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Abstract

We elucidate the effect of noise on the dynamics ofN point charges in a Vlasov-
Poisson model with a singular bounded interaction force. A too simple noise
does not affect the structure inherited from the deterministic system and, in par-
ticular, cannot prevent coalescence of point charges. Inspired by the theory of
random transport of passive scalars, we identify a class of random fields gener-
ating random pulses that are chaotic enough to disorganize the structure of the
deterministic system and prevent any collapse of particles. We obtain the strong
unique solvability of the stochastic model for any initial configuration of distinct
point charges. In the case where there are exactly two particles, we implement
the “vanishing noise method” for determining the continuation of the determin-
istic model after collapse. © 2014 Wiley Periodicals, Inc.

1 Introduction
It is a well-known fact that white noise perturbations improve the well-posedness

properties of ordinary differential equations (ODEs), and in particular the unique-
ness of the solutions; see, for instance, Krylov and Röckner [20]. The influence
of noise on pathologies of partial differential equations (PDEs) is not as well un-
derstood. A review of recent results in the direction of uniqueness can be found
in [13, 14]. By contrast, whether noise can prevent the emergence of singularities
in PDEs is still quite obscure. A further challenging question is whether noise can
select a natural candidate for the continuation of solutions after the singularities.

A well-known system in which the form of the singularities is known explicitly
is the Vlasov-Poisson equation on the line. We refer the reader to [26] for several
examples and for an extensive discussion of related issues, including the connec-
tion with the two-dimensional Euler equations (see also [5, 7, 27, 32, 35]). The
motivation for the present study is to understand the influence of noise on such
singularities.
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1.1 Vlasov-Poisson Equation on the Line
Consider the following system in the unknown f W Œ0;1/�R�R 3 .t; x; v/ 7!

f .t; x; v/ 2 R:

(1.1)

@f

@t
.t; x; v/C v

@f

@x
.t; x; v/CE.t; x/

@f

@v
.t; x; v/ D 0; f .0; x; v/ D f0.x; v/;

�.t; x/ D

Z
R

f .t; x; v/ dv; E.t; x/ D

Z
R

F .x � y/ �.t; y/dy;

where F.x/ is a bounded function that is continuous everywhere except at x D 0

and has sided limits in 0C and 0�. If F.x/ D sign.x/ (with sign.0/ D 0), equa-
tion (1.1) is the one-dimensional Vlasov-Poisson model describing the evolution
of the phase space density f of a system of electrons (in natural units, in which
the elementary charge and the mass of the electron are set equal to 1). Such an
equation is known to develop singularities in the case of measure-valued solutions;
see [26] and the works discussed therein; see also [18, 24] for references on equa-
tions of this form and related particle approximation. For instance, it is possible to
design examples of so-called electron sheet structures that collapse into one point
in phase space in finite time (f0 is an electron sheet if it is concentrated on lines,
i.e., f0.x; v/ D f0.x/ � ı.v � v0.x//). A simplified version of this phenomenon
is the coalescence1 of N point charges: as shown below, there are examples of
initial conditions of the form f0.x; v/ D

PN
iD1 aiı.x � xi /ı.v � vi /, with dis-

tinct pairs .x1; v1/; : : : ; .xN ; vN / 2 R2 and with a1; : : : ; aN � 0, for which f
remains of the same form on some interval Œ0; t0/ but at some time t0 degenerates
into f .t0; x; v/ D ı.x � x0/ı.v � v0/ with .x0; v0/ 2 R2.

The main question motivating our work is the following one: does the presence
of noise modify the coalescence phenomenon described above? In this framework,
the following picture appears as natural to conceive a noisy version of (1.1): when
the electric charge is not totally isolated but lives in a medium (a sort of electric
bath), a random external force adds to the force generated by the electric field.
Under the assumption that the electric charge does not affect the external random
field, the simplest structure modeling this situation is a stochastic PDE (SPDE) of
the form

(1.2)
@f

@t
.t; x; v/C v

@f

@x
.t; x; v/C

�
E.t; x/C " ı

dWt

dt

�
@f

@v
.t; x; v/ D 0;

where W is Brownian motion and the Stratonovich integral is used (this is the
natural choice when passing to the limit along regular noises).

Unfortunately, the noise in equation (1.2) is too simple to avoid the emergence of
singularities such as those described above. Indeed, the random field zf .t; x; v/ D

1 Throughout this paper, the terms coalescence and collapse are used without distinction.
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f .t; x C "
R t
0 Wsds; v C "Wt / formally satisfies�

@ zf

@t
Cv

@ zf

@x
C zE

@ zf

@v

�
.t; x; v/ D 0 with zE.t; x/ D

Z
R2

F.x�y/ zf .t; y; v/dy dv;

so that any concentration point ´0 D .x0; v0/ of zf at some time t0 translates into
the random concentration point .x0 C "

R t0
0 Wsds; v0 C "Wt0/ of f at the same

time.
To expect a nontrivial effect of the noise, we must use noises having a refined

spatial structure. Specifically, by considering a noisy equation of the form

(1.3)
�
dtf C v

@f

@x
dt C

�
E.t; x/dt C "

1X
kD1

�k.x/ ı dW
k
t

�
@f

@v

�
.t; x; v/ D 0;

where ..W k
t /t�0/k�1 is a family of independent Brownian motions, we prove that,

under very general conditions on the covariance function

Q.x; y/ D

1X
kD1

�k.x/�k.y/;

the following result holds:

THEOREM 1.1. Given the initial condition f0 .x; v/ D
PN
iD1 aiı .´ � ´i / with

the generic notation ´ D .x; v/ and with distinct initial points ´i 2 R2 and non-
negative coefficients ai , i D 1; : : : ; N , there is a unique global solution to system
(1.3) of the form f .t; x; v/ D

PN
iD1 aiı .´ � ´i .t//, where ..´i .t//t�0/1�i�N is

a continuous adapted stochastic process with values in R2N without coalescence
in R2; i.e., with probability 1, ´i .t/ ¤ j́ .t/ for all t � 0 and 1 � i; j � N ,
i 6D j .

The precise assumptions of Theorem 1.1 and the definitions used therein will
be specified later. See in particular Section 1.4 and Theorem 4.1. Here it is worth
remarking that our study does not cover the case of an electron sheet. We nonethe-
less expect our result to be a first step forward in this direction, since here the
number N of particles is arbitrary2 for a given covariance function Q.x; y/. In-
deed, the assumption that we shall impose on Q.x; y/ guarantees that, for any N ,
distinct points .´1; : : : ; ´N / in the .x; v/-space are subject to highly uncorrelated
impulses. Such a propagation may be seen as a sort of mild spatial chaos produced
by the noise. We notice that Example (1.2) discussed above does not enjoy a sim-
ilar property since the noise ."Wt /t�0 plugged therein produces the same impulse
at every space point, thus acting as a random Galilean transformation.

2 Note that N is arbitrary but finite and that nothing is said in the paper about the behavior of the
system as N tends to infinity.
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1.2 Non-Markovian Continuation after a Singularity
As mentioned above, the random perturbation introduced in equation (1.3) may

provide some indications about the natural continuation of the solutions after the
coalescence of two point charges. (More difficult or generic cases are not clear at
this stage of our understanding of the problem.)

Consider the simple example in which F.x/ D sign.x/ and

f0.x; v/ D
1

2
ı.´ � ´1/C

1

2
ı.´ � ´2/; ´1 D .�1; v0/; ´2 D .1;�v0/;

with v0 > 0. As we shall discuss below, the Lagrangian dynamics corresponding
to (1.1) is given by the system

(1.4)
dxi

dt
.t/ D vi .t/;

dvi

dt
.t/ D F.xi .t/ � xx{.t//; t � 0;

for i D 1; 2 and x{ D 2 if i D 1 and vice versa. The initial condition for the above
system is .xi .0/ ; vi .0// D .&i ;�&iv0/ with &i D 1 if i D 2 and &i D �1 if
i D 1. When v0 D

p
2, the functions

(1.5) v�i .t/ D &i .t � v0/; x�i .t/ D &i

�
1 � v0t C

t2

2

�
; i D 1; 2;

solve the system for t 2 Œ0; v0/, and the limits of x�1 .t/ and x�2 .t/ coincide as t "
v0. This means that, with the choice v0 D

p
2, the solutions .x�i .t/; v

�
i .t//t2Œ0;v0/,

i D 1; 2, converge to the same point .0; 0/ as t " v0, so that the origin .0; 0/ is a
singular point of the Lagrangian dynamics.

By contrast, Theorem 1.1 states that, for any positive level of noise " in the noisy
formulation (1.3), the random solutions ..x"i .t/; v

"
i .t//t�0/iD1;2 never meet, with

probability 1. It is then natural to investigate the behavior of the stochastic solu-
tion as " ! 0. In Section 2, we shall prove the following theorem under general
conditions on the covariance function Q (see Conditions 2.1 and 2.2 together with
Proposition 3.7):

THEOREM 1.2. Let v0 D
p
2. Then, as "! 0, the pair process ..´"i .t//t�0/iD1;2

converges in distribution on the space C.Œ0;1/;R2 �R2/ toward

(1.6)
1

2
ı
�
.´�1.t/; ´

�
2.t//t�0

�
C
1

2
ı
�
.´��1 .t/; ´

��
2 .t//t�0

�
;

where ´�i .t/ D .x
�
i .t/; v

�
i .t// for t � 0 and i D 1; 2, and .´��1 .t/; ´

��
2 .t// is equal

to .´�1.t/; ´
�
2.t// for t �

p
2 and .´�2.t/; ´

�
1.t// for t >

p
2.

Theorem 1.2 must be seen as a rule for the continuation of the solutions of the
deterministic system (1.1) after a singularity. When the particles meet, they split
instantaneously, but they can do it in two different ways: (i) with probability 1

2
,

the trajectories meet at coalescence time and then split without crossing each other
(i.e., each of the two trajectories keeps the same sign before and after coalescence);
(ii) with probability 1

2
, the trajectories meet, cross each other, and then split forever
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(i.e., the sign of each of them changes exactly at coalescence time). This represents
a mathematical description of the repulsive effect of the interaction force F : there
is no way for the particles to merge and then form a single particle with a double
charge.

This situation can be interpreted as a physical loss of the Markov property: just
after coalescence, splitting occurs because the system keeps memory of what its
state was before. More precisely, if we model the dynamics of a static single
particle with double charge by a pair .´001 .t/; ´

00
2 .t//t�0 in phase space, with

´001 .t/ D ´002 .t/ and Pv001 .t/ D Pv
00
2 .t/ D 0 for t � 0, we get a non-Markovian

family of solutions to (1.4). When the trajectories ´01 and ´02 meet, they do not
restart with the same dynamics as ´001 and ´002 . We refer the reader to [10] for
other mathematical examples of non-Markovian continuations.

1.3 Vlasov-Poisson-Type System of N Particles in Rd

The problem described in Section 1.1 will be treated as a particular case of the
following generalization in Rd subject to similar constraints as in (1.1):�
dtf C .v � rxf CE.t; x/ � rvf / dt C

1X
kD1

�k.x/ � rvf ı dW
k
t

�
.t; x; v/ D 0;

where �k W Rd ! Rd are Lipschitz-continuous fields that are subject to addi-
tional assumptions, which will be specified later (see (A.2–3) in Section 1.4), and
..W k

t /t�0/k2Nnf0g are independent one-dimensional Brownian motions. In the
following, F will be assumed to be bounded and locally Lipschitz-continuous on
any compact subset of Rd n f0g, the Lipschitz constant on any ring of the form
fx 2 Rd W r � jxj � 1g growing at most as 1=r as r tends to 0. In particular,
F may be discontinuous at 0. A relevant case is when F D rU , where U is a
potential with a Lipschitz point at 0; i.e., U is Lipschitz-continuous on Rd and
smooth on Rdn f0g.

This framework includes the example F.x/ D x=jxj, x 2 Rd , and, as a particu-
lar case, the one-dimensional model discussed above, i.e., F.x/ D sign.x/, x 2 R.
By contrast, the d -dimensional Poisson case, where

(1.7) F.x/ D ˙xjxj�d ; x 2 Rd ; d � 2;

does not satisfy the aforementioned assumptions, and therefore falls outside this
study. The signs “C” and “�” describe repulsive and attractive interactions, respec-
tively; the corresponding models are referred to as electrostatic and gravitational.
For the electrostatic potential, our analysis turns out to be irrelevant in dimension
d � 2 since the deterministic system itself is free of coalescence.

When F.0/ D 0, the Lagrangian motion associated with the SPDE is

(1.8)
dX it
dt
D V it ; dV it D

X
j 6Di

ajF
�
X it �X

j
t

�
dt C

1X
kD1

�k
�
X it
�
ı dW k

t ;
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for t � 0 and 1 � i � N . Indeed, by applying Itô’s formula in the Stratonovich
form to the process .

P
1�i�N ai'.X

i
t ; V

i
t //t�0 for a test function ' W Rd �Rd !

R, it can be shown that the measure-valued process

(1.9) f .t; x; v/ D

NX
iD1

aiı
�
x �X it

�
ı
�
v � V it

�
; t � 0;

solves the SPDE in a weak form.
This paper is devoted to the analysis of system (1.8). Note that the problem

would be much easier to handle if each particle were to be forced by an independent
Brownian motion. This choice of the noise, however, would break the relation
between the Lagrangian dynamics and the SPDE introduced above.

The paper is organized as follows: In Section 2 we start with the proof of The-
orem 1.2 in view of its physical interpretation. The vanishing noise method for
selecting solutions of singular differential equations goes back to [3], but the ex-
amples investigated therein are one-dimensional only. (See also [13], as well as
[2, 16].) In [9, 33], the vanishing noise method is also used to investigate the
motion of two touching circles moving by mean curvature: this is an example
where the motion after the singularity—the configuration in which the two cir-
cles touch each other—is not unique and the so-called fattening phenomenon may
happen; it is then proven that the zero-noise limit selects a unique continuation
after a singularity. The analysis therein reduces to a one-dimensional problem as
well. Here Theorem 1.2 applies to a four-dimensional system, which is actually
reduced to a two-dimensional one in the proof. In [3], the method for investi-
gating the vanishing-noise behavior of the stochastic differential equation under
consideration is mainly of an analytical essence. The proof of Theorem 1.2 below
relies on a stochastic expansion of the solutions similar to the one used in [9, 33]:
pathwise, the dynamics of .´"i /iD1;2 are expanded with respect to the parameter "
until coalescence occurs; the limit distribution is then given by the distribution of
the random coefficients of the expansion. The zero-noise solution in [9, 33] is a
Bernoulli distribution on the path space concentrated on two special solutions with
equal probabilities. In our case, this is true as well, but only at the level of ODE
(1.4). At the level of PDE (1.1), the two different solutions of (1.4) define the same
measure-valued solution (it is just an exchange of particles), and consequently there
is a unique deterministic continuation for the PDE.

The remainder of the paper is devoted to the proof of Theorem 1.1. We first
discuss the structure of the noise that will prevent coalescence from emerging.
It should be emphasized that the effect of the noise on the 2N -system (1.8) is
highly nontrivial. Indeed, although it is doubly singular, the noise makes the system
fluctuate enough to avoid pathological phenomena such as those observed in the
deterministic case. The first singularity is due to the fact that the same Brownian
motions act on all the particles (contrary to the classical case when each particle is
subject to an independent noise; see, for instance, [19]). If the .�k/k2Nnf0g were
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constant, the particles would feel the same impulses and the noise would not have
any real effect; in other words, the noise would just act as a random translation of
the system, as in (1.2). Thus the point is to design a noise allowing displacements
of distinct particles in distinct directions.

To reach the desired effect, the covariance matrix .Q.xi ; xj //1�i;j�N must
be strictly positive for any vector .x1; : : : ; xN / 2 .Rd /N with pairwise distinct
entries. We give some examples in Section 3. These examples are inspired by
the Kraichnan noise used in the theory of random transport of passive scalars (see,
for example, [12, 22, 29]). Because of the regularity properties we assume on Q,
they are just related with the Batchelor regime of the Kraichnan model and not
with the so-called “turbulent regime,” the structure of which is too singular for our
analysis (see Section 3.2). Nevertheless, the model considered here does not have
the same interpretation as the Kraichnan model, since in (1.8) the noise acts on
the velocities. A possible way to relate equation (1.8) to turbulence theory would
consist in penalizing the drift of the velocity of the i th particle by �V it . This model
would describe the motion of interacting heavy particles in a random velocity;
see [4].

The second singularity of the model is inherited from the kinetic structure of the
deterministic counterpart: the noise only acts as an additional random force; i.e.,
it is only plugged into the equation of the velocity. In other words, the coupled
system for .X it ; V

i
t /1�i�N is degenerate. We shall show in Section 3.3 that the el-

lipticity properties of the noise in RNd actually lift up to hypoellipticity properties
in R2Nd .

Once the structure of the noise is defined, we are ready to tackle the problem
of noncoalescence. We first establish that the Lagrangian dynamics is well posed
for Lebesgue a.e. initial configuration of distinct particles. This does not require
any special feature of the noise. By specifying the form of the noise according to
the requirements discussed in Section 3, we then prove the well-posedness and the
absence of collapse for all initial conditions of the particle system with pairwise
distinct entries. To prove these results, we exploit the hypoellipticity of the whole
system; see Section 4.3. The main lines of Section 4 are connected with the strategy
already developed in [15] (see [28] for a deterministic counterpart) in order to
prove that noise may prevent N -point vortices driven by two-dimensional Euler
equations from collapsing. However, here both the framework and the results are
quite different. In [15], the noise is finite dimensional, the dimension depending
upon the number of particles; the noise is only given implicitly from a generic
existence result; moreover, the dynamics of the particles is nondegenerate. Here
the structure of the noise is explicit and is independent of the number of particles;
moreover, the dynamics of the particles is degenerate.

1.4 Assumptions
For simplicity, in (1.8) we choose ai D 1=N for 1 � i � N . We also assume

that
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(A.1) F is bounded everywhere on Rd and locally Lipschitz-continuous on any
compact subset of Rd n f0g. Moreover,

sup
0<r�1

sup
r�jxj;jyj�1

x 6Dy

�
r
jF.x/ � F.y/j

jx � yj

�
< C1:

Possible examples are: for d D 1, F.x/ D sgn.x/, x 2 Rnf0g; for d � 2,
F.x/ D x=jxj, x 2 Rd n f0g.

(A.2) For each k 2 N n f0g, �k W Rd ! Rd is Lipschitz-continuous, and the
series

P1
kD1 �

˛
k
.zx/�

ˇ

k
.zy/ converges uniformly with respect to .zx; zy/ in

any compact subset of Rd �Rd for each ˛; ˇ D 1; : : : ; d . The covariance
function of the random field Rd 3 zx 7!

P1
kD1 �k .zx/W

k
1 is defined as

follows:

(1.10) Q.zx; zy/ D

1X
kD1

�k .zx/˝ �k .zy/ 2 Rd�d :

It is of positive type, that is,
Pn
i;jD1hQ.zx

j ; zxi /zvi ; zvj iRd � 0 for any
n � 1, zx1; : : : ; zxn; zv1; : : : ; zvn 2 Rd .

(A.3) Q.zx; zy/ is bounded on the diagonal, that is, supzx2Rd jQ.zx; zx/j < C1.
Furthermore, it satisfies the Lipschitz-type regularity property:

(1.11) sup
zx;zy2Rd

zx 6Dzy

jQ.zx; zx/CQ.zy; zy/ �Q.zx; zy/ �Q.zy; zx/
ˇ̌

jzx � zyj2
< C1:

(A.4) Q.zx; zy/ is strictly positive on �x;N D f.x1; : : : ; xN / 2 RNd W xi 6D
xj whenever i 6D j g; that is, for all .x1; : : : ; xN / 2 �x;N and v D
.v1; : : : ; vN / 2 RNdnf0g,

NX
i;jD1

hQ.xj ; xi /vi ; vj iRd > 0:

The regularity assumptions on �k and Q in (A.2) and (A.3) are strongly related
to each other. Specifically, the Lipschitz condition (1.11) implies a strong Lipschitz
property of the fields .�k/k2Nnf0g:

1X
kD1

�
�˛k .zx/ � �

˛
k .zy/

��
�
ˇ

k
.zx/ � �

ˇ

k
.zy/
�
D

Q˛ˇ .zx; zx/ �Q˛ˇ .zx; zy/ �Q˛ˇ .zy; zx/CQ˛ˇ .zy; zy/ � C jzx � zyj
2:

(1.12)

Conversely, equation (1.11) holds if the Lipschitz constants of the .�k/k2Nnf0g are
square-summable.
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In practice, the covariance function Q is given first, i.e., given a function Q W
R2d 3 .zx; zy/ 7! Q.zx; zy/ with values in the set of symmetric matrices of size
d � d satisfying (A.3) and of positive type, Q may be expressed as a covariance
function of the form (1.10) for some fields .�k/k2Nnf0g satisfying (A.2). We refer
the reader to theorem 4.2.5 in [21] for more details. In this framework, a sufficient
condition to guarantee (1.11) is: Q is of class C2 with bounded mixed derivatives,
that is, sup.zx;zy/2Rd�Rd j@

2
zx;zy
Q.zx; zy/j < C1. Indeed, Lipschitz property (1.11)

then follows from a straightforward Taylor expansion.
As a consequence of (A.2), the Stratonovich integrals in SDE (1.8) are (for-

mally) equal to Itô integrals, and hence (1.8) will be interpreted in the usual Itô
form

(1.13)
dX it
dt
D V it ; dV it D

1

N

X
j 6Di

F
�
X it �X

j
t

�
dt C

1X
kD1

�k
�
X it
�
dW k

t ;

t � 0, i 2 f1; : : : ; N g. Indeed, the local martingale part of .�k.X it //t�0 is zero,
since .�k.X it //t�0 is of bounded variation, so that�

�k.X
i
� /;W

k
�
t
D 0; t � 0; i 2 f1; : : : ; N g; k 2 N n f0g:

We shall not treat this equivalence more rigorously, and from now on we shall
adopt the Itô formulation.

1.5 Useful Notation
Throughout this paper, the number N of particles is fixed, and thus the depen-

dence of the constants upon N is not investigated. For any n 2 N n f0g, ´ 2 Rn,
and r > 0, Bn.´; r/ is the closed ball of dimension n, center ´, and radius r ; Lebn
is the Lebesgue measure on Rn. The volume of Bn.´; r/ is denoted by Vn.r/. The
configurations of the N -particle system in the phase space are generally denoted
by ´ or Z. Positions are denoted by x or X and velocities by v or V . Similarly,
the typical notation for a single particle in the phase space is ź D .zx; zv/, zx stand-
ing for its position and zv for its velocity. The set of pairs of different indices in
the particle system is denoted by �N D f.i; j / 2 f1; : : : ; N g2 W i 6D j g. More-
over, we introduce �N D f.´1; : : : ; ´N / 2 R2Nd W 8.i; j / 2 �N ; ´i 6D j́ g and
�x;N D f.x

1; : : : ; xN / 2 RNd W 8.i; j / 2 �N ; xi 6D xj g. We also define the
following projection mappings:

…x W R
2Nd
3 ´ D .´j /1�j�N D ..x

j ; vj //1�j�N 7! …x.´/

D .xj /1�j�N 2 RNd ;

z�x W R
2d
3 ź D .zx; zv/ 7! zx 2 Rd ;

�i;x W R
2Nd
3 ´ D .´j /1�j�N D ..x

j ; vj //1�j�N 7! �i;x.´/

D xi 2 Rd :
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…v, z�v, and �i;v are defined analogously. We then denote �i D .�i;x; �i;v/.
In the following, equation (1.13) will also be written in the compact form

(1.14) dZt D F.Zt /dt C
1X
kD1

Ak.Zt /dW
k
t ; t � 0;

where Zt D .Xt ; Vt /, with Xt D .X1t ; : : : ; X
N
t / and Vt D .V 1t ; : : : ; V

N
t /, and

F W RNd �RNd 3 .x D .x1; : : : ; xN /; v/

7!

�
v;

�
1

N

X
j 6Di

F.xi � xj /

�
1�i�N

�
2 RNd �RNd ;

Ak W R
Nd
�RNd 3 .x; v/ 7! .0; Ak.x// 2 RNd �RNd ;

Ak W .R
d /N 3 .x1; : : : ; xN / 7!

�
�k.x

1/; : : : ; �k.x
N /
�
2 .Rd /N :

(1.15)

For any t � 0, the 2d -coordinates of Zt will be denoted by Zit D �i .Zt / D

.X it ; V
i
t /, i 2 f1; : : : ; N g. Similarly, we shall denote by .F i � �i .F//1�i�N and

.Ai
k
� �i .Ak//1�i�N the 2d -components of F and Ak+ for k 2 N n f0g.

2 Continuation: Proof of Theorem 1.2
In this section, we identify general conditions on the structure of the noise in

(1.3) under which Theorem 1.2 holds. Typical examples are given in Proposition
3.7. Throughout this section, we thus consider the four-dimensional system:

(2.1) dX
i;"
t D V

i;"
t dt; dV

i;"
t D sign

�
X
i;"
t �X

x{;"
t

�
C "

1X
kD1

�k
�
X
i;"
t

�
dW k

t ;

for t � 0, i D 1; 2, and x{ D 2 if i D 1 and vice versa. We assume below that
.X

i;"
0 ; V

i;"
0 / D .&i ;�&i

p
2/, with &i D 1 if i D 2 and &i D �1 if i D 1. As a first

general condition (once more, we refer the reader to Proposition 3.7 for examples),
we set:

Condition 2.1. For any " > 0, Theorem 1.1 applies and thus (2.1) has a unique
strong solution that satisfies Pf8t � 0; .X1;"t ; V

1;"
t / 6D .X

2;"
t ; V

2;"
t /g D 1.

We shall define Zi;"t D .X
i;"
t ; V

i;"
t /, " > 0, i D 1; 2. When " D 0, the curves

X
i;0
t D &i

�
1 �

t
p
2

�2
; V

i;0
t D &i

�
�
p
2C t

�
; t � 0;

solve the system (2.1) but merge at time t0 D
p
2. We shall once more define

Z
i;0
t D .X

i;0
t ; V

i;0
t /, i D 1; 2. Note that Z2;0t D �Z

1;0
t for all t � 0.
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We are to prove that .Z1;"t ; Z
2;"
t /t�0 converges in distribution on the space

C.Œ0;C1/;R4/ toward .1=2/ı
.Z
1;C
t ;Z

2;C
t /t�0

C .1=2/ı
.Z
1;�
t ;Z

2;�
t /t�0

, where

.Z
1;C
t ; Z

2;C
t / D .Z

1;0
t ; Z

2;0
t /; t � 0;

.Z
1;�
t ; Z

2;�
t / D

(
.Z

1;0
t ; Z

2;0
t /; t 2 Œ0; t0�;

.Z
2;0
t ; Z

1;0
t /; t > t0:

The whole point is to investigate the differences:

(2.2) X"t D
X
2;"
t �X

1;"
t

2
; V "

t D
V
2;"
t � V

1;"
t

2
; t � 0; " > 0:

We shall use the second condition (see Proposition 3.7 as an example):

Condition 2.2. Assume .Z1;"t ; Z
2;"
t /t�0 satisfies (2.1) but with an arbitrary random

initial condition .Z1;"0 ; Z
2;"
0 / 2 �2 that is independent of the noise ..W k

t /t�0/k�1.
Denote by .Ft /t�0 the augmented filtration that is generated by the initial condi-
tion .Z1;"0 ; Z

2;"
0 / and by the noise ..W k

t /t�0/k�1. Then there exists an .Ft /t�0-
Brownian motion .B"t /t�0 such that, for all t � 0,

(2.3) dX"t D V "
t dt; dV "

t D sign.X"t /dt C "�.X
"
t /dB

"
t ;

where � is a C2 function from R to R, depending on the .�k/k�1 only (in particu-
lar, � is independent of the initial condition .Z1;"0 ; Z

2;"
0 / and of "), with bounded

derivatives of order 1 and 2, and such that �.0/ D 0 and �.1/ > 0.

Defining Z"t D .X
"
t ;V

"
t / for any t � 0, we first investigate the solutions of (2.3)

when " D 0. We have the obvious lemma:

LEMMA 2.3. For " D 0, all the solutions of (2.3) with " D 0 and .X00;V
0
0 / D

.1;�
p
2/ have the form

(2.4) Z0t D
�
X0t ;V

0
t

�
D

�
.t0 � t /

2

2
; t � t0

�
for 0 � t � t0 D

p
2:

We emphasize that uniqueness fails after coalescence time t0. Indeed, any
.Z0t /t�0 with .Z0t /0�t�t0 as in (2.4), Z0t D .0; 0/ for t0 � t � t1, and Z0t D
˙..t � t1/

2=2; t � t1/ for t � t1, where t1 � t0 may be real or infinite, is a solution
of (2.3) when " D 0 therein. We claim the following:

PROPOSITION 2.4. Given �" D infft � 0 W X"t � 0g, for any ı > 0 and M > t0,

(2.5) lim
"!0

Pf�" 2 .t0 � ı; t0 C ı/g D
1

2
; lim

"!0
Pf�" �M g D

1

2
:

Moreover, defining �"2 D infft > �" W X"t � 0g, we have, for any M > 0,

(2.6) lim
"!0

Pf�"2 �M g D 1:
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Proposition 2.4 suggests that, in the limiting regime " ! 0, the trajectories
of the two particles cross with probability equal to 1

2
, and, if so, they just cross

once, at coalescence time. This is one step forward in the proof of Theorem 1.2.
Specifically, we prove below that Proposition 2.4 implies Theorem 1.2.

PROPOSITION 2.4) THEOREM 1.2. As a consequence of (A.3), the family
..Z

1;"
t ; Z

2;"
t /t�0/0<"�1 is tight. We denote by � a weak limit of the family of

measures .P.Z1;"� ;Z2;"� //0<"�1 as " ! 0 on the space of continuous functions
C.Œ0;C1/;R4/, the canonical process on C.Œ0;C1/;R4/ being denoted by .�1� D
.�1� ; �

1
� /; �

2
� D .�2� ; �

2
� //. We shall also denote �t D .�2t � �

1
t /=2 and �t D

.�2t � �
1
t /=2, t � 0.

Under the measure �, � i� D .�
i
� ; �

i
� /, i D 1; 2, satisfies P�it D �

i
t , j P�

i
t j � 1, t � 0,

i D 1; 2. We now make use of Proposition 2.4. Given M > 0, we have, on the set
f�" �M g,

V
i;"
t D V

i;"
0 C &i t C "

X
k�1

Z t

0

�k.X
i;"
s /dW

k
s ; 0 � t �M;

where &i is equal to 1 if i D 2 and �1 if i D 1, so that, for any � > 0,

lim inf
"!0

P
˚

sup
0�t�M

ˇ̌
V
i;"
t � V

i;"
0 � &i t

ˇ̌
� �; i D 1; 2

	
� lim
"!0

Pf�" �M g:

By using the portmanteau theorem, we deduce that

(2.7) �f�it D �
i
0 C &i t; 0 � t �M; i D 1; 2g

(
D 1 if M < t0;

�
1
2

if M > t0:

Therefore, under �, .�1t /0�t�t0 coincides with .Z1;0t /0�t�t0 and .�2t /0�t�t0 co-
incides with .Z2;0t /0�t�t0 . In particular, under �, �1t0 D �2t0 D .0; 0/. Sim-
ilarly, we also infer from (2.7) that, with probability greater than 1

2
under �,

.�1t ; �
2
t / D .Z

1;C
t ; Z

2;C
t / for any t � 0.

By the same argument, for ı > 0 small and M > t0 C ı, we deduce from
Proposition 2.4 that

�
˚
�it D �

i
t0Cı
� &i Œt � .t0 C ı/�; t0 C ı � t �M; i D 1; 2

	
�

lim
"!0

Pf�" � t0 C ı; �
"
2 �M g D

1

2
:

By letting ı tend to 0 and M to C1, we obtain that, with probability greater than
1
2

under �, .�1t ; �
2
t / D .Z

1;�
t ; Z

2;�
t / for any t � 0. �

2.1 Key Lemmas by Integration by Parts
The proof of Proposition 2.4 relies on two key lemmas, each proven by using

integration by parts.
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LEMMA 2.5. Let NC D Œ0;C1/2 n f.0; 0/g and N� D .�1; 0�2 n f.0; 0/g.
Consider also the following sets of initial conditions for (2.1): �˙ D f.´1 D
.x1; v1/; ´2 D .x2; v2// W .x2�x1; v2�v1/ 2 N˙g. Then there exists a constant
c > 0 such that, for any M > 0 and any compact subset K � R4,

lim
"!0

inf
.´1;´2/2K\�˙

P
˚
8t 2 Œ0;M � ˙X"t � ct

2
j
�
Z
1;"
0 ; Z

2;"
0

�
D .´1; ´2/

	
D 1:

PROOF. In the whole proof, the initial condition .´1; ´2/ 2 K \ �C is given,
i.e., .Z1;"0 ; Z

2;"
0 / D .´1; ´2/ 2 K \ �C. Writing ´i D .xi ; vi /, i D 1; 2, we

define x D .x2 � x1/=2 and v D .v2 � v1/=2. Without loss of generality, we
assume that x > 0. Indeed, when x D 0, v must be positive, so that, in very short
time, both X" and V " are positive. By the Markov property (which holds for the
four-dimensional system because of strong uniqueness), we are then led back to
the case when x and v are positive. By Condition 2.2, we can write

dV "
t D sign.X"t /dt C "�.X

"
t /dB

"
t ; t � 0;

where .B"t /t�0 is a one-dimensional Brownian motion. Using the smoothness of � ,
we perform the following integration by parts:

d
�
V "
t � "�

�
X"t
�
B"t
�
D
�
sign.X"t / � "�

0
�
X"t
�
V "
t B

"
t

�
dt:

Recalling that �" D infft � 0 W X"t � 0g, we have

V "
t � "�.X

"
t /B

"
t � t � "

Z t

0

� 0.X"s/V
"
s B

"
s ds; 0 � t � �":

In the event A"1 D fsup0�t�M j�
0.X"t /V

"
t B

"
t j �

1
2"
g, we have

dX"t �

�
t

2
C "�.X"t /B

"
t

�
dt �

�
t

2
� C"X"t jB

"
t j

�
dt; 0 � t � �" ^M;

where here C is the Lipschitz constant of � . We conclude that

d xX"t �
t

2
exp

�
C"

Z t

0

jB"s jds

�
dt with xX"t D X"t exp

�
C"

Z t

0

jB"s jds

�
for 0 � t � �" ^M . Therefore, on A"1, �" must be greater than M so that the
above expression holds up to time M (at least). We deduce that d xX"t � .t=2/dt
for 0 � t �M , and hence xX"t � t

2=4 for 0 � t �M .
Intersect now A"1 with A"2 D fsup0�t�M jB

"
t j �

1
"M
g. Then, on A"1 \ A

"
2,

X"t �
t2

4
exp.�C/; 0 � t �M:

To complete the proof, it remains to note (from a standard tightness argument) that
P .A"1 \ A

"
2/! 1 as "! 0, uniformly in .´1; ´2/ 2 K. (The proof when .´1; ´2/

is in �� is similar.) �
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We now come back to the case when the initial condition of the four-dimensional
system is ..1;�

p
2/; .�1;

p
2//. The second key lemma consists in expanding the

difference process .X";V "/ with respect to ", up to �" D infft � 0 W X"t � 0g.

LEMMA 2.6. There exist a family of Brownian motions ..B"t /t�0/">0 and a family
of random continuous processes .g" W RC ! R/">0 such that

(2.8) 8T > 0 lim
R!C1

sup
0<"�1

P
˚

sup
0�t�T

jg"t j > R
	
D 0;

and the processes

dV .0/
t D dt; dX.0/t D V .0/

t dt;
�
X.0/0 ;V .0/

0

�
D .1;�

p
2/;

dV .1;"/
t D �

�
X.0/t

�
dB"t ; dX.1;"/t D V .1;"/

t dt;
�
X.1;"/0 ;V .1;"/

0

�
D .0; 0/;

satisfy

(2.9)
ˇ̌
X"t �

�
X.0/t C"X

.1;"/
t

�ˇ̌
C
ˇ̌
V "
t �

�
V .0/
t C"V

.1;"/
t

�ˇ̌
� "2

ˇ̌
g"t
ˇ̌
; 0 � t � �":

PROOF. From Condition 2.2, we can write

dV "
t D dt C "�.X

"
t /dB

"
t ; 0 � t � �";

for some one-dimensional Brownian motion .B"t /t�0, whence

d
�
ıX"t

�
D ıV "

t dt; d
�
ıV "

t

�
D "

�
�
�
X"t
�
� �

�
X.0/t

��
dB"t ; 0 � t � �";

with ıX"t D X"t � .X
.0/
t C"X

.1;"/
t / and ıV "

t D V "
t � .V

.0/
t C"V

.1;"/
t /. We perform

the same integration by parts as above, with

ı xV "
t D ıV

"
t � "

�
�.X"t / � �

�
X.0/t

��
B"t :

Then we can find a family of random continuous functions ..v0;"t /t�0/">0 satisfy-
ing (2.8) such that

d
�
ı xV "

t

�
D �"

�
� 0
�
X"t
�
V "
t � �

0
�
X.0/t

�
V .0/
t

�
B"t dt

D �"
�
� 0
�
X"t
�
V "
t � �

0
�
X.0/t C "X

.1;"/
t

��
V .0/
t C "V

.1;"/
t

��
B"t dt

C "2v
0;"
t dt

D �"� 0
�
X"t
�
B"t ıV

"
t dt

� "
�
� 0
�
X"t
�
� � 0

�
X.0/t C "X

.1;"/
t

���
V .0/
t C "V

.1;"/
t

�
B"t dt C "

2v
0;"
t dt:

Since � 0 is Lipschitz-continuous, we can find two families of random functions
..v

1;"
t /t�0/">0 and ..v2;"t /t�0/">0 satisfying (2.8) such that

(2.10) d
�
ı xV "

t

�
D "v

1;"
t ıX"t dt C "v

2;"
t ı xV "

t dt C "
2v
0;"
t dt:

In a similar way, we can find two families of random functions ..x0;"t /t�0/">0

and ..x1;"t /t�0/">0 satisfying (2.8) such that

(2.11) d
�
ıX"t

�
D "x

1;"
t ıX"t dt C ı xV

"
t dt C "

2x
0;"
t dt:
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The result can be easily obtained by bounding the resolvent of the linear system
(2.10)–2.11 in terms of the bounds for x1;", v1;", and v2;". �

2.2 Proof of Proposition 2.4

We emphasize that V .0/
t D �

p
2C t and X.0/t D .1 � t=

p
2/2. Moreover,

V .1;"/
t D

Z t

0

�
�
X.0/s

�
dB"s D

Z t

0

�

��
1 �

s
p
2

�2�
dB"s ;

X.1;"/t D

Z t

0

Z s

0

�

��
1 �

r
p
2

�2�
dB"r

D

Z t

0

.t � r/�

��
1 �

r
p
2

�2�
dB"r :

(2.12)

By choosing t0 D
p
2 and recalling that �.1/ 6D 0, we deduce the following:

LEMMA 2.7. The r.v.’s .X.1;"/t0
/">0 have the same Gaussian law with zero mean

and nonzero variance. In particular, PfX.1;"/t0
> 0g D PfX.1;"/t0

� 0g D 1
2

.

We claim the following:

LEMMA 2.8. For any real M > t0 D
p
2 and any ı > 0,

(i) lim
"!0

P
�
f�" �M g \

˚
X.1;"/t0

> ı
	�
D 0;

(ii) lim
"!0

P
�
f�" > M g \

˚
X.1;"/t0

< �ı
	�
D 0;

(iii) lim"!0 P
�
f�" �M g \ f�" 62 .t0 � ı; t0 C ı/g

�
D 0:

PROOF. Given M >
p
2, we introduce E"M D f�

" � M g. We know from
Lemma 2.6 that there exists a tight family of random variables .�"M /0<"�1 such
that

(2.13)
ˇ̌
X"t �

�
X.0/t C "X

.1;"/
t

�ˇ̌
� "2�"M ; 0 � t � �" ^M:

Therefore, on E"M , we can choose t D �" in the equation above. Since X"�" D 0,
we deduce that

(2.14)
ˇ̌̌̌�
1 �

�"
p
2

�2
C "X.1;"/�"

ˇ̌̌̌
� "2�"M :

Up to a modification of �"M , we deduce (which is (iii))

(2.15) j�" �
p
2j2 � "�"M :

We now prove (i). From (2.14), we deduce that X.1;"/�" � "�"M on E"M . Since
X.1;"/ is Lipschitz-continuous on the interval Œ0;M �, it follows from (2.15) that
there exists a tight family of random variables .C "M /0<"�1 such that

X.1;"/t0
D X.1;"/�" CX.1;"/t0

�X.1;"/�"

� "�"M C C
"
M j�

"
� t0j � "�

"
M C C

"
M "

1
2 .�"M /

1
2 I
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that is, for every ı > 0, lim"!0 P .E"M \ fX
.1;"/
t0

> ıg/ D 0.

We finally prove (ii). From (2.13), we know that "X.1;"/t0
� X"t0 � "

2�"t0 . There-

fore, on .E"M /
c, "X.1;"/t0

� �"2�"t0 . This proves that, for every ı > 0,

lim
"!0

P
��
E"M

�c
\
˚
X.1;"/t0

< �ı
	�
D 0:

�

LEMMA 2.9. It holds that
(i) 8M >

p
2; lim"!0 Pf�" > M g D 1

2
,

(ii) 8ı > 0; lim"!0 Pf�" 2 .t0 � ı; t0 C ı/g D
1
2

.

In particular, �" converges in law to 1
2
ıt0 C

1
2
ıC1.

PROOF. From Lemmas 2.7 and 2.8, for any M >
p
2 and any ı > 0,

lim sup
"!0

Pf�" > M g � lim sup
"!0

P
˚
X.1;"/t0

� �ı
	
D P

˚
X.1;1/t0

� �ı
	
:

By letting ı tend to 0, we obtain lim sup"!0 Pf�" > M g � 1
2

. Similarly,

lim sup
"!0

Pf�" �M g � P
˚
X.1;1/t0

� 0
	
D
1

2
:

From this limit, we deduce (i). Then (ii) follows from (iii) in Lemma 2.8. �

We finally claim the following:

LEMMA 2.10. Let �" D infft � 0 W V "
t � 0g. Then, for all M > 0,

lim
"!0

Pf�" �M;�" < �"g D 0;(2.16)

lim
"!0

Pf�"2 �M g D 1:(2.17)

PROOF. From Lemma 2.9, we can assume M >
p
2. We then begin with the

proof of (2.16). By the Markov property, we note that

Pf�" �M;�" < �"g �

Z
�2

1fz�x.´2�´1/>0;z�v.´2�´1/D0g

� P
˚
�" �M

ˇ̌ �
Z
1;"
0 ; Z

2;"
0

�
D .´1; ´2/

	
d�".´1; ´2/;

where �" is the conditional law of .Z1;"�" ; Z
2;"
�" / given that �" � M , with �" D

inf.�"; �"/, under the initial condition ..1;�
p
2/; .�1;

p
2//. By using (i) in Lem-

ma 2.9, it is easy to see that the distributions .�"/0<"�1 are tight. According to
Lemma 2.5, this property implies (2.16). Similarly, we have

Pf�"2 �M; �
" < �"g �

Z
�2

1fz�x.´2�´1/D0;z�v.´2�´1/<0g

� P
˚
�" �M

ˇ̌ �
Z
1;"
0 ; Z

2;"
0

�
D .´1; ´2/

	
d�".´1; ´2/;



1716 F. DELARUE, F. FLANDOLI, AND D. VINCENZI

which tends to 0 by the same argument as above. Since

lim
"!0

Pf�"2 �M;�
" < �"g � lim

"!0
Pf�" �M;�" < �"g D 0;

we deduce (2.17). (Recall that Pf�" D �"g D 0 from Condition 2.1.) �

3 Structure of the Noise
In this section, we investigate the meaning of Assumption (A.4). First, we trans-

late it into an ellipticity property of the noise. Second, we discuss some general ex-
amples inspired by turbulence theory. Finally, we prove that ellipticity of the noise
lifts up to hypoellipticity of any mollified version of equation (1.13). Throughout
this section, we shall use the notation introduced in (1.14).

3.1 Ellipticity of the Noise
When F D 0 and x 2 �c

x;N , SpanfAk.x/gk2Nnf0g ¨ RNd and therefore the
velocity component in (1.13) only moves along a restricted number of directions.
By contrast, when x 2 �x;N , the noise generated at x is nondegenerate because of
the strict positivity of Q.zx; zy/ on �x;N in (A.4):

LEMMA 3.1. Q satisfies (A.4) if and only if

(3.1) SpanfAk.x/gk2Nnf0g D RNd 8x D .x1; : : : ; xN / 2 �x;N :

PROOF. For any v D .v1; : : : ; vN / 2 RNdnf0g, we have

1X
kD1

hAk.x/; vi
2
RNd D

1X
kD1

� NX
iD1

h�k.x
i /; vi iRd

�2
D

NX
i;jD1

hQ.xj ; xi /vi ; vj iRd > 0: �

Below we exhibit interesting examples of strictly positive covariance functions
Q.zx; zy/ that are space-homogeneous. We shall assume that there is a symmetric
d � d matrix-valued function Q.zx/ such that Q.zx; zy/ D Q.zx � zy/ D Q.zy � zx/,
with the following spectral representation:

(3.2) Q.zx/ D

Z
Rd

eik�zxQ.k/dk; zx 2 Rd ;

where the spectral density Q takes values in the space of nonnegative real sym-
metric d � d matrices with coordinates in L1.Rd / and satisfies Q.�k/ D Q.k/,
k 2 Rd . (Above, k � zx is a shortened notation for hk; zxiRd .) In this framework, we
have the general criterion:
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LEMMA 3.2. Assume that Q has the property that for any Rd -valued trigonomet-
ric polynomial v.k/ of the form v.k/ D

PN
jD1 v

j eik�x
j

, for some .x1; : : : ; xN /,
.v1; : : : ; vN / 2 RNd and for i2 D �1, the a.e. equality

hQ.k/v.k/; v.k/iCd D 0 for a.e. k 2 Rd

implies v.k/ D 0 for any k 2 Rd , where h � ; � iCd denotes the Hermitian product
in Cd . ThenQ.zx; zy/ is strictly positive on �x;N . (Recall that, for any u; u0 2 Cd ,
hu; u0iCd D

Pd
jD1 xu

j .u0/j , xu denoting the conjugate of u. We shall also write
hu; u0iCd D hxu; u

0iRd with an abuse of notation.)

PROOF. The proof follows from the identity

(3.3)
NX

j;`D1

hQ.xj ; x`/v`; vj iRd D

Z
Rd

hQ.k/v.k/; v.k/iCd dk;

where v.k/ D
PN
jD1 v

j eik�x
j

. Indeed, v.k/ D 0 for any k 2 Rd implies
.v1; : : : ; vN / D 0 since v.k/ is a (vector-valued) trigonometric polynomial driven
by pairwise different vectors x1; : : : ; xN (see Remark 3.3 below). �

Remark 3.3. Let f W Rd ! C be of the form

f .k/ D

NX
jD1

.aj C hk; vj iCd /e
ixj �k; k 2 Rd ;

where aj 2 C, vj 2 Cd , and .x1; : : : ; xN / 2 �x;N . If there is a Borel set
A � Rd of positive Lebesgue measure such that f D 0 on A, then aj D 0 and
vj D 0 for any j D 1; : : : ; N . Indeed, by a standard extension of the principle
of analytic continuation, f .k/ D 0 for any k 2 Rd . Given a smooth function
' W Rd ! C with compact support, we denote by y' its Fourier transform. We haveR

Rd f .k/y'.k/dk D 0 and thus
PN
jD1Œa

j'.xj / � ihvj ;r'.xj /iRd � D 0. Since
the points xi are all distinct, we may construct a function ' such that '.xj / D xaj

and r'.xj / D ixvj .

From Lemma 3.2 and Remark 3.3, we get as a first example:

PROPOSITION 3.4. If Q.k/ is strictly positive definite on a Borel subset of Rd of
positive Lebesgue measure, then Q.zx; zy/ is strictly positive on �x;N .

3.2 Isotropic Random Fields
Proposition 3.4 does not cover important examples, such as the following one,

which appears in the literature on turbulent dispersion of passive scalars:

Example 3.5. We say that Q is isotropic if Q.U zx/ D UQ.zx/U> for any zx 2 Rd

and U 2 O.Rd /, where O.Rd / is the set of orthogonal matrices of dimension d
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(U> denotes the transpose of U ). This is the case when Q.k/ in (3.2) has the form

Q.k/ D �kf .jkj/; that is, Q.zx/ D

Z
Rd

eik�zx�kf .jkj/dk;

where �k D 1 if d D 1 and �k D .1 � p/Id C jkj�2.pd � 1/k ˝ k for some
p 2 Œ0; 1� if d � 2, and f W Œ0;C1/! R is in L1.Œ0;C1// and satisfies

(3.4) f .r/ � 0 for a.e. r > 0:

The matrix Q.k/ is symmetric, it satisfies Q.�k/ D Q.k/, and it is almost
everywhere nonnegative because (we restrict the proof to d � 2)

jkj2h�kw;wiCd D .1 � p/jkj2jwj2 C .pd � 1/jhk;wiCd j
2

� .1 � p/jhk;wiCd j
2
C .pd � 1/jhk;wiCd j

2

D p.d � 1/jhk;wiCd j
2
� 0:

(3.5)

(Here the inequality is given in Cd but only the Rd part is useful to prove the
nonnegativity of Q.k/. The full inequality in Cd will be used later.)

We refer to [22, 23, 25, 29, 34] for references where this form (for particular
choices of f ) is used or investigated. This class of covariances is related to the
Batchelor regime of the Kraichnan model, where f .r/ D .r20 C r

2/�.dC$/=2 with
$ D 2 (see [6, 12]). In the limit r0 ! 0, the covariance of the increments of the
noise is scale invariant with scaling exponent equal to 2. The “turbulent regime”
of the Kraichnan model (0 � $ < 2) is in contrast not included in our main final
result because of the regularity properties we require on Q.

PROPOSITION 3.6. If there exists a Borel set A � Œ0;1/ such that Leb1.A/ > 0

and f .r/ > 0 for r 2 A, then Q.zx; zy/ is strictly positive on �x;N .

PROOF. From Lemma 3.2 it is sufficient to prove that the condition

f .jkj/h�kv.k/; v.k/iCd D 0 for a.e. k 2 Rd

implies v.k/ D 0 for any k 2 Rd when v.k/ has the form v.k/ D
PN
jD1 v

j eik�x
j

for some .v1; : : : ; vN / 2 RNd and .x1; : : : ; xN / 2 �x;N . Since f 6D 0 on A, it
holds h�kv.k/; v.k/iCd D 0 for k in a Borel subsetA� � Rd of positive measure.
We now prove that this implies v.k/ � 0.

We focus on the condition h�kw;wiCd D 0 for some w 2 Cd . When d D 1,
this condition implies w D 0. For p 2 .0; 1�, d > 1, inequality (3.5) implies
p.d � 1/jhk;wiCd j

2 D 0, and thus hk;wiCd D 0. Finally, in the case p D 0,
d > 1, for all w 2 Cd we have

jkj2h�kw;wiCd D jkj
2
jwj2 � jhk;wiCd j

2;

and thus h�kw;wiCd D 0 implies that w D �k for some � 2 R if k ¤ 0.
Coming back to the main line of the proof, we have h�kv.k/; v.k/iCd D 0

for all k 2 A�. Depending on the values of p and d , this implies at least one of
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the three following conditions: v.k/ D 0 for all k 2 A�, or hk; v.k/iCd D 0

for all k 2 A�, or v.k/ k k for all k 2 A� (except maybe at k D 0). From
Remark 3.3, vj D 0 for j D 1; : : : ; N in the two first cases. In the third case, we
note that v.k/ k k may be written as

PN
jD1hv

j

`
e`0 � v

j

`0
e`; kiCd e

ixj �k D 0 for
1 � `; `0 � d , where .e`/1�`�d is the canonical basis of Cd . Again from Remark
3.3, this also implies vj D 0 for j D 1; : : : ; N (see also [17, theorem 4.7] and
[11]). �

We are now able to give examples for which Theorem 1.2 applies:

PROPOSITION 3.7. In the case when d D 1, consider Q as in Example 3.5,
with f 2 L1.RC;RC/ satisfying the assumption of Proposition 3.6 together withRC1
0 k4f .k/dk < C1. Then Conditions 2.1 and 2.2 in Section 2 are satisfied

with
�.zx/ D sign.zx/

p
.Q.0/ �Q.zx//=2 for zx 2 R:

PROOF. Consider the framework introduced in Section 2 and recall (2.1) and
(2.2). Existence and uniqueness in Condition 2.1 follow from Theorem 4.1 be-
low. In order to prove (2.3), we consider an arbitrary random initial condition
.Z

1;"
0 ; Z

2;"
0 / 2 �2, independent of the noise ..W k

t /t�0/k�1. For any t � 0,

dX"t D sign
�
X"t
�
dt C "

X
k�1

�k.X
2;"
t / � �k.X

1;"
t /

2
dW k

t

D sign
�
X"t
��
dt C "

r
�"t
2
dB"t

�
;

with �"t D Q.0/ �Q.X
"
t / � 0 and

dB"t D
�
1fX"t�0g � 1fX"t<0g

�
�

�X
k�1

1f�"t>0g
�k.X

2;"
t / � �k.X

1;"
t /p

2�"t
dW k

t C 1f�"tD0gdW
1
t

�
:

It is easily checked that d hB"it D dt . By Lévy’s theorem, .B"t /t�0 is a Brownian
motion with respect to the augmented filtration generated by the initial condition
.Z

1;"
0 ; Z

2;"
0 / and by the noise ..W k

t /t�0/k�1.
We now investigate the properties of � . Clearly, �.0/ D 0. We prove below that

� is C2 with bounded derivatives and that �.1/ > 0. We have

Q.0/ �Q.zx/ D zx2
Z
R

1 � cos .kzx/
zx2

f .jkj/dk D zx2
Z
R

k2'.kzx/f .jkj/dk;

with '.u/ D u�2.1�cos.u//, '.0/ D 1
2

. Clearly, ' is infinitely differentiable with
bounded derivatives. Therefore, the function ˆ W R 3 zx 7!

R
R k

2'.kzx/f .jkj/dk

is twice continuously differentiable with bounded derivatives. At zx D 0, ˆ.0/ >
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0, and hence
p
ˆ is twice continuously differentiable in the neighborhood of 0.

Then the function � , which can be written �.zx/ D zx
p
ˆ.zx/ for zx 2 R, is twice

continuously differentiable in the neighborhood of 0. Away from 0, the function
R 3 zx 7! Q.0/ � Q.zx/ has positive values, and therefore its square root and �
are also both twice continuously differentiable. The derivatives of order 1 and 2
of � are bounded since the derivatives of order 1 and 2 of Q are bounded and
Q.0/�Q.zx/! Q.0/ > 0 as jzxj ! C1. Moreover, �.1/ is clearly positive. �

3.3 Hypoellipticity of the N -Point Motion
The ellipticity of the noise turns into hypoellipticity of the system in the follow-

ing sense (the proof is standard and is thus left to the reader):

PROPOSITION 3.8. Assume that F and �k , for any k 2 N n f0g, are of class C1 on
Rd and that, for every x D .x1; : : : ; xN / 2 �x;N , SpanfAk.x/gk2Nnf0g D RNd .
Then, for every ´ 2 R2Nd of the form ´ D .x; v/ with x D .x1; : : : ; xN / 2 �x;N ,
v 2 RNd , we have SpanfAk.´/; ŒAk;F �.´/gk2Nnf0g D R2Nd , with Ak and F as
in (1.15). (Here, Œ � ; � � stands for the Lie bracket of vector fields.)

The precise formulation of hypoellipticity in our framework is given below:

PROPOSITION 3.9. In addition to (A.1)–(A.4), assume that F is Lipschitz-continu-
ous on the whole Rd . Then, for every initial condition Z0 D ´ 2 R2Nd , equation
(1.13) admits a unique strong solution. Moreover, the mappings 't W R2Nd 3
´ 7! Zt subject to Z0 D ´, t � 0, form a stochastic flow of homeomorphisms on
R2Nd . Finally, for any t > 0, the marginal law of the 2Nd -dimensional vector
Zt is absolutely continuous with respect to the Lebesgue measure when ´ D .x; v/
satisfies x 2 �x;N .

PROOF. The unique strong solvability and the homeomorphism property of the
flow can be found in [30] and [21, chap. 4, sec. 5]. When both F and the coefficients
.�k/k2Nnf0g are smooth, with derivatives of any order in `2.N n f0g/, absolute
continuity then follows from Proposition 3.8 and a suitable version of Hörmander’s
theorem for systems driven by an infinite-dimensional noise. See, for example, [30,
theorem 4.3].

Here the coefficients are not smooth. However, absolute continuity directly fol-
lows from the Bouleau and Hirsch criterion. By proposition 2.2 in [30], .Zt /t�0
is differentiable in the sense of Malliavin with

PC1
kD1E

R t
0 jD

k
s Zt j

2 ds < C1 for
any t � 0. We also know that

(3.6) Dkr Zt D Yt .Yr/
�1Ak.Zr/; 0 � r � t;

the equality holding true in R2Nd , where .Yt /t�0 is an R2Nd�2Nd -valued process
and solves a linear SDE of the form

(3.7) Yt D I2Nd C

C1X
kD1

Z t

0

˛k.s/Ys dW
k
s C

Z t

0

˛0.s/Ys ds; t � 0:
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In the above SDE, the processes .˛k.s//s�0, k 2 N, are bounded and progres-
sively measurable, and the infinite-dimensional process ..j˛k.s/j/s�0/k2Nnf0g is
bounded in `2.N n f0g/. When the coefficients F and Ak , k 2 N n f0g, in
the compact formulation (1.14) are smooth, it holds that ˛0.s/ D rF.Zs/ and
˛k.s/ D rAk.Zs/, k 2 N n f0g. We then use the following notation: given
a square matrix M of size 2Nd � 2Nd , we denote by ŒM �x;x , ŒM �x;v, ŒM �v;x ,
and ŒM �v;v the blocks of size Nd � Nd corresponding to the decomposition of
a vector ´ 2 R2Nd into coordinates x D …x.´/ and v D …v.´/ in RNd . With
this notation, Œ˛k.s/�x;v and Œ˛k.s/�v;v are 0 since Ak is independent of v. Simi-
larly, Œ˛k.s/�x;x is 0 since …x.Ak/ � 0, and Œ˛0.s/�x;x D Œ˛0.s/�v;v D 0 since
…x.F/ � v and …v.F/ is independent of v. Moreover, Œ˛0.s/�x;v D INd . By
using a mollification argument, it can be shown that these relations remain true
in the Lipschitz setting. Finally, as in the finite-dimensional framework, we can
check that Yt is invertible a.s. for any t > 0, the inverse having finite polynomial
moments of any order.

For small r , Yr D I2NdCor.1/, where or.1/ stands for the Landau notation and
converges to 0with r a.s. Therefore, from the equalities Œ˛0.s/�x;x D Œ˛k.s/�x;x D
Œ˛k.s/�x;v D Œ˛0.s/�v;v D Œ˛k.s/�v;v D 0 and Œ˛0.s/�x;v D INd , we deduce that
ŒYr �x;x D INd C ror.1/ and ŒYr �v;v D INd C or.1/ and that ŒYr �x;v can be
expanded as follows:

ŒYr �x;v D rINd C ror.1/:

Defining Zr D .Yr/
�1Ak.Zr/ 2 R2Nd and writing Zr under the form Zr D

..X i
r ;V ir//1�i�N , we have YrZr D Ak.Zr/, whence

ŒYr �x;xXr C ŒYr �x;vVr D 0; ŒYr �v;xXr C ŒYr �v;vVr D Ak.Xr/;

that is, Xr C rVr D ror.1/ and or.1/Xr C Vr D Ak.Xr/ C or.1/. We deduce
Vr D Ak.Xr/C or.1/ and �Xr D �rAk.Xr/C ror.1/, so that, from (3.6),

(3.8) .Yt /
�1Dkr Zt D .�rAk.x/C ror.1/; Ak.x/C or.1//:

(The above equality holds a.s., or.1/ being random itself.) For a given ! 2 �
for which (3.8) holds true, consider � D ..�i ; �i //1�i�N 2 R2Nd such that
hDkr Zt ; �iRd D 0 for any 0 � r � t and k 2 N n f0g. By changing � into
..Yt /

�1/>�, we deduce from (3.8) that

�r

NX
iD1

h�k.x
i /; �i iRd C

NX
iD1

h�k.x
i /; �i iRd D ror.1/j�j C or.1/j�j:

By letting r ! 0, we get � ? Ak.x/ for any k 2 N n f0g. From (A.4), � D 0.
By dividing the above equality by r and letting r ! 0, it is possible to show that
� D 0. We complete the proof by using the Bouleau and Hirsch criterion; see [31,
theorem 2.1.2]. �
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4 Noncoalescence of the Stochastic Dynamics
We now prove the main result of the paper:

THEOREM 4.1. Under (A.1)–(A.4), for any ´ 2 �N there exists a unique solu-
tion .Zt .´//t�0 of (1.13) with initial condition ´. The solution satisfies Pf8t �
0; Zt .´/ 2 �N g D 1 and PfLeb1ft � 0 W …x.Zt .´// 2 �c

x;N g D 0g D 1.

The proof is split into three parts: we first establish a priori estimates for a
regularized version of (1.13); by using a compactness argument, we deduce that
strong unique solvability holds for Lebesgue almost every starting point; by taking
advantage of the absolute continuity of the marginal laws of the regularized system,
we establish strong unique solvability for any ´ 2 �N .

4.1 Smoothed System of Equations
For every " > 0, let F" W Rd ! Rd be equal to F outside Bd .0; "/, but

be smooth inside Bd .0; "/, with supx2Rd jF".x/j � supx2Rd jF.x/j C 1. Given
such an F", we consider equation (1.13), but with F" instead of F therein (or,
equivalently, the compact writing (1.14) when driven by F", with an appropriate
definition of F" in (1.15)). From Proposition 3.9, the smoothed system is uniquely
solvable for every initial condition in R2Nd , the solution being generically denoted
by .Z"t D .X"t ; V

"
t //t�0, with X"t D .X

i;"
t /1�i�N and V "t D .V

i;"
t /1�i�N , and

the associated flow by '"t W R
2Nd 3 ´ 7! Z"t with Z"0 D ´, t � 0.

From the a.e. equality div.x;v/ F" D 0 and rvAk D 0 for all k 2 N (the
divergence being computed in the phase space), we directly obtain the following:

LEMMA 4.2. For any t � 0, '"t .�/ preserves the Lebesgue measure, that is, for all
measurable and nonnegative g,

E

Z
R2Nd

g
�
'"t .´/

�
d´ D

Z
R2Nd

g.´0/d´0:

PROPOSITION 4.3. Let logC W .0;C1/ 3 r 7! logC.r/ be the function equal to 0
for r � 1 and to � log r for r 2 .0; 1/. For every R � 1, let

hR.´/ D 1fj´j�Rg
X

.i;j /2�N

logC j´i � ´j j; ´ 2 R2Nd :

Then, for any R0; R; T > 0 there exists a constant C such that, for any " > 0,

(4.1)
Z

B2Nd .0;R0/

E
�

sup
t2Œ0;T �

hR
�
'"t .´/

��
d´ � C:

PROOF.
Step 1. For a smooth function � W R ! Œ0; 1�, with support included in .0; 1/

and with
R 1
0 j�

0.r/jdr � 2 (which is the case if, for some r0 2 .0; 1/, � is non-
decreasing on Œ0; r0� and nonincreasing on Œr0; 1�), let logC� W RC ! RC be the



NOISE PREVENTS COLLAPSE OF VLASOV–POISSON POINT CHARGES 1723

smooth function:

logC� .r/ D
Z 1

r

�.s/

s
ds for r � 0 whence

ˇ̌̌̌
d

dr
logC� .r/

ˇ̌̌̌
�
1

r
for r > 0:

As � increases towards the indicator function of the interval .0; 1/, logC� .r/ in-
creases towards logC.r/. Given the function R2d 3 ź 7! logC� .jźj/, we have

jrŒlogC� .jźj/�j � C
1fjźj�1g
jźj

;(4.2)

jr
2
�
logC� .jźj/

�
j �

C

jźj2
.1C j�0j.jźj// � 1fjźj�1g;(4.3)

for a constant C that is independent of the details of �.
Given R > 0, let �R W R2Nd ! Œ0; 1� be a smooth function equal to 1 on

B2Nd .0; R/, equal to 0 outside B2Nd .0; R C 2/, with values in Œ0; 1� and with
sup´2R2Nd jr�R.´/j � 1 and sup´2R2Nd jr

2�R.´/j � 1. Define

h
�R
� .´/ D �R.´/

X
.i;j /2�N

logC� .j´
i
� ´j j/; ´ 2 R2Nd :

We prove below that, given R0; R > 0, there exists a constant C , independent of "
and of the details of � and �R in B2Nd .0; RC 2/nB2Nd .0; R/, such that

(4.4) E

Z
B.0;R0/

sup
t2Œ0;T �

h
�R
�

�
'"t .´/

�
d´ � C:

Then, inequality (4.1) can be obtained by letting � increase towards 1.0;1/ and by
using the monotone convergence theorem.

Step 2. We now prove (4.4). In the whole argument, we use the compact for-
mulation (1.14). With the notation g.ź/ D logC� .jźj/ and for a generic solution
.Z"t /t�0 of the smoothed system, we have

(4.5)

d.�R.Z
"
t /g.Z

i;"
t �Z

j;"
t // D dI 1t C dI

2
t C dI

3
t ;(

dI 1t D dI
11
t C dI

12
t

dI 2t D dI
21
t C dI

22
t ;

where

dI 11t D �R
�
Z"t
�˝
rg
�
Z
i;"
t �Z

j;"
t

�
; d
�
Z
i;"
t �Z

j;"
t

�˛
R2d

;

dI 12t D
�R.Z

"
t /

2

2dX
˛;ˇD1

@2g

@ź˛@źˇ

�
Z
i;"
t �Z

j;"
t

�
d
��
Z
i;"
t �Z

j;"
t

�
˛
;
�
Z
i;"
t �Z

j;"
t

�
ˇ

�
t
;

dI 21t D g
�
Z
i;"
t �Z

j;"
t

�˝
r�R

�
Z"t
�
; dZ"t

˛
R2Nd

;
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dI 22t D
g.Z

i;"
t �Z

j;"
t /

2

NX
i 0;j 0D1

2dX
˛;ˇD1

@2�R

@.´i
0
/˛@.´j

0
/ˇ

�
Z"t
�
d
�
.Zi
0;"/˛; .Z

j 0;"/ˇ
�
t
;

dI 3t D

1X
kD1

˝
rg
�
Z
i;"
t �Z

j;"
t

�
;
�
Aik �Aj

k

��
Z"t
�˛

R2d

˝
r�R

�
Z"t
�
;Ak

�
Z"t
�˛

R2Nd
dt:

We first tackle the mutual variations. From the identity ŒAi
k
� Aj

k
�.Z"t / D

�k.X
i;"
t / � �k.X

j;"
t / and from (4.2), (1.12), and (A.3),ˇ̌

dI 3t
ˇ̌
� C

ˇ̌
r�R

�
Z"t
�ˇ̌
dt:(4.6)

In order to deal with the term I 12t , we need to analyze the mutual variation Œ.Zi;"�
Zj;"/˛; .Z

i;"�Zj;"/ˇ �t . Obviously, we have Œ.X i;"�Xj;"/p; .Zi;"�Zj;"/ˇ �t D 0
for all p D 1; : : : ; d and ˇ D 1; : : : ; 2d , sinceX i;"�Xj;" is of bounded variation.
Moreover, from (1.12) we haveˇ̌

d
��
V
i;"
t � V

j;"
t

�
p
;
�
V
i;"
t � V

j;"
t

�
q

�
t

ˇ̌
� C

ˇ̌
X
i;"
t �X

j;"
t

ˇ̌2
dt

for p; q D 1; : : : ; d . From inequality (4.3), we obtain (renaming the constant C )

jdI 12t j �
C�R.Z

"
t /.1C j�

0j.jZ
i;"
t �Z

j;"
t j//

jZ
i;"
t �Z

j;"
t j

2

ˇ̌
X
i;"
t �X

j;"
t

ˇ̌2
dt

� C�R.Z
"
t /
�
1C j�0j

�ˇ̌
Z
i;"
t �Z

j;"
t

ˇ̌��
dt:

(4.7)

Finally, let us deal with I 22t . As above, only the terms dŒ.V i
0;"
t /p; .V

j 0;"
t /q�t

are nonzero in the variation dŒ.Zi
0;"/˛; .Z

j 0;"/ˇ �t . From the boundedness of
jQ.zx; zx/j, we deduce that jdŒ.V i

0;"
t /p; .V

j 0;"
t /q�t j � C dt and thus

(4.8)
ˇ̌
dI 22t

ˇ̌
� Cg

�
Z
i;"
t �Z

j;"
t

�ˇ̌
r
2�R

�
Z"t
�ˇ̌
dt:

Step 3. Split now dI 11t and dI 21t into dI 111t C dI 112t and dI 211t C dI 212t ,
where

dI 111t D �R
�
Z"t
�˝
rg
�
Z
i;"
t �Z

j;"
t

�
;F i"

�
Z"t
�
� Fj"

�
Z"t
�˛

R2d dt;

dI 112t D �R
�
Z"t
� 1X
kD1

˝
rg
�
Z
i;"
t �Z

j;"
t

�
;Aik

�
Z"t
�
�Aj

k

�
Z"t
�˛

R2d dW
k
t ;

dI 211t D g
�
Z
i;"
t �Z

j;"
t

�˝
r�R

�
Z"t
�
;F"

�
Z"t
�˛

R2Nd dt;

dI 212t D g
�
Z
i;"
t �Z

j;"
t

� 1X
kD1

˝
r�R

�
Z"t
�
;Ak

�
Z"t
�˛

R2Nd dW
k
t :

From (4.2) and the boundedness of F" on B2Nd .0; R/, we have

(4.9) dI 111t � C
�R.Z

"
t /

jZ
i;"
t �Z

j;"
t j

dt; dI 211t � Cg
�
Z
i;"
t �Z

j;"
t

�ˇ̌
r�R

�
Z"t
�ˇ̌
dt:
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Step 4. We now deal with the martingale terms I 112 and I 212. From (4.2),
(1.12), the boundedness of jQ.zx; zx/j, and Doob’s inequality,

E
�

sup
t2Œ0;T �

ˇ̌
I 112T

ˇ̌2�
� CE

�Z T

0

�2R
�
Z"s
�
ds

�
;

E
�

sup
t2Œ0;T �

ˇ̌
I 212T

ˇ̌2�
� CE

�Z T

0

g2
�
Zi;"s �Z

j;"
s

�ˇ̌
r�R

�
Z"s
�ˇ̌2
ds

�
:

From the above bounds, together with (4.5), (4.6), (4.7), (4.8), and (4.9), and by
making use of the estimates

max.�R.´/; jrR�.´/j; jr2R�.´/j/ � 1fj´j�RC2g; ´ 2 R2Nd ;

max.g.ź/; g2.ź// �
C

jźj
; ź 2 R2d ;

we deduce (with Z"0 D ´)

E
�

sup
t2Œ0;T �

�
�R
�
Z"t
�

logC�
�ˇ̌
Z
i;"
t �Z

j;"
t

ˇ̌���
� �R.´/ logC� .j´

i
� ´j j/

C C

�
1C E

Z T

0

1fjZ"s j�RC2g

�
1

jZ
i;"
s �Z

j;"
s j

C j�0j
�ˇ̌
Zi;"s �Z

j;"
s

ˇ̌��
ds

�
:

Step 5. We now integrate on a ball B2Nd .0; R0/ of R2Nd with respect to the
initial conditions. Applying Lemma 4.2, we getZ

B2Nd .0;R0/

E
�

sup
t2Œ0;T �

�
�R
�
'"t .´/

�
logC�

�ˇ̌
'
i;"
t .´/ � '

j;"
t .´/

ˇ̌���
d´

�

Z
B2Nd .0;R0/

�R.´/ logC� .j´
i
� ´j j/d´

C C

�
R2Nd0 C E

Z T

0

Z
fj´j�RC2g

�
1

j´i � ´j j
C j�0j.j´i � ´j j/

�
d´ ds

�
:

A spherical change of variable shows that the integral of j�0j.j´i �´j j/ is bounded
by C

R 1
0 j�

0.r/jdr , which is less than 2C . This completes the proof. �

LEMMA 4.4. Given R0; T > 0, define m as the normalized product measure

m D V�12Nd .R0/ � Leb2Nd ˝ P

on O D B2Nd .0; R0/ ��. Then,

lim
&!0

sup
">0

m
˚

inf
t2Œ0;T �

inf
.i;j /2�N

ˇ̌
'
i;"
t .´; !/ � '

j;"
t .´; !/

ˇ̌
< &

	
D 0:
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(For a measurable function � W O ! R with respect to the product � -field on O
and a Borel set A � R, mf�.´; !/ 2 Ag stands for mf.´; !/ 2 O W �.´; !/ 2 Ag.)

PROOF. From the boundedness of F" and Q.zx; zx/ and from the Markov in-
equality, it is easily seen that, for any R0 > 0, there exists a constant C depending
only on R0 and T and such that, for any R > 0, mfsupt2Œ0;T � j'

"
t .´; !/j > Rg �

C=R. Moreover, by Proposition 4.3,

m
n

sup
t2Œ0;T �

h
1fj'"t .´;!/j�Rg

X
.i;j /2�N

logC
ˇ̌
'
i;"
t .´; !/ � '

j;"
t .´; !/

ˇ̌i
> K

o
�
C 0

K
;

where C 0 only depends upon R0, R, and T . The proof is easily completed. �

LEMMA 4.5. Given R0; T > 0, use the same definition for m as above. Then,

lim
.&;A/!.0;C1/

sup
">0

sup
0<ı0<1

m

�
.´; !/ 2 O W

Leb1

�
t 2 Œ0; T � W inf

.i;j /2�N

ˇ̌
z�x
�
'
i;"
t .´; !/ � '

j;"
t .´; !/

�ˇ̌
<
ı0&

A

�
> Aı0

�
D 0:

PROOF. The proof follows from Lemma 4.4 and Proposition 4.6 below. Indeed,
as a consequence of the boundedness of F" and Q.zx; zx/, the probability that the
v-coordinate of .'"t .´//0�t�T is 1

4
-Hölder-continuous with A0 as Hölder constant

converges to 1 asA0 tends toC1 uniformly in " > 0 and in ´ 2 B2Nd .0; R0/. �

PROPOSITION 4.6. GivenA;R0; T > 0, let .�t D .�t ; �t //0�t�T be a continuous
path with values in .Rd /N � .Rd /N such that �0 D ´ 2 B2Nd .0; R0/, .�it /t�0
is a 1

4
-Hölder-continuous Rd -valued path with Hölder constant A for 1 � i � N

and Œd�it=dt� D �
i
t for t 2 Œ0; T � and i 2 f1; : : : ; N g. Then there exists a constant

C depending only on d , A, N , R0, and T and such that, for any &; ı0 2 .0; 1/,
inft2Œ0;T � inf.i;j /2�N j�

i
t � �

j
t j � & implies

Leb1

�
t 2 Œ0; T � W inf

.i;j /2�N

ˇ̌
�it � �

j
t

ˇ̌
� ı0

&5

C

�
� Cı0:

PROOF. Assume that there exist ı 2 .0; &/, t0 2 Œ0; T /, and .i; j / 2 �N such
that j�it0 � �

j
t0
j � ı. Since inft2Œ0;T � inf.i;j /2�N j�

i
t � �

j
t j � & , we deduce that

j�it0 � �
j
t0
j �

p
&2 � ı2. From the Hölder property of .�t /0�t�T , there exists a

constant C , independent of & , t0, and ı, such thatˇ̌
�it � �

j
t

ˇ̌
�

q
&2 � ı2 � C.t � t0/

1
4 ; t0 � t � T:

Therefore, there exists one coordinate ` 2 f1; : : : ; dg such thatˇ̌�
�it � �

j
t

�
`

ˇ̌
�

p
&2 � ı2 � C.t � t0/

1=4

p
d

; t0 � t � T:
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For C.t � t0/1=4 <
p
&2 � ı2, the right-hand side is always positive and hence

.�it � �
j
t /` cannot vanish. By continuity, it is of constant sign. Therefore,ˇ̌
�it � �

j
t

ˇ̌
�
ˇ̌�
�it � �

j
t

�
`

ˇ̌
�

ˇ̌̌̌Z t

t0

�
�is � �

j
s

�
`
ds

ˇ̌̌̌
�
ˇ̌�
�it0 � �

j
t0

�
`

ˇ̌
� .t � t0/

p
&2 � ı2 � C.t � t0/

1=4

p
d

� ı

for C.t � t0/1=4 �
p
&2 � ı2. For ı � &=2 and C.t � t0/1=4 � &=4, we deduce

that j�it ��
j
t j � &.t � t0/=.4

p
d/� ı. Finally, for 8

p
dı=& � t � t0 � &

4=.4C /4,
j�it � �

j
t j � ı. By modifying C if necessary, we deduce thatˇ̌

�it � �
j
t

ˇ̌
� ı(4.10)

for Cı=& � t � t0 � &4=C and ı � &=2. Assume now, without loss of generality,
that C � 2 and choose ı of the form ı0&

5=C 2 with ı0 � 1. Define the set

Ix.ı0; &/ D
˚
t 2 Œ0; T � W

ˇ̌
�it � �

j
t

ˇ̌
� ı0&

5=C 2
	
:

From (4.10), t0 2 Ix.ı0; &/ ) Œt0 C ı0&
4=C; t0 C &

4=C � \ Ix.ı0; &/ D ¿.
Therefore,

Leb1.Ix.ı0; &// � ı0&4=C dTC=&4e � ı0.T C 1/: �

4.2 Noncoalescence for a.e. Initial Configuration
As a consequence of the previous estimates, we prove the following (the result

below might be compared with [1, 8], which study the a.e. solvability of ODEs, but
therein uniqueness is investigated through the uniqueness of a regular Lagrangian
flow):

THEOREM 4.7. Under Assumptions (A.1)–(A.3), for Lebesgue almost every ´,
equation (1.13) has one and only one global strong solution.

PROOF.
Step 1. Here we consider „ D C.Œ0;C1/;R2Nd / ˝ C.Œ0;C1/;R/˝Nnf0g

endowed with the product � -field X of the Borel � -fields. For R0 > 0 and " > 0

and with the same notation as in Lemma 4.4, we endow the pair .„;X / with the
probability Q" defined on the cylinders as

Q".A0 � A1 � � � � � Ak � C.Œ0;C1/;R/ � � � � / D

m
˚�
'"t .´/

�
t�0
2 A0;

�
W 1
t ; : : : ; W

k
t

�
2 A1 � � � � � Ak

	
;

where A0 is a Borel subset of C.Œ0;C1/;R2Nd / and A1; : : : ; AN are Borel sub-
sets of C.Œ0;C1/;R/. The � -field X coincides with the Borel � -field generated
by the standard product metric on the product space „. In particular, the notion
of tightness is relevant for probability measures on the pair .„;X /: it is easily
checked that the family .Q"/">0 is tight.
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Denoting by Q the limit of some convergent sequence .Q"n/n2N for a decreas-
ing sequence of positive reals ."n/n2N converging to 0, we investigate the prop-
erties of the canonical process under Q, denoted by �t D .�kt /k2N , .�0t /t�0 be-
ing R2Nd -valued and each .�kt /t�0, k � 1, being R-valued. Clearly, the family
..�kt /t�0/k2Nnf0g is a family of independent Brownian motions under Q. More-
over, the marginal law of „ 3 � 7! �00 is the uniform distribution on the ball
B2Nd .0; R0/.

For any & > 0, the set f� 2 „ W inft2Œ0;T � inf.i;j /2�N j�i .�
0
t / � �j .�

0
t /j < &g

is open in „. By using the portmanteau theorem to pass to the limit in Lemma 4.4
and letting & tend to 0, we deduce that, for any T > 0,

(4.11) Q
˚
� 2 „ W inf

.i;j /2�N
inf

t2Œ0;T �

ˇ̌
�i
�
�0t
�
� �j

�
�0t
�ˇ̌
D 0

	
D 0:

Similarly, the set f� 2 „ W Leb1.t 2 Œ0; T � W inf.i;j /2�N j�i;x.�
0
t / � �j;x.�

0
t /j <

ı0&=A/ > Aı0g is open in „. By using the portmanteau theorem to pass to the
limit in Lemma 4.5 and letting ı0 tend to 0 first and then .&; A/ to .0;C1/, we
obtain

Q
˚
� 2 „ W Leb1

�
t 2 Œ0; T � W inf

.i;j /2�N

ˇ̌
�i;x

�
�0t
�
� �j;x

�
�0t
�ˇ̌
D 0

�
> 0

	
D 0:(4.12)

Let now �0t D .�
0
t ; �

0
t /, with �0t D …x.�

0
t / and �0t D …v.�

0
t /, t � 0. Also let

(4.13) z�0t D �
0
t �

Z t

0

…v
�
F
�
�0s
��
ds; t � 0:

We claim that .z�0t /t�0 is a square-integrable continuous martingale under Q with
respect to the filtration .G0t D �.�ks ; s � t; k 2 N//t�0 with the mutual variations

�
.z�0/i ; .z�0/j

�
t
D

Z t

0

Q
��
�0s
�i
;
�
�0s
�j �
ds; i; j 2 f1; : : : ; dg;(4.14)

Œ.z�0/i ; �k�t D

Z t

0

�k
��
�0s
�i�
ds; i 2 f1; : : : ; dg; k 2 N n f0g:(4.15)

The proof is quite standard and consists in passing to the limit in the martingale
properties characterizing the dynamics of .Z"t /t�0. The only difficulty is to pass
to the limit along the mollified drifts. For T > 0, we thus prove that

(4.16)
�Z t

0

F"
�
�0s
�
ds

�
0�t�T

�Q"
)
"!0

�Z t

0

F
�
�0s
�
ds

�
0�t�T

�Q;

where the left- and right-hand sides denote the distributions of the specified pro-
cesses under the specified measures on C.Œ0; T �;R2Nd / and) stands for the con-
vergence in distribution. We emphasize that as a consequence of the boundedness
of F" there exists a constant C > 0, independent of " such that, for any a > 0 and
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any "0 > ",

Q"

�
sup

0�t�T

ˇ̌̌̌Z t

0

F"
�
�0s
�
ds �

Z t

0

F
�
�0s
�
ds

ˇ̌̌̌
> a

�
�

Q"
�
C Leb1

�
t 2 Œ0; T � W inf

.i;j /2�N

ˇ̌
�i;x

�
�0t
�
� �j;x

�
�0t
�ˇ̌
� "0

�
� a

�
:

The event in the right-hand side is closed in „, so that

(4.17) lim sup
"!0

Q"

�
sup

0�t�T

ˇ̌̌̌Z t

0

F"
�
�0s
�
ds �

Z t

0

F
�
�0s
�
ds

ˇ̌̌̌
> a

�
�

Q
�
C Leb1

�
t 2 Œ0; T � W inf

.i;j /2�N

ˇ̌
�i;x

�
�0t
�
� �j;x

�
�0t
�ˇ̌
� "0

�
� a

�
:

By letting "0 tend to 0 in (4.17), we deduce from (4.12) that the left-hand side is 0.
Therefore, to prove (4.16), it is sufficient to prove�Z t

0

F
�
�0s
�
ds

�
0�t�T

�Q"
)
"!0

�Z t

0

F
�
�0s
�
ds

�
0�t�T

�Q:

By the dominated convergence theorem, the map

C.Œ0; T �;R2Nd / 3
�
�0t
�
0�t�T

7!

�Z t

0

F
�
�0s
�
ds

�
0�t�T

2 C.Œ0; T �;R2Nd /

is continuous at any path �0 for which

Leb1
�
t 2 Œ0; T � W inf

.i;j /2�N

ˇ̌
�i;x

�
�0t
�
� �j;x

�
�0t
�ˇ̌
D 0

�
D 0:

Again from (4.12), this is true a.s. under Q: by the continuous mapping theorem,
we complete the proof of (4.16). Thus, .z�0/t�0 in (4.13) satisfies the announced
martingale property.

Step 2. Denote by .Gt /t�0 the right-continuous version of .Gt /t�0 augmented
with Q-null sets. Clearly, .z�0t /t�0 is a square-integrable continuous martingale un-
der Q with respect to .Gt /t�0 and both (4.14) and (4.15) remain true. In particular,
we can compute �

z�0 �
X

k2Nnf0g

Z �
0

Ak
�
�0s
�
d�ks

�
t

D 0; t � 0;

so that, Q-a.s.,

(4.18) �0t D �
0
0 C

Z t

0

F
�
�0s
�
ds C

X
k2Nnf0g

Z t

0

Ak.�
0
s /d�

k
s ; t � 0:

We denote by .Q. � ; ´//´2B2Nd .0;R0/ a family of regular conditional probabilities
of Q given the random variable „ 3 � 7! �00 . It is easy to see that, for a.e.
´ 2 B2Nd .0; R0/, ..�kt /t�0/k2Nnf0g are independent Brownian motions under
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Q. � ; ´/, .z�0t /t�0 is a square-integrable continuous martingale under Q. � ; ´/ with
respect to .Gt /t�0, and both (4.14) and (4.15) remain true under Q. � ; ´/. We
deduce that, for a.e. ´ 2 B2Nd .0; R0/, (4.18) holds true Q. � ; ´/-a.s. with �00 D ´
therein. (Note that, a.e. on B2Nd .0; R0/, the version of the stochastic integral may
be chosen independently of ´. Of course, its distribution under Q. � ; ´/ depends
on ´.) From (4.11) and (4.12), we deduce that, for a.e. ´ 2 B2Nd .0; R0/, there is
no coalescence in the phase space with probability 1 under Q. � ; ´/ and that the set
of instants where coalescence occurs in the space of positions is of zero Lebesgue
measure with probability 1 under Q. � ; ´/.

Step 3. We now prove that pathwise uniqueness holds for solutions that re-
main in �N a.s. We are thus given two solutions .�t /t�0 and .�0t /t�0 of (1.13)
with �0 D �00 D ´ 2 �N , .�t /t�0 being a.s. free of coalescence in the phase
space. (Processes .�t /t�0 and .�0t /t�0 are R2Nd -valued and play the same role as
.Zt /t�0.) Denoting by � D infft � 0 W �t 6D �0tg, we thus have to prove that
Pf� D C1g D 1.

On the set f� < C1g (if not empty), we have �� D �0� 2 �N since .�t /t�0 is
free of coalescence in the phase space. In other words, we have, P -a.s., ��^n D
�0�^n 2 �N for all n 2 N. Pathwise uniqueness follows from the following:

LEMMA 4.8. Let Z0 be a random variable with values in �N , and let .�t /t�0
and .�0t /t�0 stand for two solutions of (1.13) with initial condition Z0, .�t /t�0
being free of coalescence in the phase space. Then there exists a stopping time �,
Pf� > 0g D 1, such that .�t /t�0 and .�0t /t�0 are equal a.s. on Œ0; ��.

By applying Lemma 4.8 with Z0 D ��^n as initial conditions, we deduce that
Pf� � ng D 1 for any n 2 N, that is, Pf� D C1g D 1, as announced above.

We turn to the proof of Lemma 4.8. We write Z0 D .X0; V0/ with X0 D
…x.Z0/ and V0 D …v.Z0/, and �t D .�t ; �t / with �t D …x.�t / and �t D
…v.�t / for t � 0. In a similar fashion, we write �0t D .�0t ; �

0
t / for t � 0. Letting

�1;i;j D inf.�1;i;j
�

; �
1;i;j

� 0
/ with

�
1;i;j

�
D inf

˚
t � 0 W

ˇ̌
�it � �

j
t

ˇ̌
�
ˇ̌
X i0 �X

j
0

ˇ̌
=2
	

(with a similar definition for �1;i;j
� 0

), and �2;i;j D inf.�2;i;j
�

; �
2;i;j

� 0
/ with

�
2;i;j

�
D inf

˚
t > 0 W

ˇ̌
�it � �

j
t

ˇ̌
� t

ˇ̌
V i0 � V

j
0

ˇ̌
=2
	

(with the convention that �2;i;j
�
D 0 if V i0 � V

j
0 D 0 and with a similar definition

for �2;i;j
� 0

), we define �i;j D max.�1;i;j ; �2;i;j /.
We first prove that �i;j is a.s. positive. If �1;i;j .!/ is 0 for a given ! 2 �, it

holds that �1;i;j
�

.!/ D 0 or �1;i;j
� 0

.!/ D 0, so that jX i0.!/ � X
j
0 .!/j D 0. Since

Z0 has values in �N , we have jV i0 .!/ � V
j
0 .!/j > 0. Since the paths of .�t /t�0
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and .�0t /t�0 are (a.s.) 1
4

-Hölder-continuous, we also have

(4.19)
ˇ̌
�it .!/ � �

j
t .!/ �

�
V i0 .!/ � V

j
0 .!/

�ˇ̌
� C.!/t

1
4 ; t 2 Œ0; 1�;

for a finite constant C.!/ depending on !. We deduce that, for any t 2 .0; 1�,ˇ̌
�it .!/ � �

j
t .!/ � t

�
V i0 .!/ � V

j
0 .!/

�ˇ̌
� C.!/t

5
4 :

Therefore,

(4.20)
ˇ̌
�it .!/ � �

j
t .!/

ˇ̌
�
t

2

ˇ̌
V i0 .!/ � V

j
0 .!/

ˇ̌
for C.!/t1=4 � .1

2
/jV i0 .!/ � V

j
0 .!/j. Therefore, �2;i;j

�
.!/ > 0. Similarly,

�
2;i;j

� 0
.!/ > 0.

On Œ0; ��, the drift F.�it � �
j
t / in (1.13) satisfies

(4.21)
ˇ̌
F
�
�it ��

j
t

�
�F

�
.�0t /

i
� .�0t /

j
�ˇ̌
� Ct�1j�t ��

0
t j � C sup

0�s�t

j�s � �
0
sj;

where the constant C depends upon the randomness only through Z0. Indeed, if
�1;i;j > 0, jX i0 � X

j
0 j must be (strictly) positive so that F is locally Lipschitz-

continuous; if �2;i;j > 0, the bound follows from (4.20) and (A.1). Therefore, on
Œ0; ��, the drift F.�it � �

j
t / coincides with some functional G..�is � �

j
s /0�s�t / of

the whole path .�is ��
j
s /0�s�t , G being bounded and locally Lipschitz-continuous

with respect to the L1-norm. We then write

d�it D
1

N

X
j 6Di

G
��
�is � �

j
s

�
0�s�t

�
dt

C

C1X
kD1

�k
�
�it
�
dW k

t ; i 2 f1; : : : ; dg;

(4.22)

for t 2 Œ0; ��with � D infi 6Dj �i;j . (Obviously, (4.22) is also satisfied by �0.) Equa-
tion (4.22) can be regarded as a functional equation driven by bounded and locally
Lipschitz-continuous coefficients. The Lipschitz constants of the coefficients on
any balls are finite random variables depending upon ! only through the initial
condition Z0. Lemma 4.8 follows from Pfsup0�s�� j�s � �

0
sj D 0 j Z0g D 1.

Step 4. We have proven weak existence and strong uniqueness for a.e. initial
condition ´ 2 �N . Following the proof by Yamada and Watanabe in the finite-
dimensional case, we deduce that both strong existence and strong uniqueness hold
for a.e. initial condition ´ 2 �N . �

4.3 Noncoalescence for Any Initial Condition in �N

We now complete the proof of Theorem 4.1. To this aim, we first prove the
following:
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LEMMA 4.9. For any ´ 2 �N , there exists a unique solution .'t .´//0�t��´ to
(1.13), with ´ as initial condition, on the interval Œ0; �´�, where �´ D infft � 0 W
't .´/ 2 �

c
N g. Moreover, the mapping

�N 3 ´ 7! .'t^�´.´//t�0 2 C.Œ0;C1/;R2Nd /

is measurable.

PROOF. The whole difficulty is to handle the possible coalescence of the parti-
cles in the space of positions. By induction, we build a nondecreasing sequence of
stopping times .�n´ /n2N such that �n´ ! �´ a.s. as n tends toC1 and (1.13) has a
unique solution .'t .´//0�t��n´ on each Œ0; �n´ � with ´ as initial solution for any n 2
N. The stopping time �0 is set equal to 0. Given .'t .´/ D .�t .´/; �t .´///0�t��n´
for some n 2 N, we can follow the proof of Lemma 4.8 and build a (unique) so-
lution .'t .´//�n´�t��nC1´

to (1.13) on Œ�n´ ; �
nC1
´ �, where �nC1´ D �´ ^ �

0;nC1
´ with

�
0;nC1
´ D infi 6Dj �i;j;nC1 and �i;j;nC1 D max.�1;i;j;nC1; �2;i;j;nC1/,

�1;i;j;nC1 D inf
˚
t � �n´ W

ˇ̌
�it .´/ � �

j
t .´/

ˇ̌
�
ˇ̌
�i�n´

.´/ � �
j

�n´
.´/
ˇ̌
=2
	
;

�2;i;j;nC1 D inf
˚
t > �n´ W

ˇ̌
�it .´/ � �

j
t .´/

ˇ̌
�
�
t � �n´

�ˇ̌
�i�n´
.´/ � �

j

�n´
.´/
ˇ̌
=2
	
:

Clearly, the sequence .�n´ /n2N is nondecreasing.
On each step, existence and uniqueness hold since equation (1.13) can be written

as a functional SDE on the interval Œ�n´ ; �
nC1
´ � with bounded and locally Lipschitz-

continuous coefficients. (As already emphasized in the proof of Lemma 4.8, the
Lipschitz constants of the coefficients on bounded sets depend on the initial posi-
tion '�n´ .´/. This fact, however, has no consequences.)

Almost surely, the sequence .�n´ /n2N cannot have an accumulation point be-
fore '.´/ hits �c

N , as otherwise the modulus of continuity of '.´/ would blow up.
Once more, the precise argument goes back to the proof of Lemma 4.8: the length
�nC1´ � �n´ depends: (i) on the modulus of continuity of the path .'t .´//�n´�t��nC1´

(the length of the interval is controlled from below when the modulus is con-
trolled from above), (ii) on the distance dist.'�n´ .´/; �

c
N / (the length of the in-

terval is controlled from below when the distance is bounded away from 0), and
(iii) on the norm j'�n´ .´/j (the length of the interval is controlled from below
when the norm is bounded away from 1). The modulus of continuity is con-
trolled in terms of the bounds of the coefficients by Kolmogorov’s criterion, the
norm of '.´/ is controlled in terms of the bounds of the coefficients as well,
and the distance from '.´/ to �c

N is bounded from below on any Œ0; z�&´ �, with
z�
&
´ D infft � 0 W dist.'t .´/; �c

N / � &g for & > 0. This proves that, a.s.,
supn�1 �

n
´ � z�

&
´ for any & > 0, that is supn�1 �

n
´ � lim&!0 z�

&
´ D �´. �

PROOF OF THEOREM 4.1. We now complete the proof. We add a point � to
R2Nd and set 't .´/ D � for t � �´, ´ 2 �N , when �´ <1. The resulting family
of processes .'t .´//t�0, ´ 2 �N , has �N [� as state space. It is a homogeneous
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Markov process. By Theorem 4.7, Pf�´ D C1g D 1 for a.e. ´ 2 R2Nd . In
particular, for any 0 < " < T we can write

Pf'Œ";T �.´/ 2 �N g D

Z
�N[f�g

Pf'Œ0;T�"�.´
0/ 2 �N g�'".´/.d´

0/;

where

f'Œ";T �.´/ 2 �N g D f! 2 � W 't .´/.!/ 2 �N for any t 2 Œ"; T �g

and �'".´/ is the law of '".´/. By Theorem 4.7, we can find a Borel subset N �
R2Nd of zero Lebesgue measure such that Pf'Œ0;T�"�.´/ 2 �N g D 1 for all
´ 2 N c. Then

Pf'Œ";T �.´/ 2 �N g �

Z
N c

Pf'Œ0;T�"�.´
0/ 2 �N g�'".´/.d´

0/

D 1 � �'".´/.N /:
(4.23)

Now, assume that ´ D .x; v/ is such that x 2 �x;N (so that ´ 2 �N ). Then
there exists "� > 0 such that infi 6Dj jxi � xj j > "�. Defining ��´ D infft � 0 W
infi 6Dj j�i;x.'t .´// � �j;x.'t .´//j � "�g, we have

�'".´/.N / � Pf'�" .´/ 2 N ; ��´ > "g C Pf��´ � "g

� P
˚
'�" .´/ 2 N

	
C P

˚
��´ � "

	
;

(4.24)

where .'�t .´//t�0 stands for the solution of (1.13) when the system is driven by
a Lipschitz drift that coincides with the original one on f.x1; : : : ; xN / 2 R2Nd W
infi 6Dj jxi � xj j > "�g. As N is Lebesgue-negligible and the law of '�" .´/ on
R2Nd is absolutely continuous with respect to the Lebesgue measure when x 2
�x;N , we deduce that Pf'�" .´/ 2 N g D 0 (see Proposition 3.9). By letting " tend
to 0, we deduce that Pf'Œ0;T � 2 �N g D 1. Indeed,\

">0

f'Œ";T �.´/ 2 �N g D f'.0;T �.´/ 2 �N g D f'Œ0;T �.´/ 2 �N g

since '0.´/ 2 �c
N implies 't .´/ D � for any t > 0.

Assume now that ´ 2 �N but x 62 �x;N . From the proof of Lemma 4.8, we
know that, P a.s., there exists a nonempty interval .0; �.!// such that 't .´/ 2
�x;N , where � is a stopping time. (When xi D xj , j�i;x.'t .´// � �j;x.'t .´//j �
.t=2/jvi � vj j for t > 0 small and is thus nonzero for t > 0 small.) In particular,
�´.!/ � �.!/. For any ı 2 .0; "/, we have

�'".´/.N / � Pf'".´/ 2 N ; ı < �g C Pf� � ıg

� Pf'".´/ 2 N ;…x.'ı.´// 2 �x;N g C Pf� � ıg:
(4.25)
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By the Markov property, we then obtain

(4.26) Pf'".´/ 2 N ;…x.'ı.´// 2 �x;N g DZ
R2Nd

Pf'"�ı.´
0/ 2 N g1f…x.´0/2�x;N g�'ı.´/.d´

0/:

Returning to (4.23), we write " as " D "1C"2 with "1; "2 > 0. Choosing ı D "1 in
(4.25), we have "� ı D "2 in (4.26). From (4.24) and from Lebesgue’s dominated
convergence theorem, we know that the right-hand side of (4.26) tends to 0 as
"2 D "� ı tends to 0. By passing to the limit in (4.23) and using (4.25), we obtain
that Pf'Œ"1;T �.´/ 2 �N g � 1 � Pf� � "1g for any "1 > 0. Finally, by letting "1
tend to 0, we conclude that Pf'Œ0;T �.´/ 2 �N g D 1. �
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