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Abstract Covariancematrix estimation is central tomany applications in statistics and
allied fields. A useful estimator in this contextwas proposed by Steinwhich regularizes
the sample covariance matrix by shrinking its eigenvalues together. This estimator can
sometimes yield estimates of the eigenvalues that are negative or differ in order from
the observed eigenvalues. In order to rectify this problem, Stein also proposed an ad
hoc “isotonizing” procedure which pools together eigenvalue estimates in such a way
that the original ordering and positivity of the estimates are enforced. From numerical
studies, Stein’s “isotonized” estimator is known to have good risk properties in com-
parison with the maximum likelihood estimator. However, it remains unclear what
role is played by the isotonizing procedure in the remarkable risk reductions achieved
by Stein’s estimator. Through two distinct lines of investigations, it is established that
Stein’s estimator without the isotonizing algorithm gives only modest risk reductions.

Electronic supplementary material The online version of this article (doi:10.1007/s00180-016-0672-4)
contains supplementary material, which is available to authorized users.

B Dario Vincenzi
dario.vincenzi@unice.fr

Brett Naul
bnaul78@stanford.edu

Bala Rajaratnam
brajarat@stanford.edu

1 Institute for Computational and Mathematical Engineering, Stanford University,
475 Via Ortega-Huang Building, Stanford, CA 94305, USA

2 Department of Statistics, Stanford University, 390 Serra Mall-Sequoia Hall, Stanford, CA 94305,
USA

3 Laboratoire Jean Alexandre Dieudonné, CNRS, Université Nice Sophia Antipolis, Parc Valrose,
06108 Nice, France

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-016-0672-4&domain=pdf
http://dx.doi.org/10.1007/s00180-016-0672-4


1454 B. Naul et al.

In cases where the isotonizing algorithm is frequently used, however, Stein’s estimator
can lead to significant risk reductions for certain domains of the parameter. In other
cases, Stein’s estimator can even yield risk increases, such as when (1) the theoretical
eigenvalues are well separated, and/or (2) when the sample size is moderate to large,
leading to over-shrinkage.

Keywords Covariance matrix estimation · Eigenvalues · Shrinkage · Steinian
estimation · Isotonized estimator · Risks

1 Introduction

The estimation of the covariance matrix of a random vector is central to many mul-
tivariate statistical procedures, and has found applications in various branches of the
sciences and engineering (Ledoit and Wolf 2004; Schäfer and Strimmer 2005; Karoui
2008; Pope and Szapudi 2008; Hamimeche and Lewis 2009; Fisher and Sun 2011;
Khare and Rajaratnam 2011; Won et al. 2013; Li et al. 2013; Touloumis 2015). It is
well known that the standard estimator, the sample covariancematrix, performs poorly
unless the sample size n is much larger than the dimension of the covariance matrix
p. To this end, various alternative estimators have been proposed in the literature.
Estimators in both the frequentist and Bayesian frameworks have been developed,
often by imposing some structure, either implicitly or explicitly, in order to obtain a
regularized estimator with good risk properties. The reader is referred to Rajaratnam
et al. (2008), Pourahmadi (2011), and references therein for a brief literature review.

A useful covariance matrix estimator was proposed by Stein (1975, 1977, 1986).
Stein notes that the sample spectrum is severely distorted unless n ≫ p, in the sense
that there is a much larger spread in the sample spectrum as compared to its popula-
tion counterpart. He proposes an approach to “shrink” the sample eigenvalues closer
together by deriving the so-called unbiased estimator of risk. This approach allows
Stein to optimally modify the sample eigenvalues in order to minimize the unbiased
estimator of risk. An undesirable feature of this estimator is that the modified eigen-
values can lead to negative eigenvalue estimates or deviation from the original order of
the sample eigenvalues, or even to both types of violation simultaneously. To this end
an isotonizing algorithm was proposed, the purpose of which is to retain the original
order of the sample eigenvalues and maintain positivity. The isotonizing algorithm
produces ordered, positive eigenvalue estimates by recursively pooling together esti-
mates for which either the desired order or sign is violated. Although this procedure is
guaranteed to produce estimates which satisfy the natural order and sign constraints, it
is nevertheless ad hoc in the sense that it no longer corresponds to an estimator which
minimizes the unbiased estimator of risk, and therefore its effect on the risk properties
of the estimator are not well understood. Nevertheless, the resulting estimator, “Stein’s
covariance matrix estimator,” has been found to perform well in many numerical stud-
ies and is often used as a benchmark for comparisons with new estimators (Lin and
Perlman 1985; Loh 1991; Yang and Berger 1994; Daniels and Kass 2001; Ledoit and
Wolf 2004, 2014; Wang et al. 2015).
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The role of the isotonizing algorithm in Stein’s... 1455

Despite the desirable risk properties of Stein’s estimator, to the best of our knowl-
edge a systematic investigation of Stein’s estimator has not been undertaken in the
literature. In this paper, we aim to quantify the effect of Stein’s isotonizing algorithm
on the risk reductions given by Stein’s estimator. In particular, we undertake two lines
of investigation corresponding to two different ways of isolating Stein’s isotonizing
algorithm from Stein’s “raw” estimator.

The first line of investigation studies a variant of Stein’s estimator where Stein’s
isotonizing algorithm is replaced by the maximum likelihood estimate whenever sign
or order violations are encountered. This has the effect of isolating Stein’s “raw”
estimator from Stein’s isotonizing algorithm and thus enables a comparison between
theMLEandStein’s “raw” estimator.We examine how the sample sizen and parameter
Σ affect the isotonized and non-isotonized cases.

In the second line of investigationwe calculate the risk reductions for cases/samples
that require isotonizing separately from those that do not require isotonizing.We com-
pare the risk reductions in the two cases, as well as the probability that isotonizing is
required.We go one step further and quantify how themagnitude of the risk reductions
depends on the number of order/sign violations. Interesting properties of the isotoniz-
ing algorithm and the important role it plays in risk reductions are elucidated. The
effect of isotonizing is compared for various choices of n and Σ , from which we can
draw useful conclusions about the isotonizing procedure and how it is influenced by
different parameter regimes. Our numerical investigations consider both the small p
regime, as considered in Lin and Perlman (1985), as well as high-dimensional analogs.

The outline of the paper is as follows. Section 2 briefly introduces preliminaries.
Section 3 isolates the effect of Stein’s isotonizing algorithm by replacing it with the
MLE in the presence of sign and order violations. Section 4 describes the second
component of our simulation study and gives a breakdown of the risk reductions into
two scenarios: when isotonizing is required as compared with when it is not. Section 5
extends the analysis performed in Sect. 4 to other classes of covariance matrices. Sec-
tion 6 concludes by summarizing the results in the paper. A supplementary document
is also provided, which serves to give more detail on some of the results in the paper.

2 Preliminaries

The definition of Stein’s estimator is briefly recalled in this section; for more details,
the reader is referred to Lin and Perlman (1985) and Rajaratnam and Vincenzi (2015).
Consider a random sample, X1, X2, . . . , Xn , from a p-dimensional normal distribu-
tionNp(0,Σ)with n ! p. The eigenvalues of the theoretical covariance matrixΣ are
denoted as λi , i = 1, . . . , p. The sample covariance matrix S (up to a multiplicative
constant) is given by:

S =
n∑

i=1

X iX t
i (1)

and satisfies: S ∼ Wp(Σ, n), where Wp(Σ, n) denotes the p-dimensional Wishart
distribution with scale matrix Σ and n degrees of freedom. The matrix S admits
the following spectral decomposition: S = H diag(l)Ht , where H is orthogonal
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1456 B. Naul et al.

and l = (l1, l2, ..., l p)with l1 ! l2 ! ... ! l p > 0 being the ordered eigenvalues of S.
Stein (1975, 1977, 1986) considers the class of orthogonally invariant estimators:

Σ̂ = HΦ(l)Ht , (2)

where Φ(l) = diag(ϕ1(l),ϕ2(l), ...,ϕp(l)). The MLE given by S/n corresponds to
ϕ̂ml
j (l) = l j/n.
The risk of Σ̂ under the loss function

L1(Σ̂,Σ) := tr(Σ̂Σ−1) − ln det(Σ̂Σ−1) − p (3)

is given by
R1(Σ̂,Σ) := EΣ [L1(Σ̂,Σ)]. (4)

Stein proves the following identity:

R1(Σ̂,Σ) = EΣ [F(l)], (5)

where

F(l) :=
p∑

j=1

[
(n− p−1)

ϕ j (l)
l j

+2ϕ j (l)
∑

i ̸= j

1
l j − li

+2
∂ϕ j

∂l j
− ln

ϕ j (l)
l j

]
−cp,n (6)

with

cp,n := E
( p∑

j=1

ln χ2
n− j+1

)
+ p =

p∑

j=1

Γ ′( 1
2 (n − j + 1))

Γ
( 1
2 (n − j + 1)

) + p ln 2+ p. (7)

Stein observes that F(l) is an unbiased estimator of the risk of Σ̂ (Stein 1975, 1977,
1986). To obtain a closed-form bona fide estimator, Stein disregards ∂ϕ j/∂l j in F(l)
and minimizes the resulting expression with respect to the ϕ j . He thus obtains the
following modified estimates of the eigenvalues of Σ :

ϕ̂ St
j (l) := l j

α j (l)
, j = 1, . . . , p, (8)

where
α j (l) := n − p + 1+ 2l j

∑

i ̸= j

1
l j − li

. (9)

The ϕ̂ St
j (l) can yield estimators that violate the original ordering of the sample eigen-

values (as given by l1 ! l2 ! · · · ! l p > 0) and furthermore can also yield negative
estimates (Lin and Perlman 1985; Rajaratnam and Vincenzi 2015). Stein thus pro-
poses an isotonizing algorithm which removes such violations by pooling adjacent

123

Author's personal copy



The role of the isotonizing algorithm in Stein’s... 1457

estimators together (Stein 1975, 1977, 1986). The “pooled estimator” obtained by
using ϕ̂ St

j (l), ϕ̂ St
j+1(l), . . . , ϕ̂

St
j+s(l) is:

ϕ̂iso
j (l) = ϕ̂iso

j+1(l) = · · · = ϕ̂iso
j+s(l) :=

l j + l j+1 + · · · + l j+s

α j (l)+ α j+1(l)+ · · · + α j+s(l)
. (10)

Estimates that violate decreasing order or positivity are pooled according to the fol-
lowing procedure. First, negative values αi are pooled together with previous values
α j−1 until all estimates are positive. Next, order violations are corrected by pooling
together pairs of estimates that are increasing rather than decreasing. The algorithm
terminates when the sequence contains no more order or sign violations. For more
details on the isotonizing algorithm, we refer the reader to the appendix in Lin and
Perlman (1985). To distinguish between Stein’s isotonized estimator and the original
version, we shall refer to the former as Stein’s isotonized estimator and the latter as
Stein’s “raw” estimator, unless the context is clear. The study of the impact of the iso-
tonizing algorithm on risk reductions obtainedwhen using Stein’s isotonized estimator
is the subject of the next sections.

3 Isolating the impact of isotonization: I. Substituting the isotonized
values with the MLE

Lin and Perlman (1985) perform a numerical experiment comparing the average loss
for several covariance matrix estimators including Stein’s estimator across a variety of
test population covariance structures. The selected covariancematrices havedimension
p = 6 and are meant to represent a wide range of possible covariance structures,
including the equal variance white noise case, matrices with just one large eigenvalue
and the rest small and close together, and matrices with all widely spaced eigenvalues.

The test cases in Lin and Perlman (1985) are parametrized by two vectors: first,
a p-dimensional vector σ = (σ1, σ2, . . . , σp), which represents the standard devi-
ations of each variable; and second, a symmetric p × p correlation matrix R with
diagonal 1 and p(p−1)/2 off-diagonal entries−1 ≤ ρi j ≤ 1. The covariancematrices
considered can then be expressed as Σ = diag(σ )Rdiag(σ ), so that

∑
i j = σiσ jρi j .

Five 6 × 6 test matrices Σα (1 " α " 5) have been examined in Lin and Perlman
(1985). They are specified below:

σ 1 = (1, 1, 1, 1, 1, 1), ρ1 = (0; 0, 0; . . . ; 0, . . . , 0);
σ 2 = (1, 1, 1, 1, 1, 1),

ρ2 = (0.9; 0.9, 0.9; . . . ; 0.9, . . . , 0.9);
σ 3 = (3.08, 2.66, 3.00, 2.55, 4.73, 2.93),

ρ3 = (0.60;−0.38,−0.45; 0.61, 0.43,−0.61;
0.09, 0.34,−0.51, 0.63;−0.36, 0.08, 0.36,−0.21, 0.20);

σ 4 = (1, 1, 1, 1, 1, 1),
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1458 B. Naul et al.

Table 1 Eigenvalues of the population covariance matrices Σα

Σα Eigenvalues Ratios of adjacent eigenvalues

Σ1 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1)

Σ2 (5.5, 0.1, 0.1, 0.1, 0.1, 0.1) (0.18, 1, 1, 1, 1)

Σ3 (25, 24, 23, 22, 21, 20) (0.5, 0.5, 0.5, 0.5, 0.5)

Σ4 (4.56, 0.71, 0.42, 0.17, 0.08, 0.06) (0.16, 0.60, 0.40, 0.47, 0.75)

Σ5 (81.54, 3.25, 2.78, 2.27, 0.65, 0.51) (0.04, 0.86, 0.82, 0.29, 0.78)

ρ4 = (0.58; 0.61, 0.58; 0.60, 0.53, 0.94; 0.57, 0.53, 0.87, 0.88; 0.60, 0.55,
0.88, 0.88, 0.92);

σ 5 = (1, 2, 3, 4, 5, 6), ρ5 = ρ4.

The eigenvalues of the matricesΣα and the ratios of the adjacent eigenvalues are given
in Table 1.

In addition, the following covariance matrix, not investigated in Lin and Perlman
(1985), is also added to the five above:

Σ6 = diag(102, 10, 1, 10−1, 10−2, 10−3).

The covariance matrices considered above all represent classes of parameters which
arise naturally in practice. The first matrix Σ1 corresponds to the well known case of
“sphericity” and is ubiquitous in hypothesis tests of covariance structure. The second
matrix Σ2 describes collections of random variables which are all highly positively
correlated with each other. The corresponding population eigenvalue ensemble con-
firms thatmuch of the variation in the randomvariables is explained by just one leading
principal component, which is indicative of the intrinsic “low dimensional” nature of
the covariance matrix. The third covariance matrix Σ3 describes the setting where
there are both positive and negative correlations and is typical of various applications
in genomics, environmental sciences, and finance. The population eigenvalue ensem-
ble varies in such a way that the eigenvalues increase by powers of two. The fourth
covariance matrix Σ4 describes collections of random variables with equal variances
that are all moderately positively correlated with each other and have just one leading
principal component. Though Σ4 is similar to Σ2 in terms of correlations, the case
where the correlations are only moderately large is more typical in applications. The
fifth covariance matrix Σ5 is similar to Σ4 except that the variances (i.e., the diagonal
terms) are increasing. This added flexibility in Σ5 (as compared to the homoscedastic
assumption of Σ4) is also more realistic and has the effect of increasing the varia-
tion explained by the largest principal component. The matrix Σ6 is an example of
a covariance matrix in which the adjacent eigenvalues are very well separated; thus,
shrinkage imposed by Stein’s estimator is unlikely to change the ordering of the sam-
ple eigenvalues, and so the isotonizing algorithm should be required only infrequently
in this case.

123

Author's personal copy
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No Viol.

Viol.

MLE

MLE

(a)

No Viol.

Viol.

Stein

MLE

(b)

No Viol.

Viol.

ISO

Stein

(c)

Fig. 1 Aschematic representation of the three types of estimators compared in Sect. 3. “NoViol.” represents
the region of the sample space where sign and order of the sample eigenvalues are preserved by Stein’s
estimator, and conversely “Viol.” represents the region where Stein’s estimator yields negative values or
deviates from the observed ordering. 1a represents the estimator where the MLE is used regardless of
whether or not there are sign/order violations (ML). 1b represents the estimator where Stein’s estimator is
used when there are no violations and the MLE is used when sign/order violations are present (ST+ML). 1c
represents the estimator where Stein’s estimator is used when there are no violations and isotonization is
used when violations arise (ST+ISO)

In order to study the relationship between the covariance matrix parameter Σ and
the magnitude of the isotonizing correction, we introduce the following estimator:

ϕ̂ St+ml
j (l) :=

{
ϕ̂ St
j (l) if α j (l) > 0 and l j

α j (l)
" l j−1

α j−1(l)
∀ 2 " j " p

ϕ̂ml
j (l) otherwise,

(11)

with j = 1, 2, . . . , p. That is, the above estimator ϕ̂ St+ml
j leaves Stein’s raw estimator

unchanged when the isotonizing correction is not required but isotonizes it by using
the MLE when Stein’s estimator requires isotonization. This is an alternative way to
correct Stein’s estimator when the estimated eigenvalues are negative and/or when
their order is violated. More importantly, such an approach isolates the role of Stein’s
isotonizing algorithm in risk reductions. Figure 1 provides a schematic overview of
how the role of Stein’s isotonizing algorithm in risk reductions can be isolated from
Stein’s raw estimator.

The performance of the estimators ϕ̂ St+iso
j and ϕ̂ St+ml

j is compared by sampling
N = 1000 random Wishart matrices from population covariance matrices Σα (1 "
α " 6) and computing the percentage reduction in average loss over theMLE for each
estimator,1 defined as

γL1 :=
R1

(
Σ̂ml,Σ

)
− R1

(
Σ̂,Σ

)

R1
(
Σ̂ml,Σ

) × 100. (12)

The corresponding results are indicated in Table 2 by “ST+ISO” and “ST+ML”,
respectively.

1 Our R package that implements Stein’s isotonized estimator is available onCRANat https://cran.r-project.
org/web/packages/stcov/.

123

Author's personal copy

https://cran.r-project.org/web/packages/stcov/
https://cran.r-project.org/web/packages/stcov/


1460 B. Naul et al.

Table 2 Percentage reduction
in average loss, γL1 , for ϕ̂ St+iso

j

and ϕ̂ St+ml
j and for different n

and Σα . The estimator ϕ̂ St+ml
j

is defined in (11)

Σ Σ̂ n = 6 n = 15 n = 30 n = 60 n = 100

Σ1 ST+ ISO 53.3 71.3 74.5 75.7 76.1

ST+ML 1.0 0.3 0.3 0.2 0.3

Σ2 ST+ ISO 47.0 54.2 53.4 52.5 52.0

ST+ML 3.0 1.5 1.2 1.1 1.0

Σ3 ST+ ISO 38.7 20.5 7.1 0.2 −0.9

ST+ML 5.2 6.6 5.3 1.1 −0.6

Σ4 ST+ ISO 37.8 21.4 10.3 3.7 1.4

ST+ML 7.1 7.4 6.3 3.5 1.8

Σ5 ST+ ISO 39.5 26.5 19.4 15.3 12.2

ST+ML 5.6 5.3 5.1 5.2 5.4

Σ6 ST+ ISO 23.4 8.8 4.7 2.5 1.6

ST+ML 19.1 8.8 4.7 2.5 1.6

Several important insights come to light. Generally speaking, when the sample
eigenvalues are notwell separated, it should be expected that order/sign violations arise
more frequently (a more detailed study of this point is performed in Sect. 4). When Σ

is such that the probability density function of the corresponding sample eigenvalues
attributes a significant weight to the region where order and sign violations occur (as
in the case of Σ1 and Σ2 for all n, and in the case of Σ3,Σ4, and Σ5 for small n),
then the risk reductions given by Stein’s isotonized estimator are considerably greater
than those for the estimator where the MLE is used whenever violations are present.
By contrast, if Σ is such that the density of the sample eigenvalues is concentrated
where order and sign violations are not present, then the difference in risk reductions
between the two estimators is minimal. In the case of Σ6, the isotonizing algorithm
is expected to play a minor role, since the sample eigenvalues are well separated. The
results of the two estimators are indeed indistinguishable except for the case n = p,
where the isotonizing correction should apply to a relatively larger portion of the
domain. It is in the Σ6 case where one actually sees Stein’s intended shrinkage effect
in action, as opposed to the effect of the isotonizing algorithm. It gives some modest
but non-negligible risk reductions, but not on the same scale as those given by Stein’s
isotonizing algorithm.

Note that for Σ3 and n = 60, using ST+ISO yields a risk reduction of 0.2% over
the MLE, whereas ST+ML yields a risk reduction of 1.1% over the MLE. Since the
two estimators coincide when there are no violations, the following calculation reveals
that the risk reduction in ST+ISO stems from Stein’s isotonizing algorithm yielding
lower risk reductions than when the MLE is used. In particular, let

ω1 := Pr(absence of sign/order violations),

ω2 := Pr(presence of sign/order violations),

γ St
1 := E[L1(Σ

St,Σ)|absence of sign/order violations],
γ iso
2 := E[L1(Σ

St,Σ)|presence of sign/order violations],
γml
1 := E[L1(Σ

ml,Σ)|absence of sign/order violations],
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The role of the isotonizing algorithm in Stein’s... 1461

γml
2 := E[L1(Σ

ml,Σ)|presence of sign/order violations],
k := E[L(Σml,Σ)].

Note that

k = ω1γ
ml
1 + ω2γ

ml
2 ,

Relative risk reduction of Σ̂St+iso = ω1γ
St
1 + ω2γ

iso
2 − k

k
, (13)

Relative risk reduction of Σ̂St+ml = ω1γ
St
1 + ω2γ

ml
2 − k

k
. (14)

For the Σα = Σ3 and n = 60 case, the risk reduction can be decomposed as

1.1 = ω1γ
St
1 + ω2γ

ml
2 − k

k
= ω1γ

St
1 + ω2γ

ml
2 − (ω1γ

ml
1 + ω2γ

ml
2 )

k
= ω1(γ

St
1 − γml

1 )

k
.

Furthermore,

0.2 = ω1γ
St
1 + ω2γ

iso
2 − k

k
= ω1γ

St
1 + ω2γ

iso
2 − (ω1γ

ml
1 + ω2γ

ml
2 )

k

= ω1(γ
St
1 − γml

1 )

k
+ ω2(γ

iso
2 − γml

2 )

k
= 1.1+ ω2(γ

iso
2 − γml

2 )

k
)⇒ γ iso

2 − γml
2 < 0 since ω2 > 0 and k > 0.

As the above calculations demonstrate, when the isotonizing algorithm based on
Stein’s shrinkage estimator is used to rectify sign/order violations, it can sometimes
actually yield lower risk reductions than when using the MLE.

It is clear from the simulation study described in Table 2 that Stein’s isotonized
algorithm cannot be solely creditedwith the risk reductions in Stein’s estimator. In fact,
as the previous example shows, Stein’s isotonizing algorithm can even lead to relative
risk increases. The relationship between relative risk reductions and the isotonizing
algorithm is complicated by the confounding factor of the sample size n — in the
sense that in general the need for the isotonizing algorithm decreases as sample size
n increases, but Stein’s estimator also tends to the MLE as n increases. There are
exceptions, however. For example, for the case Σ1, the true eigenvalues are all the
same, and therefore li/n → λi = λ ∀i almost surely as n increases. In this case, the
need for the isotonizing algorithm increases as n increases. Here it is clear that the
bulk of the sample values will require isotonizing and the substantial risk reductions
arise from using Stein’s isotonizing algorithm, even for large n.

In summary, Stein’s estimator makes extensive use of the isotonizing algorithm in
two scenarios: when some of the sample eigenvalues are close to each other, and/or
when the sample size n is comparable to the dimension p. In both scenarios, Stein’s
isotonized estimator undoubtedly outperforms the MLE, and therefore a significant
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1462 B. Naul et al.

part of the risk reduction seen in Stein’s estimator should be attributed specifically to
the isotonizing algorithm (andnot theSteinian shrinkage effect that comes from the raw
estimator). Nevertheless, there also exist situations in which the isotonizing algorithm
based on the shrinkage estimator does not appreciably improve Stein’s estimator or in
which isotonizing Stein’s estimator with the MLE results in even better performance.

4 Isolating the impact of isotonization: II. Breakdown of risk between
the violations and no violations scenarios

4.1 Lin–Perlman test cases

The last section compared the performance of Stein’s estimator under two scenar-
ios: when either Stein’s isotonizing algorithm or the MLE is used when order/sign
violations arise. Such an analysis is only able to study the type of shrinkage given
by the specific form of Stein’s raw estimator when no violations appear. Hence the
analysis in Sect. 3 can be most useful when violations are relatively few and far
between. However, there are several contexts in which violations occur for a large
fraction of samples where the isotonizing algorithm is invoked extensively, such as
in the full/partial multiplicity case or the low sample setting (which is quite common
in contemporary applications). In such cases, the analysis in Sect. 3 does not fully
explain the role played by the isotonizing algorithm. We now undertake a more direct
comparison of the cases where isotonizing is either required or not.

In order to assess comprehensively whether the isotonizing algorithm really
improves the performance of Stein’s original estimator, we need to compare the risk
reductions from Stein’s raw estimator directly to those of the isotonized version. A
novel approach to achieving this goal is to split the sample space into two regions:
first into a region where there are no order/sign violations, and second into a region
where there are order/sign violations. Risk reduction over the MLE in the first region
quantifies the performance of Stein’s raw estimator, while that in the second region
quantifies contributions from the isotonizing algorithm. Figure 2 shows the two cases
that are compared. A comparison of these two conditional risk reductions paints a
more accurate picture of the role of the isotonizing algorithm. Before we undertake
the aforementioned analysis, a few remarks are in order.

At face value the isotonizing algorithm simply appears to be an order preserving
algorithm, but it is important to note that its basic ingredients originate from Stein’s
estimator itself. In this sense, the isotonized Stein’s estimator still retains features of the
raw version. The isotonized version does however deviate relatively more from Stein’s
original estimator when many sign/order violations are present. Second, in order to
understand the effect of the isotonizing algorithm, it is first important to understand
when it is applied. The isotonizing algorithm “kicks in” relatively more frequently
when the sample eigenvalues li are close to one another. This is because when the li
are close, terms of the form 1/(li −l j ) in Stein’s estimator become unbounded and can
lead to sign and order violations. Holding all else constant, li are close to one another
when the true eigenvalues λi are either identical or close to one another. The problem
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No Viol.
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(a) (b)

No Viol.
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Stein
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Fig. 2 Breakdown of the isotonizing algorithm’s contribution to risk reductions into two regions: a reduc-
tions over the MLE when no order/sign violations occur (Region 1); b reductions over the MLE in the
presence of order/sign violations (Region 2). The lighter area indicates the region where the risk is calcu-
lated in each case

Table 3 Percentage reduction in average loss for covariance matrices studied in Lin and Perlman (1985):
comparison between cases with order/sign violation and those without

Σ Order/Sign Violations n = 6 n = 15 n = 30 n = 60 n = 100

Σ1 No Violations 42.0 59.9 63.0 70.1 64.4

Any Violations 54.9 71.9 74.7 76.0 76.3

Σ2 No Violations 37.8 50.1 50.9 51.4 50.8

Any Violations 48.2 54.3 53.5 52.8 52.4

Σ3 No Violations 37.2 26.5 10.4 1.2 −0.6

Any Violations 38.5 17.4 3.2 −5.5 −12.7

Σ4 No Violations 36.1 25.5 12.9 5.1 2.3

Any Violations 38.0 18.8 7.1 0.5 −3.0

Σ5 No Violations 37.4 30.9 21.5 17.9 15.1

Any Violations 40.1 23.7 16.4 12.2 7.6

Σ6 No Violations 21.4 9.8 5.2 2.7 1.6

Any Violations 4.4 − − − −

of order violation is also exacerbated in small sample sizes due to the inherently higher
variability of the li in such settings.

Table 3 provides an analysis of the cases considered in Sect. 3, broken downbetween
cases where there are no violations (i.e., without using the isotonizing algorithm), and
where there is at least one sign or order violation (i.e., when the isotonizing algorithm
is used). The relative frequencies of both cases are given in Table 4 in order to highlight
the probability of sign/order violations for each of the different covariance matrices.
The quantities in Tables 3 and 4 are based on a simulation size of N = 105; the width
of the normal 95% confidence interval for each value is at most 0.02%.

The role that the isotonizing algorithm plays in the risk reductions observed in
Stein’s estimator is rather complex. As expected, Table 4 clearly demonstrates for
the cases Σ1 and Σ2 that Stein’s raw estimator requires some type of sign or order
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Table 4 Probabilities (in %) of order/sign violations for covariance matrices studied in Lin and Perlman
(1985): comparison between cases with order/sign violation and those without

Σ Order/Sign Violations n = 6 n = 15 n = 30 n = 60 n = 100

Σ1 No Violations 1.6 0.4 0.4 0.2 0.3

Any Violations 98.4 99.6 99.6 99.8 99.7

Σ2 No Violations 5.1 1.9 1.8 1.8 1.7

Any Violations 94.9 98.1 98.2 98.2 98.3

Σ3 No Violations 11.4 24.0 54.3 87.7 97.9

Any Violations 88.6 76.0 45.7 12.3 2.1

Σ4 No Violations 15.8 26.8 50.1 71.1 84.3

Any Violations 84.2 73.2 49.9 28.9 15.7

Σ5 No Violations 12.1 14.6 21.3 26.9 33.7

Any Violations 87.9 85.4 78.7 73.1 66.3

Σ6 No Violations 97.7 100.0 100.0 100.0 100.0

Any Violations 2.3 0.0 0.0 0.0 0.0

correction in a vast majority of samples. Furthermore, for Σ1 and Σ2 the relative risk
reductions over theMLEare higher for the caseswhere there is at least one sign or order
violation (see Table 3). This pattern is evident regardless of the sample size n. Hence
it is clear that the isotonizing algorithm tends to yield higher risk reductions in cases
with at least one violation as compared to Stein’s original estimator. Having said this,
it should also bementioned that forΣ1 andΣ2 Stein’s raw form still gives high relative
risk reductions, but not as high as when the isotonizing algorithm is used. The fact that
sign/order violations are so prevalent implies that the benefits of Stein’s raw form are
rarely featured in the estimator. Thus the superior performance of Stein’s estimator
in the Σ1 and Σ2 cases can in part be attributed to the isotonizing algorithm. In this
sense, Stein’s estimator, without the isotonizing algorithm, can only lead to moderate
risk reductions. It is however important to note that Σ1 and Σ2 exhibit multiplicity
in the true eigenvalues. Hence the pooling performed by the isotonizing algorithm,
though seemingly artificial at first, in fact reflects and enforces the multiplicity present
in the true eigenvalues. It is therefore an appropriate procedure to use in such cases
and can clearly lead to higher risk reductions.

The above assertions do not necessarily imply that Stein’s risk reductions stem
only from the isotonizing algorithm. We can see this in two ways: first by noting
that the isotonizing algorithm itself is based on Stein’s original estimator, and second
by considering the results in Table 4 in the Σ3 and Σ4 cases for n = 60 and 100.
Indeed, a different story emerges when we consider Σ3 and Σ4. For both these cases
the relative frequency of sign/order violations decreases rapidly as the sample size
increases. Besides the case when the sample size n = 6, the relative risk reductions
over the MLE are higher for the cases where there are no order or sign violations
(see Table 3). There is thus evidence that the isotonizing algorithm can also diminish
the performance of Stein’s original estimator. Regardless, the role of the isotonizing
algorithm is more subtle in the sense that if the sample size is very low it can still lead
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to higher risk reductions (see n = 6 for the Σ3 and Σ4 cases). Plots for Σ1–Σ6 of (1)
the relative risk reduction for the violations/no violations cases and (2) frequencies of
violations are given in Fig. 3.

The covariance matrix Σ5 presents a slightly different situation from the Σ1 −
Σ4 cases in the sense that the relative risk reductions over the MLE are higher for
the cases where there is no order or sign violation, though it would appear that the
isotonizing algorithm is often required since the probability of sign/order violations
remains relatively high even for moderately large sample sizes. For the matrix Σ6,
violations arise only for n extremely small; for n = 6, we observe that the risk
reductions are much greater when no violations are present.

Further insights into the role of the isotonizing algorithm (in terms of risk reduc-
tions) can be gained by separating the samples according to the number of “poolings”
that the isotonizing algorithm makes. The number of poolings aims to measure the
extent to which the isotonized estimator deviates from Stein’s raw estimator. Figure 4
provides the relative risk reductions for each of Σ1 to Σ6 broken down into four
groups: “no violations”, “1 pooling”, “2 poolings” and “3+ poolings” for sample sizes
n = 6, 15, 30, 60, 100. For Σ1 and Σ2, higher risk reductions are recorded in the
cases where there is a greater number of poolings. This should be expected since a
larger number of poolings means that more eigenvalues have been brought together,
reflecting the structure of the population parameters Σ1 and Σ2. This effect, which is
monotonic in the number of poolings, is more pronounced in small sample sizes. The
pattern of risk reduction observed for Σ1 and Σ2 is reversed for Σ3 toΣ5. In the latter
cases, more pooling tends to diminish the risk reductions, especially for large n. The
reversal is also to be expected since the separated eigenvalue cases do not warrant as
much isotonizing, especially for large n. ForΣ6, the probability of multiple violations
is close to zero, so it is not possible to evaluate the effect of the total number of poolings
without a much greater number of Monte Carlo samples.

Yet another in-depth analysis of the direct risk reductions due to the isotonizing
algorithm can be undertaken by further separating the violations into two types, either
sign or order violations, and thereafter quantifying their relative risk reductions. This
type of breakdowngives further insights into theworkings of the isotonizing algorithm.
The risk gains incurredwhen rectifying a sign violation are consistently similar to those
when rectifying an order violation. The exception is the n = 6 case, where the risk
gains when rectifying sign violations are much higher than those for order violations.
Specific details are found in the supplementary document (see Sect. A).

In order to confirm the general validity of our results for small p, we have per-
formed additional numerical simulations for p = 3 and p = 10 (see Sect. B in the
supplementary document). The results in the p = 3 and p = 10 cases confirm our
understanding of the isotonizing algorithm.

4.2 Higher-dimensional risk comparisons

In many modern day applications, data sets often contain a very large number of
variables. The dimension of the covariance matrix parameter being estimated can
therefore bemuch larger than the p = 6 case considered inLin and Perlman (1985). By
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123

Author's personal copy



The role of the isotonizing algorithm in Stein’s... 1467

0.0

0.1

0.2

0.3

0.4

10 20 30 40 50 60

10 20 30 40 50 60

Type
No Viol.
Any Viol.

γ
L

1
Σ = Σ4

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

10 20 30 40 50 60

F
re

qu
en

cy

Type
No Viol.
Any viol.

Σ = Σ4

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Type
No Viol.
Any Viol.

γ L
1

Σ =Σ5

0.0

0.2

0.4

0.6

0.8

1.0

F
re

qu
en

cy

Type
No Viol.
Any viol.

Σ =Σ5

0.00

0.05

0.10

0.15

0.20

20 40 60

n

γ L
1 Type

No Viol.
Any Viol.

Σ6

0.00

0.25

0.50

0.75

1.00

20 40 60

n

F
re

qu
en

cy

Type
No Viol.
Any viol.

Σ6

n n

nn

Fig. 3 continued

123

Author's personal copy



1468 B. Naul et al.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

10 20 30 40 50 60

10 20 30 40 50 60

10 20 30 40 50 60

Type
No Viol.
1 Pool
2 Pool
3+ Pool

γ L
1

Σ = Σ1

n

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

10 20 30 40 50 60

10 20 30 40 50 60

F
re

qu
en

cy Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ = Σ1

n

0.50

0.55

0.60

Type
No Viol.
1 Pool
2 Pool
3+ Pool

γ L
1

Σ = Σ 2

n

0.0

0.2

0.4

0.6

0.8

1.0

F
re

qu
en

cy Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ = Σ2

n

−0.2

0.0

0.2

0.4

Type
No Viol.
1 Pool
2 Pool
3+ Pool

γ L
1

Σ = Σ3

n

0.0

0.2

0.4

0.6

0.8

1.0

F
re

qu
en

cy Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ = Σ3

n

Fig. 4 Percentage reduction in average loss and relative frequency of violations by number of poolings for
various Σα

123

Author's personal copy



The role of the isotonizing algorithm in Stein’s... 1469

−0.2

0.0

0.2

0.4

10 20 30 40 50 60

10 20 30 40 50 60

Type
No Viol.
1 Pool
2 Pool
3+ Pool

γ
L

1
Σ = Σ 4

n

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60

10 20 30 40 50 60

F
re

qu
en

cy

Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ = Σ 4

n

−0.2

0.0

0.2

0.4

Type
No Viol.
1 Pool
2 Pool
3+ Pool

γ
L

1

Σ = Σ 5

n

0.0

0.2

0.4

0.6

0.8

1.0

F
re

qu
en

cy

Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ = Σ 5

n

0.00

0.05

0.10

0.15

0.20

20 40 60
n

γ L
1

Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ6

0.00

0.25

0.50

0.75

1.00

20 40 60
n

F
re

qu
en

cy Type
No Viol.
1 Pool
2 Pool
3+ Pool

Σ6

Fig. 4 continued

123

Author's personal copy



1470 B. Naul et al.

carefully studying a variety of distinct types of covariance matrices in the p = 6 case,
we do gain important qualitative insights into the general behavior of the isotonizing
algorithm. However, it is also important to examine quantitatively how these results
translate to higher dimensions. To this end, we extended the Lin–Perlman simulations
by generalizing the parameters Σ1 to Σ6 for larger values of p. Below we examine
the p = 200 case in detail. The eigenvalues of the matrices Σα in this case are:

Σ1 : (1, 1, . . . , 1, 1);
Σ2 : (180.1, 1, . . . , 1, 1);
Σ3 : (210, 29.95, . . . , 20.15, 20.1);
Σ4 : (72.64, 1.27, . . . , 0.033, 0.021);
Σ5 : (145.5, 19.44, . . . , 1.30, 1.21);
Σ6 : (105, 104.95, . . . , 10−4.95, 10−5).

Each of the abovematricesΣα was chosen so as to resemble the same type ofmatrix
as the corresponding Lin–PerlmanΣα matrix. The first case,Σ1, is the identity matrix,
which represents a “white noise” Wishart model, i.e., independent random variables
with equal variance. Similarly, Σ2 also has unit diagonal (representing homoscedas-
tic random variables), but with very strong positive correlations (0.9) between every
variable. The matrix Σ3 has eigenvalues that increase geometrically and are relatively
well separated; the off-diagonals contain both positive and negative terms. The fourth
case, Σ4, has unit diagonal and positive off-diagonal elements like Σ2, but the values
are chosen to be smaller (ρi j ∈ [0.6, 0.8] rather than ρi j = 0.9). The matrix Σ5 has
the same correlation structure as Σ4, but has unequal variance terms evenly spaced
between 10 and 1. Finally, Σ6 is diagonal matrix with logarithmically spaced eigen-
values between 105 and 10−5, which should result in relatively few order and sign
violations.

As in the previous section, it is possible to explore the role of the isotonizing
algorithm by breaking down the sample space according to the number of order and
sign violations that arise. Unlike the p = 6 case, for sufficiently large p there will
almost always be at least some violations, since the number of pairs of eigenvalues
whichmustmaintain their original ordering and sign increases rapidlywith p. Thus, the
isotonizing algorithm plays an even greater role in the behavior of Stein’s (isotonized)
estimator in the large-p setting. We give a breakdown of the sample space according
to the number of eigenvalues that are pooled together by the isotonizing algorithm.
For p = 200, we consider four groupings: between 1 and 100 poolings are performed,
between 101 and 150 poolings, between 151 and 180 poolings, and 181 or more
poolings.

Table 5 shows the risk reductions in the p = 200 setting, broken down by the
number of eigenvalues pooled together by the isotonizing algorithm. Table 6 shows
how often each amount of pooling occurs. The simulation size is once again taken
to be N = 105. The quantities being estimated are deterministic; however, when a
certain violation type is extremely rare, the estimate of the reduction in average loss
can be poor. For the sake of accuracy, we filter our reported estimates in the following
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Table 5 Percentage reduction in average loss for p = 200 Lin–Perlman style test cases grouped by number
of poolings

Σ No. of poolings n = 200 n = 500 n = 1000 n = 2000 n = 3333

Σ1 No Violations – – – – –

1–100 Pool – – – – –

101–150 Pool – – – – –

151–180 Pool 88.7 – – – –

181+ Pool 92.7 99.7 99.8 99.8 99.8

Overall 92.7 99.7 99.8 99.8 99.8

Σ2 No Violations – – – – –

1–100 Pool – – – – –

101–150 Pool – – – – –

151–180 Pool 89.0 – – – –

181+ Pool 92.4 99.0 98.9 98.9 98.9

Overall 92.4 99.0 98.9 98.9 98.9

Σ3 No Violations – – – – –

1–100 Pool – – 10.3 5.1 3.0

101–150 Pool 39.1 17.9 10.0 4.9±6.6 –

151–180 Pool 33.8 – – – –

181+ Pool – – – – –

Overall 37.0 17.9 10.0 5.1 3.0

Σ4 No Violations – – – – –

1–100 Pool – – – – –

101–150 Pool – – 33.8 24.3 17.9

151–180 Pool 50.5 25.5 30.4 22.8 –

181+ Pool 44.6 – – – –

Overall 50.1 25.5 30.6 24.3 17.9

Σ5 No Violations – – – – –

1–100 Pool – – – – –

101–150 Pool – – 28.6 20.9 15.4

151–180 Pool 43.7 18.1 25.9 19.9±2.1 –

181+ Pool 36.4 – – – –

Overall 43.5 18.1 26.7 20.9 15.4

Σ6 No Violations – – – 3.1 1.8

1–100 Pool 34.1 12.4 6.3 3.1 1.8

101–150 Pool 30.4±3.3 – – – –

151–180 Pool – – – – –

181+ Pool – – – – –

Overall 34.1 12.4 6.3 3.1 1.8
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Table 6 Probabilities (in %) of numbers of poolings for p = 200 Lin–Perlman style test cases

Σ No. of poolings n = 200 n = 500 n = 1000 n = 2000 n = 3333

Σ1 No Violations 0.0 0.0 0.0 0.0 0.0

1–100 Pool 0.0 0.0 0.0 0.0 0.0

101–150 Pool 0.0 0.0 0.0 0.0 0.0

151–180 Pool 0.02 0.0 0.0 0.0 0.0

181+ Pool 99.99 100.0 100.0 100.0 100.0

Σ2 No Violations 0.0 0.0 0.0 0.0 0.0

1–100 Pool 0.0 0.0 0.0 0.0 0.0

101–150 Pool 0.0 0.0 0.0 0.0 0.0

151–180 Pool 0.04 0.0 0.0 0.0 0.0

181+ Pool 99.96 100.0 100.0 100.0 100.0

Σ3 No Violations 0.0 0.0 0.0 0.0 0.0

1–100 Pool 0.0 0.0 7.8 99.98 100.0

101–150 Pool 59.7 100.0 92.2 0.02 0.0

151–180 Pool 40.3 0.0 0.0 0.0 0.0

181+ Pool 0.0 0.0 0.0 0.0 0.0

Σ4 No Violations 0.0 0.0 0.0 0.0 0.0

1–100 Pool 0.0 0.0 0.0 0.0 0.0

101–150 Pool 0.0 0.0 5.4 97.8 100.0

151–180 Pool 94.3 100.0 94.6 2.2 0.0

181+ Pool 5.7 0.0 0.0 0.0 0.0

Σ5 No Violations 0.0 0.0 0.0 0.0 0.0

1–100 Pool 0.0 0.0 0.0 0.0 0.0

101–150 Pool 0.0 0.0 27.5 99.9 100.0

151–180 Pool 97.0 100.0 72.5 0.1 0.0

181+ Pool 3.0 0.0 0.0 0.0 0.0

Σ6 No Violations 0.0 0.0 0.0 0.1 32.8

1–100 Pool 99.9 100.0 100.0 99.9 67.2

101–150 Pool 0.1 0.0 0.0 0.0 0.0

151–180 Pool 0.0 0.0 0.0 0.0 0.0

181+ Pool 0.0 0.0 0.0 0.0 0.0

ways. First, when the estimated probability of a violation type is too small (< 20%
of the width of the corresponding multinomial 95% confidence interval), we omit the
estimated risk reduction and replace the probability with “**”. Furthermore, in cases
where the normal 95% confidence interval for the average loss is wider than 5% of
the absolute value of the estimated risk, the confidence interval is also included along
with the average risk reduction. The same technique is used for other simulation results
presented in the supplementary document.

Broadly speaking, the effect of the isotonizing algorithm on risk reductions here
appears to mirror what was observed in the p = 6 case. In the Σ1 and Σ2 cases,
the isotonizing algorithm pools together large numbers of eigenvalues even for large
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sample sizes. Since there is multiplicity in the population parameters, pooling the
sample eigenvalues together better reflects the underlying eigenstructure, and as a
result the risk reductions increase with the number of poolings. In this sense, the
isotonizing algorithm contributes greatly to the risk reductions achieved by Stein’s
isotonized estimator in the Σ1 and Σ2 cases. For Σ3–Σ6, the population eigenvalues
are all distinct, and accordingly we see that on average relatively fewer poolings are
performed by the isotonizing algorithm. In almost every case, for these matrices more
poolings lead to diminished risk reductions, and in some cases they are non-negligible
(see, for example, the difference in risk reductions for Σ4 when n = 1000 between
the 101–150 poolings and 151–180 poolings cases). Thus, in these cases we conclude
that the form of Stein’s raw estimator can yield risk reductions, though these risk
reductions are modest in relative terms. Overall, the breakdown of risk reductions
by number of poolings reinforces the same conclusions drawn in previous sections.
When the true parameter value contains many eigenvalues that are equal or close
together, more frequent application of the isotonizing algorithm results in significantly
higher risk reductions. Conversely, when most of the population eigenvalues are all
well separated, pooling together too many of the sample eigenvalues can result in
substantially lower risk reductions.

Additional simulation results for moderate-dimensional (p = 50) analogs of the
Lin–Perlman test cases Σ1–Σ6 are presented in the supplementary document (Sect.
C). The same overall patterns described above are evident in themoderate-dimensional
regime.

5 Other population covariance models

In addition to test cases based on those fromLin and Perlman (1985), for completeness
we also present simulation results in Sects. D and E of the supplementary document
for two other classes of covariance matrices. First, Sect. D of the supplementary doc-
ument tests so-called “spiked” covariance models, in which the population covariance
matrix has a few (or one) large eigenvalues and the rest are equal to the same small
value. Such a matrix corresponds to a model where a small number of factors are
responsible for the majority of the variation in the data, with the rest of the variabil-
ity coming from random white noise (see Johnstone 2001, for details). In Sect. D of
the supplementary document, we consider the cases p = 6, 50, and 200 for various
numbers and magnitude of spikes, so that the population eigenvalues are given by
λ = (M, . . . ,M, 1, . . . , 1) for some large values M .

The final class of population covariance matrices we consider is that of exponen-
tially decaying eigenvalues, for which simulation results are presented in Sect. E
of the supplementary document. In particular, we consider matrices of the form
Σ = diag(Mk,Mk−k/p, . . . ,M2k/p,Mk/p); the parameter k can be thought of as
controlling the rate of decay of the eigenvalues, and the parameter M determines the
magnitude of the largest eigenvalue. Such a covariance structure provides a contin-
uous generalization of the spiked covariance model: instead of a few large values
and many much smaller entries, an exponentially decaying set of eigenvalues pro-
duces a continuous spectrum with support everywhere between the largest value Mk
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and 1. Whereas a spiked model represents a few strong signals added to white noise, a
decaying-eigenvalue model corresponds to p different sources of noise (one for each
observed variable), each with a distinct noise level.

For the most part, these additional test cases reinforce the conclusions drawn from
the analyses of the Lin–Perlman style test cases: Stein’s estimator yields the greatest
risk reductions over the MLE when the true eigenvalues have high multiplicity, but
the improvement decreases when the number of poolings becomes farther away from
the true multiplicity of the underlying parameter. However, the spiked covariance
model, in particular for Σ6 (i.e., many large spikes), also illuminates the potential for
very large errors. This increase in risk is closely related to the number of poolings
performed by the isotonizing algorithm. For example, in the Σ = Σ6 case, the true
multiplicities of the population eigenvalues 200 and 1 are 25 and 175, respectively;
when n is large, there is a high probability that eigenvalues from the two clusters are
pooled together erroneously, leading to either a huge over- or underestimate of many
of the eigenvalues. In such cases, the average loss of Stein’s isotonized estimator can
be more than an order of magnitude greater than that of the MLE.

6 Summary and concluding remarks

This paper undertakes a numerical investigation of the risk reductions achieved by
Stein’s estimator and the complex role that Stein’s isotonizing algorithm plays in
this regard. In particular, we quantified the effect of Stein’s isotonizing algorithm
via two sets of numerical simulations. Our first line of investigation demonstrates
that the significant risk reductions in Stein’s estimator cannot be solely attributed to
the form of the raw estimator. One way to see this is to replace Stein’s estimator
by the MLE whenever the isotonizing algorithm would be employed. This approach
isolates Stein’s isotonizing algorithm from Stein’s raw estimator and allows one to
compare Stein’s estimator in its raw form to the MLE. Such an investigation reveals
that Stein’s raw estimator leads to only modest risk reductions (and not anywhere
close to the significant risk reductions reported in the literature). It therefore appears
that the isotonizing algorithm plays a crucial role in the risk reductions reported in
the literature with regards to Stein’s estimator. In cases where the isotonizing is often
employed, it can potentially lead to significant risk reductions, as is seen in our second
line of investigation. This is evident from the difference in risk reductions between the
cases when there are no sign/order violations and when there is at least one sign/order
violation. However, these insights need to be interpreted in context, as the isotonized
estimator still retains features of Stein’s original estimator, though by itself it has
no decision theoretic basis. Furthermore, for some parameter values the use of the
isotonizing algorithm can also diminish risk reductions. Hence one can verify that in
certain settings Stein’s isotonizing algorithm can be beneficial, while in other cases
it is not as useful. The significant risk reductions are attributable to the use of the
isotonizing algorithm (as compared to the form of Stein’s raw estimator) when pooling
is appropriate for the underlying parameter values. Such cases arise (1) when there
is multiplicity in the population eigenvalues, and/or (2) when the sample size is low
resulting inmany order violations. RajaratnamandVincenzi (2015) recently undertook
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a detailed study of the theoretical properties of Stein’s covariance matrix estimator.
This study allows a practitioner to understand in which regimes Stein’s estimator is
expected to perform better than the MLE.

The preceding analysis provides a deep understanding of Stein’s estimator, includ-
ing the type of shrinkage given by Stein’s raw covariance matrix estimator and the
complex role played by Stein’s isotonizing algorithm in risk reductions. The analysis
brings us to a more philosophical question: Why is Stein’s estimator not performing
as well as originally perceived?

We offer two ways to look at this. First, we feel that it is not that Stein’s estimator
is performing poorly, but rather that the risk reductions in the general case are modest
compared to those observed in the full multiplicity case. Aiming for the risk reduc-
tions seen in the full/partial multiplicity case is misleading because (1) this parameter
setting is unique and is therefore not representative, and (2) the isotonizing algorithm
is optimal when there is multiplicity in the eigenvalues, hence corresponding risk
reductions paints a misleading picture that such reductions are possible in general
in other settings. The use of the isotonizing algorithm is not as applicable in other
settings and there is no similar “regularization” mechanism that can be used to shrink
the estimator towards the (unknown) true parameter. The reasoning above can be sup-
plemented with another explanation: first note that Stein’s estimator modifies only the
eigenvalues but retains the original eigenvectors of the sample covariance matrix. The
number of parameters encoded by the eigenvectors is of O(p2). It is well known that
these parameters could also benefit from Steinian shrinkage (Daniels and Kass 2001).

Second, note that Stein’s estimator is “optimal” since the form of the estimator
arises out of minimizing an objective function. The minimization however disregards
a derivative term in order to solve the optimization problem (see Rajaratnam and
Vincenzi 2015). Hence Stein’s raw form does not fully attain its potential for risk
reductions since the optimization is inexact, but this is unavoidable in order to obtain
a closed form bona fide estimator. Moreover, the optimization being only approxi-
mate has two “unfortunate” consequences: (a) lowering of risk reductions that could
have been achieved, and (b) singularities leading to sign and order reversal. The iso-
tonizing algorithm of course provides a means to rectify the latter problem. Though
isotonization has no formal decision theoretic basis, it is appropriate in certain para-
meter regimes. It also retains some features of Stein’s raw form, leading to a complex
pattern of risk reductions.
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