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The two fluids problem The equations

The interfacial waves equations

Fluid +

U+ = ∇X ,zΦ+

∆X ,zΦ+ = 0

∂zΦ+
|bottom

= 0

∂tΦ+ + 1
2 |∇X ,zΦ+|2 =

− P
ρ+ − gz .

Fluid -

U− = ∇X ,zΦ−

∆X ,zΦ− = 0

∂zΦ− |top
= 0

∂tΦ− + 1
2 |∇X ,zΦ−|2 =

− P
ρ− − gz .

Interface

∂tζ −
√

1 + |∇ζ|2∂nΦ±,

JPK = σk (ζ)
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The two fluids problem Known results and natural questions

A few results

The case ρ− = 0: the water waves problem

Well-Posedness (local, global, . . . ), asymptotics,. . .

With surface tension (σ > 0) or without (σ = 0) under the

Rayleigh-Taylor condition: − ∂zP|surface
> 0.

Chandrasekhar condition: instability if JV±K2 > 4
〈ρ±〉
ρ+ρ− (g ′σ)1/2.

The case ρ− > 0

Without surface tension (σ = 0): Ill-Posed!
IguchuTanakaTani97, Lebeau02, KamotskiLebeau05, Wu06

Locally well posed with surface tension on time Tσ → 0 as σ → 0.
AmbroseMasmoudi07,ShatahZeng08,Iguchi09

David Lannes (Ecole Normale Supérieure) Gravity and Kelvin-Helmoltz instabilities Fréjus 2009 4 / 23
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The two fluids problem Known results and natural questions

Two natural questions

1 The case 0 < ρ− � 1 and σ � 1.
Existence time Tσ � TWater−Waves : why?
Example: Coastal flows with Air-Water interface

2 The case 0 < ρ− = ρ+ − ε and σ � 1
Why do internal wave exist?
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The two fluids problem Transformation of the equations

Interface equations

Interface (ψ+ = Φ+
|interface

, ψ− = Φ−|interface
)

∂tζ −
√

1 + |∇ζ|2∂nΦ± |interface
= 0

ρ+
(
∂tψ

+ +gζ+ 1
2 |∇ψ

+|2− (
√

1+|∇ζ|2(∂nΦ+)+∇ζ·∇ψ+)2

2(1+|∇ζ|2)

)
= −P.

ρ−
(
∂tψ

−+gζ+ 1
2 |∇ψ

−|2− (
√

1+|∇ζ|2(∂nΦ−)+∇ζ·∇ψ−)2

2(1+|∇ζ|2)

)
= −P

JPK = σk (ζ).

Fluid +
∆X ,zΦ+ = 0,
∂zΦ+

|bottom
= 0,

Φ+
|interface

= ψ+

Fluid - 
∆X ,zΦ− = 0,
∂zΦ− |top

= 0,

Φ− |interface
= ψ−
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The two fluids problem Transformation of the equations

Natural unknwowns

Surface elevation ζ

ψ = ρ+ψ+ − ρ−ψ− (with ρ± = ρ±

ρ++ρ− ).

Quantities to express in terms of ζ and ψ

Trace of the velocity potentials at the interface ψ±

Normal derivative of the velocity potentials ∂nφ
+
|interface

= ∂nφ
−
|interface
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The two fluids problem Transformation of the equations

The Dirichlet-Neumann operator

Definition (Dirichlet-Neumann operator)

Let Ḣs = {f ∈ L2
loc(Rd),∇f ∈ Hs−1}.

G +[ζ] :
Ḣ1/2(Rd) → H−1/2(Rd)

ψ+ 7→ G [ζ]ψ+ =
√

1 + |∇ζ|2 ∂nΦ+
|interface

.


∆X ,zΦ+ = 0,
∂zΦ+

|bottom
= 0,

Φ+
|interface

= ψ+

Quantities to express in terms of ζ and ψ

Trace of the velocity potentials at the interface ψ±

Normal derivative of the velocity potentials ∂nφ
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−
|interface

David Lannes (Ecole Normale Supérieure) Gravity and Kelvin-Helmoltz instabilities Fréjus 2009 8 / 23
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The two fluids problem Transformation of the equations

A transmission problem

(T )


∆X ,zΦ+ = 0 in Ω+,
∆X ,zΦ− = 0 in Ω−,
(ρ+Φ+ − ρ−Φ−)|z=ζ

= ψ,

∂nΦ+
|z=ζ
− ∂nΦ−|z=ζ

= 0, ∂zΦ±|boundaries
= 0.

Proposition

The transmission problem (T) is well posed for ψ ∈ Ḣs+1/2, ζ ∈ Hs+1/2.

Proof.

1 If Φ± exists, let ψ± = Φ±|z=ζ
then

ρ+ψ+ − ρ− = ψ and G +[ζ]ψ+ = G−[ζ]ψ−

2 G−[ζ]−1 ◦ G +[ζ] : Ḣs+1/2(Rd)→ Ḣs+1/2(Rd) well defined

3 J[ζ] = (ρ+I − ρ−G−[ζ]−1G +[ζ]) : Ḣs+1/2 → Ḣs+1/2 bijective and
good estimates.
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The two fluids problem Transformation of the equations

A transmission problem

(T )


∆X ,zΦ+ = 0 in Ω+,
∆X ,zΦ− = 0 in Ω−,
(ρ+Φ+ − ρ−Φ−)|z=ζ

= ψ,

∂nΦ+
|z=ζ
− ∂nΦ−|z=ζ

= 0, ∂zΦ±|boundaries
= 0.

Proposition

The transmission problem (T) is well posed for ψ ∈ Ḣs+1/2, ζ ∈ Hs+1/2.
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The two fluids problem Transformation of the equations

The reduced interfacial waves equations

∂tζ −
√

1 + |∇ζ|2∂nΦ± |interface
= 0

ψ± = G±[ζ]−1 ◦ G [ζ]ψ

The reduced equations
∂tζ − G [ζ]ψ = 0,

∂tψ + g ′ + 1
2Jρ±|∇ψ±|2Kζ

−1
2 (1 + |∇ζ|2))Jρ±(w±[ζ]ψ±)2K = − σ

ρ++ρ− k (ζ).

ρ+
(
∂tψ

+ + gζ + 1
2 |∇ψ

+|2 − (
√

1+|∇ζ|2(∂nΦ+)+∇ζ·∇ψ+)2

2(1+|∇ζ|2)

)
= −P,

ρ−
(
∂tψ

− + gζ + 1
2 |∇ψ

−|2 − (
√

1+|∇ζ|2(∂nΦ−)+∇ζ·∇ψ−)2
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The two fluids problem Comments on the equations

Comments on the equations


∂tζ − G [ζ]ψ = 0,

∂tψ + g ′ + 1
2Jρ±|∇ψ±|2Kζ

−1
2 (1 + |∇ζ|2))Jρ±(w±[ζ]ψ±)2K = − σ

ρ++ρ− k (ζ).

G [ζ] = G−[ζ](ρ+G−[ζ]− ρ−G−[ζ])−1G +[ζ]

G±[0] = |D| tanh(H±|D|)  importance of the depth of both layers

Linearized equations around rest state well-posed (even with σ = 0)

The instabilities in the two-fluid system are purely nonlinear

Chandresekhar condition: instability if JV±K2 > 4
〈ρ±〉
ρ+ρ− (g ′σ)1/2.

Stabilizing factors: ρ− � 1 and JV±K� 1
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Getting information from the asymptotics Linear analysis

Linear analysis (with σ = 0)

Linearized equation around the rest state{
∂tζ − G [0]ψ = 0
∂tψ + g ′ζ = 0

with g ′ = (ρ+ − ρ−)g and G [0] = |D| tanh(H+|D|) tanh(H−|D|)
ρ+ tanh(H−|D|)+ρ− tanh(H+|D|) .

Shallow water limit

The depths H± are small compared to the “typical wavelength” λ. Then

G [0] ∼ −H∆, with H =
H+H−

ρ+H− + ρ−H+
.

Wave equation: ∂2
t ζ − c2∆ζ = 0, c2 = g ′H.
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Getting information from the asymptotics Nondimensionalization

Nondimensionalization

I. Identify the characteristic lengths:

Wavelength: λ

Amplitude: a

Depths: H+ and H− and H = H+H−

ρ+H−+ρ−H+ .

II. Dimensionless parameters

Shallowness parameter µ = H2

λ2

Amplitude parameter ε = a
H .

III. Nondimensionalization (using linear analysis)

ζ̃ = ζ
a , ψ = ψ

ψ0

X̃ = X
λ , t̃ = t

λ/c .
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Getting information from the asymptotics Nondimensionalization

Nondimensionalization

I. Identify the characteristic lengths:

Wavelength: λ

Amplitude: a

Depths: H+ and H− and H = H+H−

ρ+H−+ρ−H+ .

II. Dimensionless parameters

Shallowness parameter µ = H2

λ2

Amplitude parameter ε = a
H .

III. Nondimensionalization (using linear analysis)

ζ̃ = ζ
a , ψ = ψ

ψ0

X̃ = X
λ , t̃ = t

λ/c .

David Lannes (Ecole Normale Supérieure) Gravity and Kelvin-Helmoltz instabilities Fréjus 2009 13 / 23



Getting information from the asymptotics Nondimensionalization

Nondimensionalized internal wave equations

Nondimensionalized equations


∂tζ − 1

µGµ[εζ]ψ = 0,

∂tψ + ζ + ε1
2Jρ±|∇ψ±|2K

−εµ1
2 (1 + ε2µ|∇ζ|2))Jρ±(w±µ [εζ]ψ±)2K = − 2

Bo
1

ε
√
µk (ε

√
µζ).

The Bond number Bo =
〈ρ±〉g ′λ2

σ

1 Coastal flows (Water-Air interface) Bo ∼ 100.(10.100)102

10−2 = 105.

2 Internal waves (∼ Water-Brine interface) Bo ∼ 100(10.10−3)104

10−2 = 104.

No role of surface tension for propagation of (internal) waves

Benjamin67,....,BonaLannesSaut08,Duchene09
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Getting information from the asymptotics Goal

Condition for the existence of “stable” solutions


∂tζ − 1

µGµ[εζ]ψ = 0,

∂tψ + ζ + ε1
2Jρ±|∇ψ±|2K

−εµ1
2 (1 + ε2µ|∇ζ|2))Jρ±(w±µ [εζ]ψ±)2K = − 2

Bo
1

ε
√
µk (ε

√
µζ).

Find:

1 A generalization to the two fluids system of the

Rayleigh-Taylor condition: − ∂zP|surface
> 0.

2 A nonlinear version when both fluids are at rest at infinity of the

Chandrasekhar stability condition: JV±K2 < 4
〈ρ±〉
ρ+ρ− (g ′σ)1/2.

Do this uniformly with respect to the relevant asymptotics (ε, µ...)
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Quasilinearization of the equations Motivating the functional setting

The uniformity constraint and the operator Gµ[εζ]

{
∂2

z Φ+ + µ∆Φ+ = 0, −H+/H < z < εζ,
Φ+
|z=εζ

= ψ+, ∂zΦ+
|z=−H+/H

= 0

Construction

Gµ[εζ] is constructed in such a way that

Gµ[εζ]ψ = G−µ [εζ,H−]ψ− = G +
µ [εζ,H+]ψ+ (ψ = ρ+ψ+ − ρ−ψ−)

= G +
µ [εζ,H+]Jµ[εζ]−1ψ

with Jµ[εζ] = (ρ+ − ρ−G−µ [εζ]−1 ◦ G +
µ [εζ])

Proposition

Let |f |
Ḣ

s+1/2
∗

= | |D|
(1+
√
µ|D|)1/2 f |Hs .

The operator Jµ[εζ] : Ḣ
s+1/2
∗ → Ḣ

s+1/2
∗ is uniformly bijective.
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Quasilinearization of the equations Motivating the functional setting

Linear analysis (with σ > 0)

Linearized equation around the rest state{
∂tζ − 1

µGµ[0]ψ = 0

∂tψ + ζ − 2
Bo ∆ζ = 0

with Gµ[0] =
√
µ|D| tanh(H+√µ|D|) tanh(H−

√
µ|D|)

ρ+H+ tanh(H−
√
µ|D|)+ρ−H− tanh(H+√µ|D|) .

Symmetrizer

S [0] =

(
1− 2

Bo ∆ 0
0 Gµ[0]

) Energy

Elin(U) = (U,S [0]U)
∼ |ζ|2H1

σ
+ |ψ|2

Ḣ
1/2
∗
.

|ζ|2H1
σ

= |ζ|22 + 2
Bo |∇ζ|

2
2.
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Quasilinearization of the equations The first equation and the “good unknowns”

The first equation and the “good unknowns”

∂α(∂tζ − 1
µGµ[εζ]ψ) = 0  ???

1

2 There is an explicit formula for the shape derivative

3 The energy

EN(U) = |∇ψ|Ht0+2 +
∑
|α|≤N

|∂αζ|2H1
σ

+ |ψ(α)|2Ḣ1/2
∗
.
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Quasilinearization of the equations The second equation and the instabilities

The second equation and the instabilities

∂α(∂tψ + ζ + ε1
2Jρ±|∇ψ±|2K + . . . ) =???

1 Rewrite in terms of ζ and ψ(α):

∂tψ(α) + a∂αζ + Jρ±V± · ∇ψ±(α)K ∼ −
2

Bo

1

ε
√
µ
∂αk (ε

√
µζ).

2 1
ε
√
µ∂

αk (ε
√
µζ) = −∇ · K∇∂αζ + KN+1(ζ).

3 Jρ±V± · ∇ψ±(α)K as a function of ζ and ψ(α)?

Jρ±V± · ∇ψ±(α)K = 〈V±〉 · ∇Jρ±ψ±(α)K + JV±K · ∇〈ρ±ψ±(α)〉

= 〈V±〉 · ψ(α) +AAA
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Quasilinearization of the equations The second equation and the instabilities

The Rayleigh-Taylor instability operator

Controled by the energy, uniformly in Ḣ
1/2
∗

The second equation

∂tψ(α) + T ∗ψ(α) +RT ∂αζ + 2
Bo KN+1(ζ) ∼ 0 ,

with RT f = af + ρ+ρ−ε2µJV±K · Eµ[ζ](f JV±K)− 2

Bo
∇ · K∇f .

The operator Eµ[ζ]

Eµ[ζ] = ∇ ◦ (G−)−1G (G +)−1 ◦ ∇T .

Symbolic analysis yields Eµ[ζ] ∼ −|D| (d = 1).

Eµ[ζ] costs
√
µ at high frequencies, µ at low frequencies.

The coefficient a

One can check that “a = J∂zPK”.
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Quasilinearization of the equations The quasilinear system

The quasilinear system

The system in ∂αζ and ψ(α) = ∂αψ − εw∂αζ{
∂t∂

αζ + εT ∂αζ − 1
µGµ[εζ]ψ(α) − GN [ζ]ψ ∼ 0,

∂tψ(α) + T ∗ψ(α) +RT ∂αζ + 2
Bo KN+1(ζ) ∼ 0

Symmetrization

RT is a second order operator  problem with subprincipal terms in
the commutator with Gµ[εζ].

Symmetrizer

S [U] =

(
RT 0

0 1
µGµ[εζ]

)
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∂tψ(α) + T ∗ψ(α) +RT ∂αζ + 2
Bo KN+1(ζ) ∼ 0

Symmetrization

RT is a second order operator  problem with subprincipal terms in
the commutator with Gµ[εζ].

1 Clever commutator estimate (symbolic analysis): MeiZhang08
2 Use the DN and curvature operators to differentiate: ShatahZeng08
3 Use paradifferential calculus: AlazardBurqZuily09
4 Put the time derivatives in the energy: RoussetTzvetkov09
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Quasilinearization of the equations The quasilinear system

A key result

Proposition

1 One has ( 1
µGµ[εζ]ψ,ψ) ∼ |ψ|2

Ḣ
1/2
∗

.

2 If the following condition is satisfied

(Stab) ε2µ|JV±K|2∞ <
1

ρ+ρ−
1

‖Eµ[ζ]‖Ḣ1→L2

( 8

Bo

J∂zPK
(1 + ε2|∇ζ|2)3/2

)1/2

then (RT ζ, ζ) ∼ |ζ|2H1
σ

.

Proof.

Use gravity to control low frequencies and surface tension to control high
frequencies...
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Main result

Main result

(Stab) ε2µ|JV±K|2∞ <
1

ρ+ρ−
1

‖Eµ[ζ]‖Ḣ1→L2

( 8

Bo

J∂zPK
(1 + ε2|∇ζ|2)3/2

)1/2

Theorem

Under (Stab), the interfacial waves equations are well posed in
(ζ, ψ) ∈ HN × ḢN+1/2 (N > d + 5) on a time that depend on σ through
(Stab) only (and uniformly with respect to ε, µ)

Applications

Coastal flows: ε2√µ . 10−2.

Internal wave: ε2√µ . 10−2 or 10−3.
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