vertical coordinate only: x = x3 ∈ D = [0,1]
-temperature field: y(t,x)
-heat source term: G = G(t,x,y)
Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
-predictor (heating): ỹn+1(x) = yn(x) + h G(nh,x,yn(x))
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A toy-model for (very fast) convection

Model:
-vertical coordinate only: x = x3 ∈ D = [0,1]
-temperature field: y(t,x)
-heat source term: G = G(t,x,y)
Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
-predictor (heating): ỹn+1(x) = yn(x) + h G(nh,x,yn(x))
-corrector (fast convection): yn+1 = Rearrange(ỹn+1)
so that the temperature profile stays monotonically increas ing at
EACH time step. (This actually corresponds to a succession o f
stable equilibria modified by the source term.)
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Heat profiles with a rough time step

G = G(x) = 1 + exp(−25(x − 0.2)2) − exp(−20(x − 0.4)2)
t,x ∈ [0,1] h = 0.1 500 grid points in x
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Figure 1: y=y(t,x) versus x at different t (predictor and cor rector)
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Heat profiles with a fine time step

t,x ∈ [0,1] h = 0.005 500 grid points in x
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Figure 2: y=y(t,x) versus x at different t
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mixing of the fluid parcels

t,x ∈ [0,1] h = 0.005 500 grid points in x
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Figure 3: t versus x up to rearrangement
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Convergence analysis

Theorem
As h → 0, the time-discrete scheme has a unique limit y

in space C0(R+, L2(D,Rd)) that satisfies the subdifferential
inclusion:
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Convergence analysis

Theorem
As h → 0, the time-discrete scheme has a unique limit y

in space C0(R+, L2(D,Rd)) that satisfies the subdifferential
inclusion:

G(t,x,y) ∈ ∂ty + ∂Ψ[y]

where Ψ[y] = 0 if y is non decreasing as a function of x

and Ψ[y] = +∞ otherwise.

Rearrangement vs Convection: – p.9/25



Convergence analysis

Theorem
As h → 0, the time-discrete scheme has a unique limit y

in space C0(R+, L2(D,Rd)) that satisfies the subdifferential
inclusion:

G(t,x,y) ∈ ∂ty + ∂Ψ[y]

where Ψ[y] = 0 if y is non decreasing as a function of x

and Ψ[y] = +∞ otherwise.
In addition, choosing g so that G(t,x,y) = ∂xg(t,x,y),
we check that the pseudo-inverse x = u(t,y) is an entropy
solution to the scalar conservation law

∂tu + ∂y(g(t,u(t,y),y)) − (∂yg)(t,u(t,y),y) = 0,

This is an example of the more general L
2 formulation of multidimensional scalar

conservation laws, YB 2006 to appear in ARMA 2009
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Multidimensional rearrangement

Theorem
Given a bounded domain D ⊂ Rd

and an L2 map x ∈ D → z(x) ∈ Rd,
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Multidimensional rearrangement

Theorem
Given a bounded domain D ⊂ Rd

and an L2 map x ∈ D → z(x) ∈ Rd,
there is a unique rearrangement with convex potential
Rearrange(z)(x) = ∇p(x),

Rearrangement vs Convection: – p.10/25



Multidimensional rearrangement

Theorem
Given a bounded domain D ⊂ Rd

and an L2 map x ∈ D → z(x) ∈ Rd,
there is a unique rearrangement with convex potential
Rearrange(z)(x) = ∇p(x),

p(x) lsc convex in x ∈ Rd, a.e. differentiable on D, such that

∫
D

f(∇p(x))dx =

∫
D

f(z(x))dx

for all continuous function f such that |f(x)| ≤ 1 + |x|2
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Multidimensional rearrangement

Theorem
Given a bounded domain D ⊂ Rd

and an L2 map x ∈ D → z(x) ∈ Rd,
there is a unique rearrangement with convex potential
Rearrange(z)(x) = ∇p(x),

p(x) lsc convex in x ∈ Rd, a.e. differentiable on D, such that

∫
D

f(∇p(x))dx =

∫
D

f(z(x))dx

for all continuous function f such that |f(x)| ≤ 1 + |x|2

This is a typical result in optimal transport theory, see YB, CRAS Paris 1987 and CPAM 1991,

Smith and Knott, JOTA 1987, cf. Villani, Topics in optimal tr ansportation, AMS, 2003, see also

papers, lecture notes and books by Rachev-Rüschendorf, Ev ans, Caffarelli, Urbas, Gangbo-

McCann, Otto, Ambrosio-Savar é, Villani, Trudinger-Wang and many others contributions. ..
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Multi-d generalization of the toy-model

Model:
-a smooth bounded domain x ∈ D ⊂ Rd

-a vector-valued field: y(t,x) ∈ Rd (generalized temperature)

-a source term: G = G(t,x,y) ∈ Rd with bounded derivatives
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-a source term: G = G(t,x,y) ∈ Rd with bounded derivatives
Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
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Multi-d generalization of the toy-model

Model:
-a smooth bounded domain x ∈ D ⊂ Rd

-a vector-valued field: y(t,x) ∈ Rd (generalized temperature)

-a source term: G = G(t,x,y) ∈ Rd with bounded derivatives
Time discrete scheme:
-time step h > 0, y(t = nh,x) ∼ yn(x), n = 0,1,2, · · ·
-predictor (heating): ỹn+1(x) = yn(x) + h G(nh,x,yn(x))
-corrector (fast convection): yn+1 = Rearrange(ỹn+1)
as the unique rearrangement with convex potential yn+1 = ∇pn+1
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Main property of the scheme

Take a smooth function f . Then

∫
D

f(yn+1(x))dx =

∫
D

f(ỹn+1(x))dx

(because yn+1 is a rearrangement of ỹn+1)
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Main property of the scheme

Take a smooth function f . Then

∫
D

f(yn+1(x))dx =

∫
D

f(ỹn+1(x))dx

(because yn+1 is a rearrangement of ỹn+1)

=

∫
D

f(yn(x) + hG(nh,x,yn(x)))dx

(by definition of corrector ỹn+1)
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Main property of the scheme

Take a smooth function f . Then

∫
D

f(yn+1(x))dx =

∫
D

f(ỹn+1(x))dx

(because yn+1 is a rearrangement of ỹn+1)

=

∫
D

f(yn(x) + hG(nh,x,yn(x)))dx

(by definition of corrector ỹn+1)

=

∫
D

f(yn(x))dx + h

∫
D

(∇f)(yn(x)) · G(nh,x,yn(x))dx + o(h)
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Convergence of the scheme

Theorem
As h → 0, the time-discrete scheme has converging
subsequences.
Each limit y belongs to the space C0(R+, L2(D,Rd)) and has a
convex potential p(t, ·) for each t ≥ 0.
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Convergence of the scheme

Theorem
As h → 0, the time-discrete scheme has converging
subsequences.
Each limit y belongs to the space C0(R+, L2(D,Rd)) and has a
convex potential p(t, ·) for each t ≥ 0.
In addition,

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx

for all smooth function f such that |f(x)| ≤ 1 + |x|2
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Convergence of the scheme

Theorem
As h → 0, the time-discrete scheme has converging
subsequences.
Each limit y belongs to the space C0(R+, L2(D,Rd)) and has a
convex potential p(t, ·) for each t ≥ 0.
In addition,

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx

for all smooth function f such that |f(x)| ≤ 1 + |x|2

See YB, 2008, to appear in JNLS. Notice that the system is self -consistent, thanks to the

rearrangement theorem. However, our global existence resu lt does not imply uniqueness
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The special caseG(t,x,y) = −x

In this special case, which in 1d would correspond to the invi sicid
Burgers equation, the discrete model turns out to be the disc rete

version of the subdifferential equation in L2(D,Rd)

0 ∈ ∂tz + ∂K[z]

K[z] = sup
s∈S(D)

∫
D

s(x) · z(x) dx

where S(D) denotes the set of all Lebesgue measure preserving
maps of D.
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The special caseG(t,x,y) = −x

In this special case, which in 1d would correspond to the invi sicid
Burgers equation, the discrete model turns out to be the disc rete

version of the subdifferential equation in L2(D,Rd)

0 ∈ ∂tz + ∂K[z]

K[z] = sup
s∈S(D)

∫
D

s(x) · z(x) dx

where S(D) denotes the set of all Lebesgue measure preserving
maps of D.

Since K is a CONVEX functional, this formulation enforces
global existence and uniqueness for the initial value probl em.
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The special caseG(t,x,y) = −x

In this special case, which in 1d would correspond to the invi sicid
Burgers equation, the discrete model turns out to be the disc rete

version of the subdifferential equation in L2(D,Rd)

0 ∈ ∂tz + ∂K[z]

K[z] = sup
s∈S(D)

∫
D

s(x) · z(x) dx

where S(D) denotes the set of all Lebesgue measure preserving
maps of D.

Since K is a CONVEX functional, this formulation enforces
global existence and uniqueness for the initial value probl em.
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Interpretation of the multi-d toy model

The formulation we have obtained for the multidimensional t oy
model

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx

for all smooth function f , with y = ∇p,
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Interpretation of the multi-d toy model

The formulation we have obtained for the multidimensional t oy
model

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx

for all smooth function f , with y = ∇p,
in some sense means that there exists a GAUGE field v(t,x) such

that

∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, v//∂D

which, continuously in time, rearranges y(t,x) so that y stays a
map with a convex potential at any time.
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Interpretation of the multi-d toy model

It turns out that the model can be interpreted as a singular li mit of
the Navier-Stokes Boussinesq equations with vector-value d
buoyancy forces. This is what we are now going to explain in th e
last part of the talk
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The NS-Boussinesq model

Let D be a smooth bounded domain D ⊂ R3 in which moves an
incompressible fluid of velocity v(t,x) at x ∈ D, t ≥ 0, subject

to the Navier-Stokes equations

NSB ǫ(∂tv + (v · ∇)v) − ν∆v + ∇p = y ∇ · v = 0

with ǫ, ν > 0 and v = 0 along ∂D.
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The NS-Boussinesq model

Let D be a smooth bounded domain D ⊂ R3 in which moves an
incompressible fluid of velocity v(t,x) at x ∈ D, t ≥ 0, subject

to the Navier-Stokes equations

NSB ǫ(∂tv + (v · ∇)v) − ν∆v + ∇p = y ∇ · v = 0

with ǫ, ν > 0 and v = 0 along ∂D.

The force field y is subject to the advection equation

∂ty + (v · ∇)y = G(t,x,y)

where G is a given smooth function with bounded derivatives.
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Classical Convection Theory

Classical Convection Theory corresponds to the special cas e:

G = 0, y//e3, y = ηe3, η = η(t,x) ∈ R namely:

ǫ(∂tv + (v · ∇)v) − ∆v + ∇p = ηe3, ∇ · v = 0

∂tη + (v · ∇)η = µ∆η

with µ ≥ 0.

Rearrangement vs Convection: – p.18/25



Classical Convection Theory

Classical Convection Theory corresponds to the special cas e:

G = 0, y//e3, y = ηe3, η = η(t,x) ∈ R namely:

ǫ(∂tv + (v · ∇)v) − ∆v + ∇p = ηe3, ∇ · v = 0

∂tη + (v · ∇)η = µ∆η

with µ ≥ 0.
For µ = 0, global existence of weak solutions in 3D follows from

Leray/Diperna-Lions theory, while global existence of smo oth
solutions in 2D follows from Hou-Li 2005 and Chae 2006. (See a lso

recent work by Danchin-Paicu.)
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Singular limits of the NSB model

While keeping unchanged

∂ty + (v · ∇)y = G(t,x,y) ∇ · v = 0

and dropping inertia terms, we consider two possible limits :
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Singular limits of the NSB model

While keeping unchanged

∂ty + (v · ∇)y = G(t,x,y) ∇ · v = 0

and dropping inertia terms, we consider two possible limits :

STOKES SB : ǫ = 0, ν = 1 ⇒ −∆v + ∇p = y
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Singular limits of the NSB model

While keeping unchanged

∂ty + (v · ∇)y = G(t,x,y) ∇ · v = 0

and dropping inertia terms, we consider two possible limits :

STOKES SB : ǫ = 0, ν = 1 ⇒ −∆v + ∇p = y

HYDROSTATIC HB : ǫ = ν = 0 ⇒ ∇p = y
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Singular limits of the NSB model

While keeping unchanged

∂ty + (v · ∇)y = G(t,x,y) ∇ · v = 0

and dropping inertia terms, we consider two possible limits :

STOKES SB : ǫ = 0, ν = 1 ⇒ −∆v + ∇p = y

HYDROSTATIC HB : ǫ = ν = 0 ⇒ ∇p = y

The 2nd one HB CORRESPONDS TO OUR MULTI-d TOY MODEL!
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A convexity condition for the HB model

The Hydrostatic Boussinesq HB system

HB : ∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.
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A convexity condition for the HB model

The Hydrostatic Boussinesq HB system

HB : ∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.
Let us consider, for simplicity, the case of 2 space variable s

x = (x1,x2) and write v = (−∂1θ, ∂2θ), where θ(t,x1,x2) ∈ R.
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A convexity condition for the HB model

The Hydrostatic Boussinesq HB system

HB : ∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.
Let us consider, for simplicity, the case of 2 space variable s

x = (x1,x2) and write v = (−∂1θ, ∂2θ), where θ(t,x1,x2) ∈ R.
Take the 2D curl of the evolution equation in y = (∂1p, ∂2p):

∂11p ∂22θ + ∂22p ∂11θ − 2∂12p ∂12θ = ∂1(G2) − ∂2(G1)
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A convexity condition for the HB model

The Hydrostatic Boussinesq HB system

HB : ∂ty + (v · ∇)y = G(t,x,y), ∇ · v = 0, ∇p = y

looks strange since there is no direct equation for v.
Let us consider, for simplicity, the case of 2 space variable s

x = (x1,x2) and write v = (−∂1θ, ∂2θ), where θ(t,x1,x2) ∈ R.
Take the 2D curl of the evolution equation in y = (∂1p, ∂2p):

∂11p ∂22θ + ∂22p ∂11θ − 2∂12p ∂12θ = ∂1(G2) − ∂2(G1)

a well posed linear elliptic equation in θ whenever D2
xp(t,x) > 0
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Observables in Boussinesq systems

For each suitable test function f , consider the ’observable’

t → ρf (t) =

∫
D

f(y(t,x))dx

where y is solution to one of the Boussinesq systems NSB,SB,HB .
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Observables in Boussinesq systems

For each suitable test function f , consider the ’observable’

t → ρf (t) =

∫
D

f(y(t,x))dx

where y is solution to one of the Boussinesq systems NSB,SB,HB .
Then, we get

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx

since ∂ty + (v · ∇)y = G(t,x,y) where ∇ · v = 0, v//∂D.
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Recovery from Observables

In the HB model, the field y is required to be a gradient y = ∇p
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Recovery from Observables

In the HB model, the field y is required to be a gradient y = ∇p

If we a priori assume

p(t,x) is a CONVEX function of x ∈ D,

then the field y is completely determined by the knowledge of all
observables

t → ρf (t) =

∫
D

f(y(t,x))dx

Rearrangement vs Convection: – p.22/25



Recovery from Observables

In the HB model, the field y is required to be a gradient y = ∇p

If we a priori assume

p(t,x) is a CONVEX function of x ∈ D,

then the field y is completely determined by the knowledge of all
observables

t → ρf (t) =

∫
D

f(y(t,x))dx

This directly follows from the MULTI-D REARRANGEMENT
THEOREM
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Global solutions to the HB system

With this formulation the HB system coincides with our multi -d toy
model! Thus we conclude:
THEOREM

Assume G to be a smooth function with bounded first derivatives.
Let C be the convex cone of all maps y ∈ L2(D,R3)

such that y(x) = ∇p(x) a.e. in D for some CONVEX function p.
We say that (t → y(t, ·)) ∈ C0(R+,L2(D,R3)) valued in the

cone C is a solution to the HB system if

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx, ∀f
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Global solutions to the HB system

With this formulation the HB system coincides with our multi -d toy
model! Thus we conclude:
THEOREM

Assume G to be a smooth function with bounded first derivatives.
Let C be the convex cone of all maps y ∈ L2(D,R3)

such that y(x) = ∇p(x) a.e. in D for some CONVEX function p.
We say that (t → y(t, ·)) ∈ C0(R+,L2(D,R3)) valued in the

cone C is a solution to the HB system if

d

dt

∫
D

f(y(t,x))dx =

∫
D

(∇f)(y(t,x)) · G(t,x,y(t,x))dx, ∀f

Then, for each y0 ∈ C, there is always a GLOBAL solution such
that y(t = 0, ·) = y0
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Rigorous derivation of the HB model

Theorem
Assume (y,p,v) to be a smooth solution of the HB hydrostatic
Boussinesq model, with p(t,x) strongly convex in x ∈ D.
Then, as ν = ǫ → 0, any Leray solution (yǫ,pǫ,vǫ) to the full NSB
Navier-Stokes Boussinesq equations, with same initial con dition,
converges to (y,p,v).
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Rigorous derivation of the HB model

Theorem
Assume (y,p,v) to be a smooth solution of the HB hydrostatic
Boussinesq model, with p(t,x) strongly convex in x ∈ D.
Then, as ν = ǫ → 0, any Leray solution (yǫ,pǫ,vǫ) to the full NSB
Navier-Stokes Boussinesq equations, with same initial con dition,
converges to (y,p,v).
Idea of the proof: Estimate:

d

dt

∫
D

{K(t,yǫ(t,x),y(t,x)) +
ǫ

2
|vǫ − v|2}dx

K(t,y′,y) = p∗(t,y′) − p∗(t,y) −∇p∗(t,y) · (y′ − y) ∼ |y − y′|2
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Rigorous derivation of the HB model

Theorem
Assume (y,p,v) to be a smooth solution of the HB hydrostatic
Boussinesq model, with p(t,x) strongly convex in x ∈ D.
Then, as ν = ǫ → 0, any Leray solution (yǫ,pǫ,vǫ) to the full NSB
Navier-Stokes Boussinesq equations, with same initial con dition,
converges to (y,p,v).
Idea of the proof: Estimate:

d

dt

∫
D

{K(t,yǫ(t,x),y(t,x)) +
ǫ

2
|vǫ − v|2}dx

K(t,y′,y) = p∗(t,y′) − p∗(t,y) −∇p∗(t,y) · (y′ − y) ∼ |y − y′|2

where p∗(t, z) = supx∈D x · z − p(t,x) is the Legendre-Fenchel
transform of p.
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