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Elastoinertial chains in a two-dimensional turbulent flow
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The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary
objects, modeled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions
among inertial beads result in a nontrivial sampling of the flow, ranging from entrapment within vortices to
preferential sampling of straining regions. This behavior is quantified as a function of inertia and elasticity and is
shown to be very different from free, noninteracting heavy particles, as well as inertialess chains [Picardo et al.,
Phys. Rev. Lett. 121, 244501 (2018)]. In addition, by considering two limiting cases, of a heavy-headed and a
uniformly inertial chain, we illustrate the critical role played by the mass distribution of such extended objects
in their turbulent transport.
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I. INTRODUCTION

The study of the dynamics of a long filamentary object
in a turbulent flow is fairly recent. In particular, studies on
the deformation [1–4] and buckling [5] of fibers, as well as
on their usefulness as a probe for the statistical properties of
a turbulent flow [6,7], have led to the development of new
ideas in the area of turbulent transport which go beyond the
spherical point-particle approximation.

The dynamics of such filamentary objects becomes par-
ticularly intriguing when their length extends beyond the
dissipation scale of the turbulent flow; the mean flow velocity
sampled by the object is then dependent on its instantaneous
shape, and this couples translation to flow-induced deforma-
tion. (The situation is considerably simpler for a subdissipa-
tion scale object, as its center of mass behaves like a tracer,
independently of its internal dynamics.) Recently, the work of
Picardo et al. [8], which studied long elastic chains consisting
of inertialess tracers linked by springs, revealed a new mech-
anism by which such objects preferentially sample the flow:
unlike a collection of noninteracting tracers, which distribute
homogeneously, these chains selectively occupy the vortical
regions of a two-dimensional turbulent flow, with a nontrivial
dependence on the elasticity (quantified by the Weissenberg
number Wi) and typical interbead separations in the chain.

This behavior of elastic chains is in contrast to the well-
known preferential sampling of straining regions exhibited
by noninteracting, heavy particles (whose inertia is measured
through the Stokes number St). More popularly known as
“preferential concentration,” this phenomenon has been the
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subject of extensive research in the last decade [9–16], moti-
vated by its relevance to a diverse range of physical processes,
from transport in particle-laden sprays [17] to collision-driven
growth of droplets in warm clouds [18,19].

It is critical to appreciate that the mechanisms of pref-
erential sampling by the elastic inertia-less chains and the
noninteracting, inertial particles are fundamentally different.
In the former, it is the elasticity of the links which allows such
chains to extend, coil up, and be trapped in vortices, whereas
for the latter the dissipative dynamics and centrifugal expul-
sion from vortices lead to particles concentrating in straining
regions. This contrast naturally leads us to investigate the
dynamics of a heavy elastic chain, which serves as a model
for an extensible filamentary object that possesses both inertia
and elasticity, as is the case in most physical situations. In
addition, by varying the masses of the particles that compose
a chain, we can study the effect of an inhomogeneous mass
distribution along the chain itself.

Therefore, such a chain provides a simple way to account
for the simultaneous effects of inertia, elasticity, and fluid
drag in models of filamentary objects, such as algae in marine
environments [20], biofilaments (actin and microtubules, for
instance) [21], and swimming microorganisms [22–24]. Of
course, such applications would require the consideration of
additional effects, such as an active swimming velocity and
interchain interactions. Nevertheless, the basic ideas eluci-
dated below, in particular the competing effects of inertia and
elasticity on preferential sampling, should remain relevant and
help pave the way for future studies.

II. MODEL

Towards this end, we consider an elastoinertial chain,
i.e., a sequence of heavy spherical particles—henceforth
called beads—which are connected to their nearest neigh-
bors through elastic (phantom) links [see Fig. 1(a)] with an

2470-0045/2020/101(5)/053105(7) 053105-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9227-5516
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.053105&domain=pdf&date_stamp=2020-05-18
https://doi.org/10.1103/PhysRevLett.121.244501
https://doi.org/10.1103/PhysRevLett.121.244501
https://doi.org/10.1103/PhysRevLett.121.244501
https://doi.org/10.1103/PhysRevLett.121.244501
https://doi.org/10.1103/PhysRevE.101.053105


SINGH, GUPTA, PICARDO, VINCENZI, AND RAY PHYSICAL REVIEW E 101, 053105 (2020)

FIG. 1. A schematic of (a) a uniformly inertial and (b) a heavy-
headed chain illustrating the notation used in the text.

associated timescale τE . The Nb beads that compose the chain
have positions x j , 1 � j � Nb, and each bead is characterized
by the inertial relaxation time τp (defined precisely later) with
which its velocity would relax to that of the fluid in the
absence of elastic interactions with the neighboring beads.
By incorporating the drag stemming from the advecting fluid
velocity field u and the elastic forces on each bead, we obtain
the equations of motion for the interbead separation vectors
r j = x j+1 − x j with 1 � j � Nb − 1 [see Fig. 1(a)]:

τpr̈ j = [u(x j+1, t ) − u(x j, t ) − ṙ j]

− 1

4τE
(2 f jr j − f j−1r j−1 − f j+1r j+1)

+
√

r2
0

2τE
[ξ j+1(t ) − ξ j (t )]. (1)

Here the “link velocity” is denoted as ṙ j = ẋ j+1 − ẋ j and the
“link acceleration” as r̈ j . We use the FENE (finitely extensible
nonlinear elastic) interaction f j = (1 − |r2

j |/r2
m)−1, where rm

is the maximum interbead length, commonly used in polymer
physics [25]. We also consider independent white noises
ξ j (t ) acting on each bead, in order to set the equilibrium
link-length, proportional to r0, thereby preventing the chain
from collapsing to a point object. Alternatively, this could be
achieved without including fluctuations, by incorporating r0

directly into the elastic forces, i.e., by replacing − f jr j with
− f jr j (1 − r0/|r j |) in Eq. (1). We have checked that the two
formulations lead to similar sampling behaviors. The equation
of motion for the center of mass xc is given by

τpẍc =
⎡
⎣ 1

Nb

Nb∑
j=1

u(x j, t ) − ẋc

⎤
⎦ + 1

Nb

√
r2

0

2τE

Nb∑
j=1

ξ j (t ). (2)

While in Eq. (1) the noise term is needed to set a nonzero
equilibrium size, it has a negligible effect on the trajectory of
the center of mass and produces only a small correction to its
turbulent eddy diffusivity.

In Eqs. (1) and (2), we have taken τp, τE , and r0 to be
identical for all beads and links. Thus we obtain a uniformly

inertial chain, which will be the main focus of our study.
However, to explore the role of the mass distribution of the
chain, we also consider a second case, in which all the inertia
is concentrated in a single heavy end bead ( j = 1), with the
remainder of the chain composed of Nb − 1 inertia-less beads,
as illustrated in Fig. 1(b). Such a “heavy-headed chain” pits
the inertia of the head bead against the elasticity of its tail and
serves as an ideal candidate to illustrate the effects of these
competing forces. The equations of motion for the interbead
links of such a heavy-headed chain are a specific instance of
Eqs. (1) and (2) and are given by

ṙ j = u(x j+1, t ) − u(x j, t )

− 1

4τE
(2 f jr j − f j−1r j−1 − f j+1r j+1)

+
√

r2
0

2τE
[ξ j+1(t ) − ξ j (t )], ∀ j �= 1 (3)

and for j = 1:

ṙ1 = u(x2, t ) + 1

4τE
( f2r2 − f1r1) +

√
r2

0

2τE
ξ2(t ) − ẋ1. (4)

The center of mass, which coincides with the head bead, obeys

τpẍ1 = [u(x1, t ) − ẋ1] + 1

4τE
f1r1 +

√
r2

0

2τE
ξ1(t ). (5)

Equations (1) to (5) complete the description of the dynamics
of our two types of elastoinertial chains. This, of course, is
a minimal description because, in order to keep the model
as simple as possible, we have neglected certain effects that
are not essential to our study. Hydrodynamic and excluded-
volume interactions between the segments of a chain, al-
though present in a real filament, are not expected to modify
the dynamics qualitatively. As was shown in Ref. [8] for
an inertial-less chain and as will be further demonstrated
below for elastoinertial chains, preferential sampling in two-
dimensional turbulence results from a dramatic difference
in the configuration of the chain in straining and vortical
regions (for instance, inertia-less chains are highly stretched
in the former and coiled up in the latter [8]). This essential
qualitative behavior would be affected only marginally by the
aforementioned interactions. Collisions and hydrodynamic
interactions between different chains as well as the back
reaction of the chain dynamics on the flow would be relevant
to the study of a suspension of chains, but less so to the present
study, in which we focus on how a single chain samples
a turbulent flow. Finally, our elastic links do not offer any
resistance to bending, which ought to be important in any
realistic modeling of an elastic filament [26]. The reason for
disregarding it here is that, for an extended object advected by
a turbulent flow, little is known even about just the interplay
between its elasticity and inertia. Thus, the goal of our study
is to understand this issue by considering a minimal model of
an elastic filament that allows us to isolate the competing roles
of inertia and elasticity. Refinements of the model, aimed at a
more realistic description of an elastic filament, will naturally
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have to consider its bending stiffness as an additional feature
of the dynamics.

We immerse the elastoinertial chain in a two-dimensional,
homogeneous, isotropic turbulent velocity field u, which is
obtained through direct numerical simulations (DNSs) of the
incompressible (∇ · u = 0) Navier-Stokes equation:

∂t u + (u · ∇)u = −∇p + ν∇2u + f − μu. (6)

Two-dimensional flows are particularly useful for investigat-
ing the competing effects of elasticity and inertia because of
long-lived, coherent vortical structures, as we shall see later.
We use a standard pseudospectral method to solve Eq. (6) on
a 2π square periodic domain with N2 = 10242 collocation
points. We drive the flow to a turbulent, statistically steady
state with an external forcing f = −F0sin(k f x)ey, where F0

is the forcing amplitude and k f sets the energy injection and
typical vortex scale l f = 2πk−1

f . The energy at large scales
(due to an inverse cascade) is damped out by using an Ekmann
term [27,28] with the coefficient of friction μ = 10−2. The
flow is characterized by the large eddy-turnover timescale
τ f = l f /

√
2E and the short timescale τη = 1/

√
2〈ω2〉 associ-

ated with enstrophy dissipation, where E is the mean kinetic
energy of the flow and 〈ω2〉 is the mean enstrophy (averaged
spatially over the domain and temporally over the statistically
steady state). We set the coefficient of kinematic viscosity
ν = 1 × 10−6, k f = 5, and F0 = 0.2, giving τ f = 1.45 and
τη = 0.35.

As mentioned earlier, we study the dynamics of a single
chain and its preferential sampling of the flow. However, we
evolve 5 × 104 chains simultaneously with the purpose of
illustrating preferential sampling visually as well as achieving
high accuracy in the statistics of chain deformation and trans-
lation. The dynamics of the chains is determined by Eqs. (1)
and (2) or (3) to (5). These are numerically integrated by
a second-order Runge-Kutta scheme. Each chain consists of
Nb = 10 beads and has a maximum length of Lm = (Nb −
1)rm = 1.25 (comparable to the forcing scale l f ) as well as an
equilibrium length proportional to

√
(Nb − 1)r0 = 0.04. The

dynamics of the chain is controlled entirely by its elasticity
and inertia, described respectively by the Weissenberg number
Wi = τchain/τ f , where τchain = 6τE/[Nb(Nb + 1)] provides an
estimate of the effective relaxation time of the entire chain
[29], and the Stokes number St = τp/τη. The inertial relax-
ation time τp = 2ρpa2/9ρ f ν, where ρp and ρ f are the particle
and the fluid densities, respectively; a is the radius of the
spherical particle. We use several values of Wi and St to ex-
plore the different regimes in the behavior of our elastoinertial
chains. We note that the timescales of the elasticity of the links
and the inertia of the beads are independent of each other.

III. RESULTS

We begin our study by asking (1) are elastoinertial chains
really different from noninteracting inertial particles and
(2) does the use of inertial beads, instead of tracer ones as
in Ref. [8], modify the dynamics qualitatively? We answer
these questions first in the context of the heavy-headed chains
[Eqs. (3)–(5)], where the competing influences of elasticity
and inertia are most easily illustrated.

In Figs. 2(a) and 2(b), we show representative snapshots
of (a) noninteracting inertial particles and (b) heavy-headed
chains (the inertial head bead is shown in red, and the inertia-
less tail is in black) in a two-dimensional turbulent flow.
The underlying vorticity fields, on which for clarity only a
random subset of particles or chains is overlaid, are different
realizations of the same statistically steady flow. As expected,
the inertial noninteracting particles preferentially concentrate
in the straining zones of the flow. The behavior of the heavy-
headed chains, though, is in stark contrast to this and also
differs from the dynamics of the inertia-less elastic chains
studied in Ref. [8]. Indeed, in the absence of inertia, elastic
chains coil up into vortices and shrink down to tracer-like
objects, which then continue to reside inside vortices, whereas
in straining regions they are rapidly stretched out until they
depart from the underlying straining flow and encounter a vor-
tex. Thus, inertia-less chains get preferentially trapped inside
vortices (see Ref. [30] for a movie depicting this behavior),
and snapshots such as those in Fig. 2 would show them to be
located well inside the core of vortices [8].

Returning to the snapshot of the heavy-headed chains in
Fig. 2(b), we see that a majority of them overlap with vortical
regions, while, however, remaining elongated, unlike inertia-
less chains. The head beads, which are inertial, live on the
periphery of the vortices, while their inertia-less elastic tails
are pinned to the vortex cores, tracing out a Ferris-wheel pat-
tern. This is especially clear when we look at the arrangement
of the chains in and around the vortex visible in the top left
corner of Fig. 2(b) (the inset shows a zoomed-in view of this
vortex). The elasticity of the tail, which keeps it pinned to
the core of the vortex (through the mechanism identified in
Ref. [8]), competes with the centrifugal force that pushes the
head inertial bead out of the vortex. It is this competition
between the two effects which manifests itself in the head
beads encircling the edge of the vortices. We refer the reader
to Ref. [30] for a movie showing the motion of these chains
in the flow, which illustrates this phenomenon—especially the
Ferris-wheel pattern—clearly.

These results show that combining an inertial particle with
an elastic tail gives rise to dynamics which are very different
from that of either a free inertial particle or a purely elastic
chain. Such a competition between inertia and elasticity,
which dictates the behavior of a heavy-headed chain, also
impacts the dynamics of a uniformly inertial chain [Eqs. (1)
and (2)], but in a less obvious manner. In Fig. 2(c) which
presents a snapshot of uniformly inertial chains (see Ref. [30]
for a movie of the time evolution), the core of the strongest
vortices are evacuated because of centrifugal forces, while the
weaker vortices are still occupied by partially coiled inertial
chains. The stark difference between Figs. 2(b) and 2(c)
provides a vivid illustration of the importance of the mass
distribution of such long objects. For a better appreciation of
these effects, we now turn to a more quantitative measurement
of the sampling behavior of elastoinertial chains.

A natural way to quantify the relative sampling of vortical
and straining regions is to measure the (Lagrangian) Okubo-
Weiss parameter

	c = ω2
c − σ 2

c

4〈ω2〉 (7)
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FIG. 2. Representative snapshots of a randomly chosen subset of (a) noninteracting inertial particles, as well as (b) heavy-headed chains
and (c) uniformly inertial chains overlaid on the vorticity field. The centers of mass of the chains are shown by red dots [like the free particles
in panel (a)] and the chain itself by black lines. The inset in panel (b) shows a zoomed-in view of the vortex located near the top-left corner of
this panel. We show results for St = 0.14 and Wi = 1.38 [for panels (b) and (c)].

at the center of mass of the chains along their trajectories.
The vorticity ωc and the strain rate σc are measured at
the center of mass and normalized by the mean enstrophy
〈ω2〉 of the flow. The sign of this parameter is a signa-
ture of the local geometry of the flow: 	c > 0 implies that
the center of mass lies in a vortical region, while 	c < 0
is indicative of a straining zone. As is obvious from the
definition of 	c, extremely small values correspond to re-
gions with comparable amounts of vorticity and straining.
As an alternative to 	c, one could measure the values of
the Okubo-Weiss parameter averaged over all the beads of
each chain. We have verified, especially for large Wi, that the
two measurements give similar results and lead to the same
conclusions.

In Fig. 3 we show the plots of the probability distribution
function (PDF) of 	c for noninteracting inertial particles and
uniformly inertial chains. We consider four values of Wi (0.07,
0.35, 1.38, 6.92) for each of three Stokes numbers: (a) St =
0.14, (b) St = 0.85, and (c) St = 2.84.

For small, but still nonzero Stokes numbers [see Fig. 3(a)],
noninteracting inertial particles have a distribution of 	c

which is negatively skewed, indicating a preferential sampling
of straining regions [31]. (Note that uniformly distributed
noninteracting tracers would show a positively skewed PDF
of 	c owing to the presence of intense coherent vortices in
the flow [27,32].) However, for a chain of inertial beads with
the same Stokes number, the effect of the elasticity draws the
chain (defined by its center of mass) towards more vortical
regions. This is clearly seen in the widening of the right tails
of the PDF as Wi increases [Fig. 3(a)].

This effect of elasticity persists, qualitatively, as St is
increased to intermediate values, but is considerably weaker
[Fig. 3(b)]. On the one hand, the increasing centrifugal forces
acting on the chains counteract the tendency of elasticity
to entrap them in vortices, causing the large-Wi PDFs to
show less positively skewed tails. On the other hand, the
noninteracting inertial particles begin to decorrelate from
the flow and start to distribute more uniformly, which causes

FIG. 3. PDFs of 	c measured for uniformly inertial chains with (a) St = 0.14, (b) St = 0.85, and (c) St = 2.84. Curves are plotted for
different degrees of elasticity of the chains, as well as for noninteracting inertial particles (see legend). The insets show the same distributions
for the heavy-headed chains, but for only two values of Wi.
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FIG. 4. (a) Pseudocolor plots of the skewness γ of the distribution of 	c, in the St-Wi plane, for uniformly inertial chains. For comparison,
the same skewness obtained for noninteracting particles is shown in panel (b). We also show in panel (c) the average normalized length of the
inertial chains as a function of St for a few representative values of Wi.

the corresponding PDFs of 	c to become more positively
skewed. The net result is that the effect of Wi weakens,
and eventually for large St the PDFs of 	c become nearly
independent of elasticity [Fig. 3(c)].

Along with the preferential sampling of vortices, increas-
ing Wi also causes a relatively mild oversampling of strong
straining regions in comparison with noninteracting particles.
This effect is more prominent at small St, as seen in the
negative tails of Fig. 3(a). The strong straining regions in two-
dimensional turbulence are saddle-like, with a stable direction
along which the flow enters and an unstable one along which
the flow departs. An inertial point particle in such a saddle
region would quickly depart along either branch of the unsta-
ble direction. A chain, in contrast, cannot depart as easily: it
gets stretched out and oriented along the unstable direction,
with the fluid drag at one end of the chain counter-acting that
at the other (see the movie in Ref. [30]). The consequence
is that an inertial chain spends more time in strong straining
zones compared to an inertial point particle. This effect is lost
at larger St, as the motion of the chain decorrelates from the
instantaneous underlying flow field [Fig. 3(c)].

We now turn to the sampling behavior of a heavy-headed
chain. The corresponding PDFs of 	c, measured at the head
bead, which coincides with the center of mass, are shown in
the insets of Fig. 3. For clarity, we present only representative
results in each case, for Wi = 0.07 and 0.35. For small St
[inset of Fig. 3(a)], the effect of Wi is qualitatively similar to
that for a uniformly inertial chain. For larger St, however, the
PDFs are quite different. While the elastic tail gets entrapped
inside vortices, centrifugal forces push the heavy head bead
to their periphery, where the flow is neither intensely vortical
nor strongly straining. Consequently, the corresponding PDFs
have relatively narrow tails, for both positive and negative
values of 	c [insets of Figs. 3(b) and 3(c)].

A convenient way of further quantifying the complex de-
pendence of preferential sampling on the inertia and elasticity
of a chain is to calculate the skewness of the PDFs of 	c,

γ = 〈(	c − 	̄c)3〉
〈(	c − 	̄c)2〉3/2 , (8)

where 	̄c is the average value of 	c, as a function of both
the Stokes and Weissenberg numbers. For comparison, let us
first consider the plot of γ vs St for noninteracting inertial
particles shown in Fig. 4(b). Here, γ is negative over inter-
mediate values of St, where there is evidence of preferential
concentration (e.g., Ref. [12]), whereas for St → 0 or St 
 1,
the homogeneous distribution of these particles ensures that γ

is positive (as is the case for tracers).
In Fig. 4(a) we show a pseudocolor plot of the skewness γ

in the St-Wi plane for a uniformly inertial chain. We see that
when the chain stretches marginally, i.e., for Wi � 1, γ shows
qualitatively the same dependence on St as for noninteracting
particles [Fig. 4(b)]. However, when Wi � 1, the chains are
elongated and get trapped by vortices, thereby increasing both
the value of γ and the range of St for which γ > 0.

The difference between a uniformly inertial chain and an
inertial-less one [8] can be appreciated by comparing the
behavior of γ versus Wi for St around unity with the case
of St → 0, in Fig. 4(a). Indeed, for nonzero Stokes numbers,
there is a reversal in the sampling behavior, with γ going from
negative to positive values with increasing Wi. In contrast,
when St → 0, γ remains strictly positive while showing a
nonmonotonic dependence on Wi, as has been shown in
Ref. [8] and is further discussed below. In the opposite limit
of very large St, γ is nearly independent of Wi, in accordance
with the PDFs of 	c shown in Fig. 3(c).
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FIG. 5. PDF of the interbead separation r for uniformly inertial
(St = 0.14) chains, for different values of Wi (see legend). The
solid (black) vertical line corresponds to the maximum link length
rm and the dashed-dot (magenta) line corresponds to r0 which sets
the equilibrium link length. With increasing elasticity, we see the
distributions develop broader tails and eventually, at large values of
Wi, peak near rm.

Our arguments, so far, are largely based on the stretching
of the chain. It is, therefore, essential to check if stretching
indeed happens in the way we suggest. In Fig. 4(c) we show
representative plots of the average length of the chain 〈R〉,
normalized by l f , as a function of St, and for different values
of Wi. For a negligible Wi, there is hardly any evidence of
stretching. However, as soon as Wi is nonzero, the chain starts
stretching much more, in a manner that depends nontrivially
on the inertia of the beads.

The variation of the chain length with St occurs in two dis-
tinct regimes, which are most clearly visible for the large-Wi
case in Fig. 4(c). For St � 1, an inertial chain preferentially
samples straining regions of the flow more than an inertial-less
one and, therefore, is stretched out more. As St approaches
unity, however, the heavy chains begin to decorrelate from
the flow, and the degree of sampling of straining regions
is reduced [the same is seen for noninteracting particles in
Fig. 4(b)]. This is why the chain lengths, especially for large
Wi, show a weak local maximum for intermediate values
of St ≈ 0.1, where the preferential sampling is strong [see
Fig. 4(b)]. In the second regime, of St > 1, the chain lengths
again show an increasing trend. This is because, unlike small-
St beads, which are well correlated with the flow, the velocity
differences between large-St beads do not scale with their
separation—even beads that are close to each other can have
very different velocities. Therefore, it is more difficult for the
elastic links to keep such heavy inertial beads together, and
the chain elongates as St increases.

The stretching of the chain is, of course, rooted in the
distribution of the lengths of individual links. In Fig. 5 we
show a representative plot of this PDF for St = 0.14 and
for different values of Wi. When Wi is very small, the PDF
is narrow with a peak, as expected, near the equilibrium
length scale r0. With increasing Wi, the PDF initially develops
broader tails, but which, for Wi � 1, are still far from the
cutoff rm imposed in our model. As Wi increases beyond unity,
however, the distribution starts getting flatter and eventually
peaks near to r = rm. For such large-Wi chains, the typical
interbead separation is of the order of the vortex size; this
limits the ability of the chains to coil into vortices, as succes-
sive beads can no longer simultaneously encounter the same
vortex (finite Nb acts a restriction on deformability) [8]. This
is the reason why γ , for St → 0, shows a peak for Wi ≈ 1
and gradually decreases at large values of Wi [Fig. 4(a)].
For St � 0.1, however, the centrifugal forces acting on the
beads prevent excessive entrapment of chains into vortices,
thus eliminating the local maximum in γ and resulting in a
more gradual and monotonic increase with Wi.

IV. CONCLUSIONS

Inertia and elasticity are two fundamental properties of
extended objects. While the former causes expulsion from
vortical regions, as seen for inertial particles, the latter leads
to entrapment within vortices, as observed for inertia-less
chains. This work has shown, in the context of a model
elastoinertial chain, that these competing features interact and
result in a nontrivial sampling of a turbulent flow. Moreover,
the dynamics of a heavy-headed chain, and its contrast with
that of a uniformly inertial one, has shown that a nonhomo-
geneous mass distribution can lead to a persistent orientation,
which keeps the heavier portion of an elastic filament away
from vortical regions. Given this, our work, based on model
elastic filaments with inertia, serves as a building block for
future experimental and numerical studies of the dynamics of
extended objects in turbulent flows.
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