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The form of the spectrum of passive scalar fluctuations in the inertial–convective range is investigated. In the presence of a
mean shear, there exists a critical wave number kc. At wave numbers greater than kc, the mean shear does not influence the
spectrum of scalar fluctuations and the Obukhov–Corrsin prediction holds. At wave numbers smaller than kc, the mean shear
dominates and the spectrum is less steep. These predictions are based on the study of Lagrangian dynamics of fluid particles
and account for the experimental observations.

1 Introduction

The temperature of a fluid, the concentration of an atmospheric pollutant, the density of a dye are described mathematically by
a scalar field depending on space and time. The scalar field satisfies the advection–diffusion equation with a possible source
term. The scalar is referred as passive if it does not influence the carrier flow. The temperature field, for instance, can be
regarded as passive if buoyancy effects are negligible.

A systematic study of the spectrum of scalar fluctuations in a turbulent flow was developed independently by Obukhov [1]
and Corrsin [2]. They considered wave numbers k much greater than the ones associated with the integral scale of the flow
and than the injection scale of the scalar, and much smaller than the wave numbers beyond which fluid viscosity and scalar
diffusivity become important. This “intermediate” range is usually referred as the inertial–convective range, and corresponds
to very large local Reynolds and Péclet numbers. Obukhov and Corrsin assumed small-scale homogeneity and isotropy in
accordance with Kolmogorov’s theory. Under this assumptions, they showed that the one-dimensional spectrum of scalar
fluctuations, E(k), is a power law with exponent −5/3. (It should be noted that the scaling of E(k) in the inertial–convective
range had been previously obtained by Onsager [3] and Weizsäcker [4] by dimensional arguments.)

The spectrum of scalar fluctuations has been examined in several experiments (see the reviews by Sreenivasan [5] and by
Warhaft [6]). The scalar fields most often considered were the temperature field and the concentration field of a dye. Experi-
ments do not support the Obukhov–Corrsin (OC) prediction, the deviation being stronger in shear flows than in grid generated
turbulence. Furthermore, measurements performed with different mean flows give different scaling exponents for E(k). For
example, both the experiment by Mestayer [7] in an air-sea interaction wind tunnel and the one by Sreenivasan [5] in the wake
of a circular cylinder show clear power-law scalar spectra in the inertial–convective range. The power law, however, is less
steep than k−5/3 in both cases, namely k−1.49 in the former experiment and k−1.33 in the latter one. Villermaux and collabo-
rators even reported a spectrum E(k) ∝ k−1 for a dye released in a turbulent jet [8]. In general, the experimental observations
can be summarised as follows [5, 6]: a) in the inertial–convective range the spectrum of scalar fluctuations is a power law
E(k) ∝ k−α with α < 5/3; b) the scaling exponent α depends on the characteristics of the mean flow; c) the deviation from
the OC prediction decreases with increasing Reynolds number; d) the deviation from the OC prediction is stronger for shear
flows than for grid turbulence.

2 Spectrum of scalar fluctuations

In the presence of a mean shear, the experimental observations can be explained by the existence of a critical wave num-
ber kc ≡ (σ/D)3/2, where σ denotes the amplitude of the mean shear and D measures the intensity of turbulent fluctuations
(
√
〈[u(x + r) − u(x)]2〉 ∼ Dr1/3). At wave numbers smaller than kc, the statistics of scalar fluctuations is dominated by

the shear, the spectrum is less steep than k−5/3, and the scaling exponent depends on the details of the mean flow. At scales
greater than kc, turbulent fluctuations prevail, small-scale isotropy is restored, and the OC prediction is recovered (see Fig. 1).

The form of E(k) can be obtained by studying the Lagrangian dynamics of fluid particles. We consider the equal-time
structure function of scalar fluctuations, S2(r) ≡ 〈[θ(x + r, t)− θ(x, t)]2〉, where θ denotes the fluctuating component of the
scalar field. The scaling of E(k) is related to that of S2(r): S2(r) ∝ rα−1 corresponds to E(k) ∝ k−α (see e.g. Ref. [9]). The
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Fig. 1 Schematic representation of the spectrum of scalar fluctuations in the presence of a mean shear; kL denotes the wave
number associated with the integral scale of the flow and kd is the diffusive wave number.

structure function S2(r) has a simple Lagrangian interpretation: it is proportional to the time TL(r) needed for two coinciding
particles to separate to a distance r [10]. For a given mean flow, it is easy to compute how TL(r) scales with the separation r;
one just have to consider the evolution equation for Lagrangian trajectories. Knowing the scaling exponent of TL(r) ∝ S2(r)
thus allows the scaling exponent of E(k) to be computed. If, for example, the mean shear is constant in time and space,
then E(k) ∝ k−α with α = 4/3 for k � kc and E(k) ∝ k−5/3 for k � kc. Furthermore, α = 13/9 for a mean shear
with constant direction and rapidly changing intensity, and α = 1 for a rapidly rotating shear. In all these cases, the scaling
exponent α is smaller than 5/3 for wave numbers less than kc, while the OC law is obtained at greater k.

Detecting two power laws and showing the existence of the critical wave number may be difficult in numerical simulations
of the advection–diffusion equation coupled with the Navier–Stokes equations. To confirm our predictions, we therefore
considered a random velocity field which can reproduce some of the properties of turbulent flows and, at the same time, allows
a semi-analytical computation of E(k). We studied a scalar field transported by a random flow with Kraichnan’s statistics [11]
(see also Ref. [10]). The velocity field is Gaussian, zero-mean, white-in-time, and has a power law spectrum. Kraichnan’s
model has the advantage that if also the forcing driving the scalar is white-in-time, then the scalar structure function (and hence
the spectrum) satisfies a partial differential equation. Solving such partial differential equation numerically is less demanding
than performing direct simulations of the advection–diffusion equation and the Navier–Stokes equations. Moreover, the
Reynolds number is formally infinite for Kraichnan’s model, and therefore it is in principle easier to resolve two power laws
in the scalar spectrum. The numerical computation of the spectrum of scalar fluctuations in Kraichnan’s model confirm our
predictions and their interpretation in terms of Lagrangian dynamics [12]. We note that the crossover region between the two
scaling behaviours separated by kc is quite wide; detecting the transition between them thus requires a broad range of scales.

The implications of our study may be summarised as follows: a-b) a mean shear influences the statistics of scalar fluctua-
tions in the inertial–convective range up to a critical wave number kc depending on the relative intensity of the mean flow and
turbulent fluctuations. Owing to the limited range of accessible scales, experiments have measured a power law resulting from
a combination of k−5/3 for k � kc and k−α with α < 5/3 for k � kc, and hence a scalar spectrum less steep than k−5/3 and
with slope depending on the mean flow; c) kc decreases with increasing Reynolds number. The experimental slope, therefore,
becomes closer and closer to −5/3 with increasing Reynolds number, and reaches the OC prediction when kc becomes smaller
than the inverse of the integral scale of the flow; d) in grid turbulence, the flow is nearly isotropic, and therefore there is no
strong mean flow that could influence the scalar statistics in the inertial–convective range, hence the better agreement with the
OC theory. These results account for the form of the scalar spectra observed in experiments.
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