PHYSICAL REVIEW E 93, 052605 (2016)

Polymer stretching in the inertial range of turbulence
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We study the deformation of flexible polymers whose contour length lies in the inertial range of a homogeneous
and isotropic turbulent flow. By using the elastic dumbbell model and a stochastic velocity field with nonsmooth
spatial correlations, we obtain the probability density function of the extension as a function of the Weissenberg
number and of the scaling exponent of the velocity structure functions. In a spatially rough flow, as in the inertial
range of turbulence, the statistics of polymer stretching differs from that observed in laminar flows or in smooth
chaotic flows. In particular, the probability distribution of polymer extensions decays as a stretched exponential,
and the most probable extension grows as a power law of the Weissenberg number. Furthermore, the ability of
the flow to stretch polymers weakens as the flow becomes rougher in space.
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I. INTRODUCTION

One of the main phenomena that characterize the defor-
mation of flexible polymers in a fluid flow is the coil-stretch
transition, which consists in an abrupt increase in polymer
extension as the intensity of the velocity gradient exceeds a
critical value [1-3]. The coil-stretch transition was predicted
by de Gennes [4] in the case of a planar extensional flow.
The relevant dimensionless parameter for the transition is the
Weissenberg number Wi = y t, where y is the amplitude of
the velocity gradient and t is the polymer relaxation time. In
an extensional flow, a polymer stays in the equilibrium coiled
configuration as long as Wi < 1/2 and unravels almost com-
pletely as Wi exceeds 1/2. Correspondingly, the probability
density function (PDF) of polymer extensions consists of a
narrow peak that, as Wi exceeds 1/2, rapidly moves from
extensions close to the equilibrium size of the polymer, R,
to extensions close to its contour length L. In his study of the
coil-stretch transition, de Gennes [4] used the elastic dumbbell
model, which describes a flexible polymer as two inertialess
beads connected by an elastic spring and subjected to thermal
fluctuations [5]. In the frame of reference of the center of mass,
the configuration of a dumbbell is specified by the separation
vector between the beads, R, which satisfies the stochastic
ordinary differential equation [5]

2
R:R.Vu—&RJr,/&n(t), (1)
2t T

where u is the incompressible velocity field, R = |R|, n(¢)
is vectorial white noise, f(R) = 1 for a Hookean dumbbell
and f(R) = 1/(1 — R?/L?) for a finitely extensible nonlinear
elastic (FENE) dumbbell. Perkins et al. [6] have observed
the coil-stretch transition in a planar extensional flow by
examining the deformation of fluorescently labeled DNA
macromolecules.

Lumley [7,8] and subsequently Balkovsky et al. [9] have
employed the elastic dumbbell model to show that the coil-
stretch transition also occurs in chaotic or random flows.
This phenomenon has been confirmed experimentally by
Steinberg and coworkers [3,10,11] via the direct observation
of single-polymer dynamics in chaotic flows generated by
elastic instabilities. It has also been studied in numerical
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simulations of the dumbbell model for randomly fluctuating
flows [12,13] and turbulent flows [14—17]. The criterion for the
transition is that the Weissenberg number Wi = At exceeds
1/2, where A is the Lyapunov exponent of the flow [9,18].
However, in chaotic flows the statistics of polymer stretching
has different properties compared to the laminar case. Indeed,
for intermediate extensions (Ry << R < L), the PDF of R
behaves as a power law of the form R~'~®. Thus, for a
comparable intensity of the velocity gradient, the distribution
of the extensions is much broader than in a laminar flow; coiled
and stretched polymers coexist in the flow, and the value of Wi
determines which configuration is predominant. The exponent
« is a decreasing function of Wi; it is positive for Wi < 1/2,
equals zero for Wi = 1/2, and is negative for greater values of
Wi [9]. Hence, in the Hookean dumbbell model (L = 00),
the probability distribution of the extension ceases to be
normalizable for Wi = 1/2, and this behavior is interpreted
as the sign of the coil-stretch transition in chaotic flows [9]. In
the more realistic FENE model, the emergence of the stretched
state manifests itself through the fact that the slope of the PDF
of intermediate extensions changes from negative to positive,
and consequently the maximum of the PDF of R abruptly
moves from close to Ry to close to L [19,20].

The phenomenology described above holds when the
correlation time of u is short compared to A~ In the opposite
regime, the dynamics of the coil-stretch transition is different.
The PDF of the extension is bimodal, and the appearance
of the stretched state occurs through the drop of the peak at
Ro and the simultaneous rise of a second peak at L as Wi
increases [21]. At large values of Wi, the PDF of intermediate
extensions behaves as R~ [21].

All the aforementioned studies of the dumbbell model
assume that u is spatially smooth in the neighborhood
of the polymer and that Vu is uniform over the size of
the molecule. For sufficiently large Reynolds numbers, the
polymer contour length can exceed the viscous scale and
polymers can stretch into the inertial range of turbulence,
where the flow is spatially rough [22]. The Reynolds number
required for polymers to experience inertial-range fluctuations
is lower for long biological macromolecules, such as those
used in the study of the coil-stretch transition in laminar
velocity fields [23]; long fibers can even approach the integral
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scale of a turbulent flow [24]. Wiese [25] has studied polymer
deformation in a random field with nonsmooth spatial correla-
tions by using renormalization-group techniques. Davoudi and
Schumacher [26] have examined the dynamics of dumbbells
that can stretch into the inertial range in a numerical simulation
of polymer dynamics in a turbulent flow. Here we study
this problem analytically by using a stochastic model of
inertial-range turbulence. We obtain the PDF of polymer
extension as a function of the scaling exponent of the velocity
structure functions and show how, in a spatially rough flow,
the phenomenology of polymer stretching differs from that
observed before in laminar or in smooth chaotic flows.

II. SHORT-CORRELATED RANDOM FLOW

A fully analytical study of the coil-stretch transition in
random flows can be performed in the limit in which the
correlation time of u is short. This has been achieved in the
case of a smooth random flow by using the Batchelor regime of
the Kazantsev-Kraichnan model [27,28] to mimic small-scale
velocity fluctuations (see Ref. [29] for a review on the
application of this model to turbulent transport). The velocity
field is Gaussian, statistically homogeneous and stationary,
and has zero mean and correlation:

(ui(x +r,0u;(x,t)) = Dij(r)s(t — 1), 2

where the incompressibility of u requires ) >, dD;;/dr; = 0.
The velocity gradient thus plays the role of a multiplicative
noise in Eq. (1). Note that, in virtue of the incompressibility
of u, whether Eq. (1) is interpreted in the Itd or in the
Stratonovich sense is immaterial as far as the statistics of R
is concerned [29]. The PDF of the separation vector, P(R),
indeed satisfies the Fokker-Planck equation [30]:

R? 1
o,P = |:dij(R) + 2—:5ij:|3R13R,P - 2_TaRi[f(R)RiP]’ 3)

where d;;j(r) = D;;(0) — D;;(r) are the structure functions of
the velocity field. If # is smooth and statistically isotropic and
invariant under reflections, d;;(r) takes the form [29]

dij(r) = Dir*[(d + 1)§;; — 2771, )

where D; > 0 determines the amplitude of the fluctuations of
the velocity and d is the dimension of the flow. In this case, the
stationary PDF of R only depends on R and can be sought as
the long-time solution of the following Fokker-Planck equation
in one variable:

dr P = —r[C1(R)P] + 32[C2(R)P], )

where T = t/2t,C|(R) = 2(d + 1)WiR/d — f(R)R+ (d —
)R3/R, and C>(R) =2WiR?/d + R} [13,19,20,31] (for
further details on the notation, see Ref. [32]). Here Wi = A,
where A = D;d(d — 1) is the Lyapunov exponent of the
flow [33,34].

As R must be positive, the solution of Eq. (5) must satisfy a
reflecting boundary condition at R = 0. Thus, in the stationary
state the probability current must vanish everywhere, and the
stationary solution of Eq. (5) is (e.g., Ref. [35])

R
Py(R) o exp [/ d¢ Cl(;“)/Cz(é“)]/Cz(R). (6)
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In particular, for the FENE model, the explicit expression of
the exponent « that characterizes the power-law behavior of
Py (R) for intermediate extensions is [20]:

a = (R/L*+2Wi/d) ' —d. 7

For realistic values of Ry and L, the ratio R3/L? is much
smaller than 1; hence o ~ —d(1 — 1/2Wi) and approaches
—d as Wi increases.

III. STRETCHING OF POLYMERS IN A SPATIALLY
ROUGH FLOW

In a turbulent flow, the assumption that Vu is uniform
over the size of the polymer is appropriate provided the
contour length of the polymer is much smaller than the
Kolmogorov dissipation scale £ (e.g., Ref. [36]). The velocity
field can then be Taylor expanded and, to a first approximation,
the stretching effect of the flow is entirely given by the
velocity gradient [see Eq. (1)]. However, long polymers with
Ry < €k but L > £x may extend beyond the Kolmogorov
scale into the inertial range, where u is nonsmooth [36].
Davoudi and Schumacher [26] have considered an elastic
dumbbell with maximum length greater than £¢ in a turbulent
shear flow. The numerical simulations show that the PDF of
R reaches a stationary form even for Wi greater than the
critical value and for a Hookean force. Indeed, whereas in
a smooth flow fluid particles separate exponentially, when the
velocity is only Holder continuous the mean-square separation
grows asymptotically in time as t# with g > 1 [29]. As a
consequence, for extensions R > £k the stretching effect
of the flow is weaker than the elastic relaxation even for a
linear elastic force [26]. These findings are systematized below
within the Kazantsev-Kraichnan model.

If R can take values greater than fg, the full difference
between the velocities of the polymer ends must be retained
in the dumbbell equation [26,37,38]:

. R R?
R =u(xs,t) —u(xy,t) — fz(—T)R +,/ 7" n@), @8

where x| and x, are the positions of the two beads that
compose the dumbbell (the separation vector is defined as
R = x; — xy). For r > £g, the tensor d;;(r) can be written
in such a way as to reproduce the structure functions of a
non-smooth velocity field [29]:

dij(r) = a€)Dx “r¥[(d — 1 + £)8;; — ERFL, (9)

where a(£) is a positive constant and £ /2 can be interpreted
as the Holder exponent of the velocity field and varies
between 0 (white noise) and 1 (smooth flow). The value of &
corresponding to the inertial-range scaling of a turbulent flow
is & = 4/3 [39]. In this flow, the separation between two fluid
particles grows in time according to a generalized Richardson
law: (r*t) ~ ¢#/2= [29]. The impact of this property of the
flow on the statistics of polymer stretching can be examined
by substituting d;;(R) from Eq. (9) into Eq. (3) and by
setting f(R) = 1 and Ry = 0. For £¢ < R < L, the drift and
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diffusion coefficients in Eq. (5) thus take the form

2d — 1+ 8a©Wi ,_,
P =p

Ci(p) = p ,

(10)

Y

with p = R/{k, and from Eq. (6) the zero-current solution of
Eq. (5)is
dp*%
P, x p?le -,
wloy oot e [ 2aEWI2 — §)
1< p<KLjtk. (12)

Note that Py (p) has the same form as the instantaneous PDF
of the distance between two fluid particles that separate in
the inertial range of a turbulent flow [39]. Contrary to the
case of a smooth flow, Py(p) is normalizable for all Wi
even in the limit L — oo. Thus, according to the criterion
introduced by Balkovsky et al. [9], there is not a coil-stretch
transition if the maximum length of polymers lies within
the inertial range of a turbulent flow. Nevertheless, as Wi
increases, polymers can stretch significantly according to the
following phenomenology. For Wi < d/2(d — 1), Py(R) has
a maximum near to Ry, it decays as a power law R~'~
with o > 0 for Ry <« R « fg, and decays as a stretched
exponential for R > £x. For Wi 2 d/2(d — 1), the PDF of
R increases as a power law for Ry < R < £k and behaves
as in Eq. (12) for {x < R <« L. For all Wi, Py(R) falls
fast to zero near to L. Hence, the peak of Py(R) is at
R, = £Lx[2(d — Da(&)Wi/d]'/®=% for the Hookean model
and near to the smaller of R, and L for the FENE model.

The full PDF of R can be calculated by choosing d;;(r) in
such a way as to interpolate between the smooth form given
in Eq. (4) and the inertial-range behavior discussed in this
section. The structure functions of a three-dimensional (d =
3), statistically homogeneous, isotropic, and parity invariant
velocity field can be written as [40,41]

dij(r) =dyn(r)di; + [dpL(r) — dvn(PIFF}, (13)

where dy 1 (r) and dyy(r) are the longitudinal and transverse
structure functions, respectively, and can be expressed in terms
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of the scalar spectrum E (k) as follows [41]:

() 4/°° 1 + cos(kr)  sin(kr)
r)= = -
b o L3 k2 k3r3

dyn(r) =dpp(r) + %diL(rl 15)

1|E(k)dk, (14)

The equation for dyy(r) follows from the incompressibility
of u. In order to obtain structure functions that interpolate
between the smooth behavior for r << £x and the Holder
behavior with exponent & /2 for r > £g, we choose [29]

E(k)=ce Pk 175 0<& <2, (16)

where ¢ is a positive constant and has the dimensionality
of length’~$time~!. The above expression assumes that the
integral scale of the flow is set to infinity or, in other words,
that L is much smaller than this scale. Equation (14) then
yields (see formulas 3.952.7, 3.952.8, 9.212.1, in Ref. [42])

drr(r)
26% & 1 r2
A5 )

=c€ir<—
3 2 2
ENTEA | S
21 3

—1F1(—

where T is the Euler gamma function and | F is the confluent
hypergeometric function of the first kind. The asymptotic
expressions of dy 1, (r) can be obtained by using formulae 13.1.2
and 13.1.5 in Ref. [43]:

5
2
s
2

dpo(r) ~2Dir*  (r < Lg), (18)
and
dip(r) ~2D1aE)y S rf (> k), (19)
with
okl
Dy = = —IN(=£/2), (20)
and
21 mE+4)
() =15 . Q1)
‘ EGE +2)E + 50 ()
]00,

1071 L
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FIG. 1. Left: Stationary PDF of R/L for Ry = 0.1, 5 = 1, L = 103, & = 4/3, and Wi = 2.75 (black dotted line), Wi = 5.0 (black dashed
line), Wi = 7.0 (black dot-dashed line), Wi = 14.5 (black solid line), Wi = 30 (gray solid line), Wi = 60 (gray dashed line). The PDF is
normalized as follows: fooo Py(R)dR = 1. Right: Maximum of the PDF of R rescaled by L as a function of Wi. The dashed line is proportional

to Wi*/2,
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10

Py(R/L)

R/L

FIG. 2. Stationary PDF of R/L for Ry = 0.1, £, =1, L = 10°,
Wi = 30, and & = 1/3 (black dotted line), £ = 2/3 (black dashed
line), £ = 1 (black dot-dashed line), & = 4/3 (gray solid line), £ =
5/3 (gray dashed line), & = 2 (black solid line). The gray solid line
is the same as described in the caption of Fig. 1. For & = 2, the
stationary PDF of R/L is calculated by using Eq. (4); its explicit
form can be found in Ref. [20].

Thus, the structure functions under consideration have the
asymptotic behaviors given in Eqgs. (4) and (9).

By inserting Eq. (13) into Eq. (3) and by using statistical
isotropy, we obtain the following expressions for the drift and
diffusion coefficients of the Fokker-Planck equation for P(R)
[see Eq. (5)]:

4TdLL(R) 2R2
R

Ci(R) = +2td},(R) — Rf(R) + TO’ (22)

C2(R) = 2tdp(R) + R3. (23)

The stationary PDF of R is then calculated by substituting
Ci(R) and C(R) from Egs. (22) and (23) into Eq. (6).
Figures 1 to 2 illustrate the behavior of the PDF of R/L for
different values of Wi and &. The equilibrium size and the
maximum length of the dumbbell are chosen in such a way as to
emphasize the range of extensions £x¢ < R < L, in which the
dumbbell experiences spatially rough velocity fluctuations. As
Wi increases, the distribution of polymer extensions broadens
considerably, and its maximum progressively translates toward
larger extensions, until nonlinear elastic effects become impor-
tant (Fig. 1). Thus, increasing Wi has the effect of stretching
polymers beyond £, even though fairly large values of Wi are
required for the PDF of extensions comparable to L to become
appreciable. Moreover, the emergence of the stretched state is
gradual as a function of Wi (R, only grows as a power law of
Wi) and, even for the largest values of Wi, a significant fraction
of polymers deforms only in part. Finally, Fig. 2 shows that
the ability of the flow to stretch polymers beyond £ is rather
weak for small £ and strengthens as the spatial regularity of the
flow improves. In particular, both the mean and the standard
deviation of Py(R) increase with increasing &.

IV. CONCLUSIONS

We have studied the statistics of polymer extension in a
homogeneous and isotropic turbulent flow in the case in which
the contour length of the polymers lies in the inertial range.
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By using the elastic dumbbell model and a stochastic velocity
field with nonsmooth spatial correlations, we have analytically
calculated the PDF of polymer extension as a function of
the Weissenberg number and of the scaling exponent of the
velocity structure functions.

The behavior of Py(R) can be summarized as follows:

R, 0 < R < Ry,
PR x {77 Ry < R < Lk, (24
R*lexp(— 2 B2, 4y « RKL
p Wi e%(—& k] K ’

where « is defined in Eq. (7) and b is a positive constant.
For sufficiently large values of Wi, Py(R) consists of a power-
law left tail with an exponent close to d — 1 and a stretched
exponential right tail, which falls fast to zero near to L. The
PDF of R is very broad; hence, polymers with very different
end-to-end extensions coexist in the solution.

Our study shows that even a spatially rough random flow
can stretch polymers. However, the way the stretched state
emerges is different from that found in laminar flows and in
smooth random flows (L < £k). In particular, for a smooth
random flow with short correlation time, Pgy(R) displays
a power-law behavior for Ry < R <« L with a slope that
changes from negative to positive as Wi increases [9]. Hence,
when Wi exceeds a critical value, the maximum of Py(R)
abruptly moves from near to Ry to near to L [20]. If the
contour length of polymers exceeds the dissipation scale of
a turbulent flow, increasing the Weissenberg number results
in a gradual translation of the maximum of Py(R) from R
to R, o £xWi’@=® until nonlinear elastic effects dominate
the dynamics. Contrary to the case L < fk, the emergence
of the stretched state is therefore not abrupt and there is
not a coil-stretch transition. Moreover, compared to the case
L < £k, much larger values of Wi are required to obtain
comparable fractional extensions if L > €. The stretching
effect of the flow also weakens as the flow becomes rougher
in space.

The scale R, can be identified with Lumley’s scale in the
theory of turbulent drag reduction [8,26]. The scale R, is such
that the eddy turnover time associated with R, is comparable
to the polymer relaxation time 7. At scales smaller than R,, the
stretching effect of the flow dominates the elastic relaxation,
whereas the latter is stronger than the former at larger scales.

Our study can be generalized to the case of dumbbells
whose maximum extension exceeds the integral scale £ of
a turbulent flow. By definition of integral scale, the velocity
field is indeed spatially uncorrelated at scales greater than ;.
Hence, the behavior of the structure functions for r > £y can
be captured by setting & = 0 in Eq. (9). From Eq. (12), the
PDF of R for £y < R < L is therefore of the form Py (R) o
R~ exp[—bo R? /€3 Wi] with by > 0, which indicates that the
probability of polymer extension decreases very rapidly for
R > £yWil/2,

It was shown in Refs. [13,20,30] that in a smooth random
flow the coil-stretch transition is characterized by a critical
slowing down of polymer dynamics. The time required for the
distribution of polymer extension to reach equilibrium indeed
shows a peak near to the coil-stretch transition. This behavior
is due to the large breadth of the PDF of R for values of Winear
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to the critical one. It would be interesting to study whether or
not this phenomenon also persists when polymers can extend
into the inertial range. In view of the breadth of the PDFs
shown in Figs. 1 and 2, we expect that an analogous peak of
the equilibriation time will be associated with the emergence
of the stretched state. However, the peak will be much broader
than for a smooth flow, because for polymers longer than £
the emergence of the stretched state is slower as a function
of Wi. A second interesting question concerns the effects of
a potential preferential sampling of the flow [37,38], which

PHYSICAL REVIEW E 93, 052605 (2016)

is not present when the correlation time of the velocity field
vanishes [44].
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