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Elastic turbulence in a shell model of polymer solution
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Abstract – We show that, at low inertia and large elasticity, shell models of viscoelastic fluids
develop a chaotic behaviour with properties similar to those of elastic turbulence. The low di-
mensionality of shell models allows us to explore a wide range both in polymer concentration and
in Weissenberg number. Our results demonstrate that the physical mechanisms at the origin of
elastic turbulence do not rely on the boundary conditions or on the geometry of the mean flow.
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Introduction. – Elastic turbulence is a chaotic regime
that develops in low-inertia viscoelastic fluids when the
elasticity of the fluid exceeds a critical value [1]. It is
characterised by power-law velocity spectra (both in time
and in space) and by a strong increase of the flow resis-
tance compared to the laminar regime. Elastic turbulence
differs from hydrodynamic turbulence in that inertial non-
linearities are irrelevant and the chaotic behaviour of the
flow is entirely generated by elastic instabilities. In ad-
dition, the spatial spectrum of the velocity decays faster
than in hydrodynamics turbulence; thus, the velocity field
is smooth in space. Elastic turbulence has important ap-
plications, since the possibility of inducing instabilities
at low Reynolds numbers allows the generation of mix-
ing flows in microfluidics devices [2,3]. This phenomenon
has been used, for instance, to study the deformation of
DNA molecules in chaotic flows [4]. Furthermore, elastic
turbulence provides a possible explanation of the improve-
ment in oil-displacement efficiency that is observed when
polymer solutions are used to flood reservoir rocks [5].

The first experiments on elastic turbulence have used
confined flows with curved stream lines [6]. Nonethe-
less, purely elastic instabilities have been shown to de-
velop also in a viscoelastic version of the Kolmogorov
flow, which is periodic and parallel [7,8]. Indeed, elastic
turbulence in the viscoelastic Kolmogorov flow exhibits
a phenomenology qualitatively similar to that observed in
experiments [9,10]. Low-Reynolds-number elastic instabil-
ities have also been predicted for the Poiseuille flow [11]
and for the planar Couette flow [12] of a polymer so-
lution at large elasticity. More recently, elastic tur-
bulence has been observed experimentally in a straight

microchannel [13,14] and numerically in channels with pe-
riodic cylindrical obstacles [15] as well as in a periodic
square [16]. These findings indicate that elastic turbu-
lence also develops in simplified flow configurations and
that the specific geometry of the system may not play a
crucial role in this phenomenon. In this letter, we take a
step further in this direction and study elastic turbulence
in a shell model of polymer solution.

Hydrodynamical shell models are low-dimensional mod-
els that preserve the essential shell-to-shell energy trans-
fer feature of the original partial differential equations in
Fourier space. Despite the fact that they are not de-
rived from the principle hydrodynamic equations in any
rigorous way, they have played a fundamental role in
the study of fluid turbulence since they are numerically
tractable [17–20]. Shell models have also achieved re-
markable success in problems related to passive-scalar tur-
bulence [21–24], magnetohydrodynamic turbulence [25],
rotating turbulence [26], binary fluids [27,28], and flu-
ids with polymer additives [29,30]. Furthermore, the
mathematical study of shell models has yielded several rig-
orous results, whose analogs are still lacking for the three-
dimensional Navier-Stokes equations (e.g., refs. [31,32]).

A shell model of polymer solution can be obtained by
coupling the evolution of the velocity variables with the
evolution of an additional set of variables representing the
polymer end-to-end separation field. Shell models of poly-
mer solutions have been successfully applied to the study
of drag reduction in forced [29,33,34] and decaying [30]
turbulence, two-dimensional turbulence with polymer ad-
ditives [35], and turbulent thermal convection in viscoelas-
tic fluids [36,37]. Here, we study a shell model of polymer
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Table 1: The parameters, defined in the text, for the different
sets of our simulations.

Type ϵ N ν δt f0

chaotic for c = 0 0.5 15 10−1 10−4 0.01
non-chaotic for c = 0 0.3 22 10−6 10−4 0.01

solution in the regime of low inertia and high elasticity.
We show that this shell model undergoes a transition from
a laminar to a chaotic regime with properties remarkably
similar to those of elastic turbulence. Moreover, the use of
a low-dimensional model allows us to explore the proper-
ties of elastic turbulence over a wide range both in polymer
concentration and in Weissenberg number, which would
be difficult to cover with direct numerical simulations of
constitutive models of viscoelastic fluids.

Shell model of polymer solution. – We con-
sider the shell model of polymer solution introduced by
Kalelkar et al. [30], which is based on a shell model ini-
tially proposed for three-dimensional magnetohydrody-
namics [38,39] and reduces to the GOY model [40,41]
when polymers are absent. The shell model by Kalelkar
et al. [30] can be regarded as a reduced, low-dimensional
version of the FENE model [42]. It describes the tempo-
ral evolution of a set of complex scalar variables vn and
bn representing the velocity field and the polymer end-to-
end separation field, respectively. The variables vn and bn

evolve according to the following equations [30]:

dvn

dt
= Φn,vv − νsk

2
nvn +

νp

τp
P (b)Φn,bb + fn, (1)

dbn

dt
= Φn,vb + Φn,bv − 1

τp
P (b)bn − νbk

2
nbn. (2)

where n = 1, . . . , N , kn = k02n, P (b) = 1/(1 −
∑

n |bn|2)
and Φn,vv = i(a1knvn+1vn+2 + a2kn−1vn+1vn−1 +
a3kn−2vn−1vn−2)∗, Φn,bb = −i(a1knbn+1bn+2 +
a2kn−1bn+1bn−1 + a3kn−2bn−1bn−2)∗, Φn,vb =
i(a4knvn+1bn+2 + a5kn−1vn−1bn+1 + a6kn−2vn−1bn−2)∗,
and Φn,bv = −i(a4knbn+1vn+2 + a5kn−1bn−1vn+1 +
a6kn−2bn−1vn−2)∗ with k0 = 1/16, a1 = 1, a2 = −ϵ,
a3 = −(1 − ϵ), a4 = 1/6, a5 = 1/3, a6 = −2/3, and the
single free parameter ϵ determines whether or not, in the
absence of polymers, the behaviour of the shell model is
chaotic. The GOY shell model for fluids indeed shows a
chaotic behaviour for 0.33 ! ϵ ! 0.9 and a non-chaotic
behaviour for ϵ ! 0.33 [43,44]; the standard choice for
hydrodynamic turbulence is ϵ = 0.5 [17–20]. As we shall
see later, it is useful to study elastic turbulence in both
these regimes.

The number of shells that are used is given by N , the
coefficient of kinematic viscosity by νs, the polymer re-
laxation time by τ , νp is the polymer viscosity parame-
ter, νb = 10−13νs is a damping coefficient to allow for

Fig. 1: (Colour online) Log-log plots of the kinetic energy spec-
trum E(k) vs. the wavenumber k for a highly viscous flow with
(red, filled squares) and without (blue, filled circles) polymer
additives (see text). The curve without the addition of poly-
mers do not show any algebraic scaling. However, the addition
of polymers leads to the development of a power-law scaling
k−4 in the energy spectrum (as indicated by the thick black
line). These simulations were done for ϵ = 0.5.

Fig. 2: (Colour online) The kinetic energy vs. time, with
ϵ = 0.5 for various values of c and Wi. From the upper-
most to the lowermost curve the curves correspond to c = 1.0,
Wi ≈ 0.25; c = 4.0, Wi ≈ 0.25; c = 1.0, Wi ≈ 25; c = 4.0,
Wi ≈ 25; and c = 20.0, Wi ≈ 25. The top two curves show
non-chaotic, laminar behaviour with a transition to periodic
dynamics in the middle curve and then fully elastic turbulence
in the bottom two.

the dissipation term −νbk2
nbn to be added to eq. (2) in

order to improve numerical stability [30,33,34], and the
forcing fn drives the system to a non-equilibrium statis-
tically stationary state. In particular we use either a de-
terministic forcing fn = f0(1 + ı)δn,2 or a white-in-time
Gaussian stochastic forcing with amplitude f0 acting on
the n = 2 shell. We choose initial conditions of the form
v0

n = k1/2
n eıφn for n = 1, 2 and v0

n = k1/2
n e−k2

neıφn for
3 ≤ n ≤ N and, for the polymer field, b0

n = k1/2
n eıθn

for 1 ≤ n ≤ N . Here φn and θn are random phases
uniformly distributed between 0 and 2π. Equations (1)
and (2) are solved numerically through a second-order
Adams-Bashforth method with a time step δt for all our
simulations. The numerical values for the various param-
eters of our simulations are given in table 1.
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Fig. 3: (Colour online) The kinetic energy vs. time, for ϵ = 0.5, at Wi ≈ 25 for (a) c = 1.0 and (b) c = 20.0 in the time interval
where the flow is statistically stationary. We see a clear transition from a periodic behaviour to a fully elastic turbulence regime.

By analogy with continuum models of polymer solu-
tions, we interpret the ratio c = νp/νs as the polymer
concentration [30,33,34]. We define the mean dissipation
rate of the flow as ε = ⟨νs

∑
n k2

n|vn|2⟩; thence we extract
the large-scale time T = (k2

1ε)−1/3, which allows us to
define the Weissenberg number as Wi = τ/T . In our sim-
ulations we choose eight different values both of c and of
Wi such that 0 ≤ c ≤ 20 and 0 ≤ Wi ! 25. The Weis-
senberg number is varied by varying τ , so that the inertia
of the system remains constant and negligible for all Wi.

Elastic-turbulence regime. – In order to understand
whether the shell model defined via eqs. (1) and (2) indeed
shows the typical features of elastic turbulence, we per-
form numerical simulations of the shell model with ϵ = 0.5
and a stochastic forcing. The parameters (see table 1) are
such that for c = 0 the shell model is not turbulent. The
time-averaged (in the steady state) kinetic-energy spec-
trum E(kn) = |vn|2/kn indeed decreases sharply with the
wave number kn without any apparent power-law scaling
(see the blue line with filled circles in fig. 1).

A typical signature for elastic turbulence is the devel-
opment of a power-law energy spectrum with an exponent
smaller than −3 as the Weissenberg number is increased
at fixed Reynolds number much smaller than 1 [6,45]. We
therefore turn on the polymer field in the shell model
(c ̸= 0), and for sufficiently large c and Wi a power-
law scaling emerges. In fig. 1, the energy spectrum for
c = 20 and Wi = 25 is shown (red squares). We see a
clear power-law behaviour, namely E(kn) ∼ k−4

n , as is in-
dicated by the thick black line. The value of the exponent
is close to that found in experiments [6,45] and in nu-
merical simulations [9,10,46,47] and is consistent with the
theoretical predictions based on the Oldroyd-B model [48].
The spectrum of the polymer end-to-end separation field
does not show a power-law behaviour and is concentrated
around small wave numbers, in agreement with direct nu-
merical simulations of elastic turbulence [16]. An analo-
gous behaviour is found with a deterministic forcing. This
is accompanied by a corresponding increase of the largest
Lyapunov exponent as discussed in detail later. Thus,

the shell model reproduces the most obvious signature of
elastic turbulence, namely, the emergence of a large-scale
chaotic dynamics in a laminar flow with the addition of
polymers.

A global quantity like the total kinetic energy K(t) =∑
n |vn|2(t) provides further insight into the transition to

elastic turbulence; its temporal behaviour with varying Wi
and c indeed is an indicator of the changes of dynamical
regime which happen in the system [10]. In fig. 2 we show
time series of K(t) for various combinations of c and Wi.
For cases with very small values of Wi —and independent
of the value of c— the total energy quickly saturates to an
asymptotic value with no noticeable fluctuations, as is typ-
ical for laminar flows (fig. 2, top two panels). However, as
Wi increases, even for a small enough value of c = 1.0, tiny
but regular oscillations are seen in the temporal dynamics
of K(t) vs. t (fig. 2, middle panel). This behaviour is
shown clearly in a zoomed plot in fig. 3(a). Keeping the
Weissenberg number fixed, we now increase the concen-
tration (fig. 2, bottom two panels) and see that the total
kinetic energy vs. time shows increasingly chaotic dynam-
ics with large irregular fluctuations. This behaviour is
highlighted in the zoomed-in fig. 3(b). Figures 2 and 3
show that the shell model (which for c = 0 is laminar be-
cause of our choice of parameters), with increasing effect of
polymers characterised by the concentration or the Weis-
senberg number, undergoes a transition from a laminar
phase to one with strong fluctuations through a series of
intermediate periodic phases for moderate values of c and
Wi. This phenomenon was first observed as a function
of Wi in direct numerical simulations of the Oldroyd-B
model [42] with periodic Kolmogorov forcing [10] and of
the FENE-P model [42] in a cellular flow [16]. The shell
model considered here not only reproduces such a transi-
tion to chaos through periodic states as the Weissenberg
number is increased, but also shows that an analogous
transition occurs as a function of polymer concentration.
Following ref. [44], in fig. 4 we also show the map |vn+1|
vs. |vn|, for n = 2. The structure of this map for increas-
ing values of c further shows that the elastic-turbulence
regime emerges through period doubling.
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Fig. 4: (Colour online) The map for |v3| vs. |v2|, at fixed Wi = 25 and (a) c = 0.5 (b) c = 7.0 and (c) c = 20.0. We see a clear
transition from a non-chaotic to a chaotic behaviour for ϵ = 0.5.

Fig. 5: (Colour online) The map for |v3| vs. |v2|, at fixed Wi = 5 and (a) c = 2.0 and (b) c = 10.0 for ϵ = 0.3. Like in the case
for ϵ = 0.5 (fig. 4), we see a similar, clear transition from a non-chaotic to a chaotic behaviour.

The above results confirm that the shell model with
polymer additives replicates the global features of elas-
tic turbulence. Given the relative numerical simplicity of
shell models, it now behooves us to study in detail the ef-
fects of concentration on the small-scale mixing properties
of elastic turbulence, which determine the importance of
this phenomenon for practical applications. We quantify
mixing in elastic turbulence and its dependence on c and
Wi by calculating the largest Lyapunov exponent λ of the
projection of the shell model on the vn variables. We re-
call that for the fluid GOY shell model such calculations
show the chaotic–non-chaotic transitions as a function of
the single parameter ϵ [43,44]. For this set of calculations
we would like to ensure that, in the absence of polymers,
the flow is non-chaotic in order to reveal the transition to
chaos more clearly. Thus we now study the shell model
with ϵ = 0.3 (see table 1), for which λ = 0 when c = 0.
In order to check the generality of our conclusions, we use
both a deterministic and a stochastic forcing and find our
results insensitive to the precise nature of the forcing.

Before we turn our attention to a quantitative measure
of the transition to elastic turbulence below, we imme-
diately note, as seen in fig. 5, that the basic feature of
transition to chaos, with increasing concentration for a
fixed Wi, persists even for the case of ϵ = 0.3. In addition,
we also observe the formation of power-law energy spectra
with a slope close to that found in the ϵ = 0.5 case.

In fig. 6 we show the Lyapunov exponent rescaled with
the polymer relaxation time, λτ , as a function of Wi for
different values of c both for deterministic and for stochas-
tic forcing (inset). For small values of c ! 5, the rescaled
Lyapunov exponent remains close to 0, and hence the
system is non-chaotic or laminar. For sufficiently large val-
ues of c " 5, we find that beyond a threshold value of the
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Fig. 6: (Colour online) λτ vs. Wi for ϵ = 0.3 for various
values of c and for deterministic and stochastic (inset) forcing.
The symbols sizes are proportional to the error bars in our
calculations. The concentration varies between 0 and 20 from
bottom to top.

Weissenberg number (Wi ≈ 5) the rescaled Lyapunov ex-
ponent increases approximately linearly and for the largest
value of c, at Wi " 25, we find λ ≈ 1/τ . Our findings are
in agreement with analogous calculations made in the vis-
coelastic Kolmogorov flow for a single, fixed value of the
elasticity of the flow [9]. It is important to note, though,
that the results for the Kolmogorov flow [9] indicates a
slightly more dramatic increase of λτ as a function of the
Weissenberg number than seen in the shell model.

We now turn to the behaviour of λτ as a function of c for
different values of Wi, as shown in fig. 7. As before we find
that for low Weissenberg numbers, the flow remains non-
chaotic even when the polymer concentration increases.
Beyond a threshold value of Wi, there is a sharp increase in
λτ when the concentration becomes greater than 5. Thus,
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Fig. 7: (Colour online) λτ vs. c for ϵ = 0.3 for various values
of Wi and for deterministic and stochastic (inset) forcing. The
symbol sizes are proportional to the error bars in our calcu-
lations. The Weissenberg number varies from 0 to 25 from
bottom to top.

Fig. 8: (Colour online) Probability density function of Π for ϵ =
0.3 at Wi = 5 for concentration values c = 5.0 (red triangles),
10.0 (blue squares), and 20.0 (green circles). The inset shows
a typical timeseries of Π for c = 10.0.

provided Wi is sufficiently large, increasing the concentra-
tion has a destabilizing effect comparable to that observed
when the Weissenberg number is increased.

Finally, the interaction between the polymers and the
flow is described by the energy exchange [34]:

Π = −νpP (b)
τ

Re

(
∑

n

v∗
nΦn,bb

)
. (3)

Negative values of Π indicate that energy flows from the
velocity variables towards the polymers; positive values of
Π correspond to energy transfers in the opposite direction.
In turbulent drag reduction, the timeseries of Π is predom-
inantly negative [29,34]. This fact signals that polymers
drain energy from the flow and justifies the description of
their effect as a scale-dependent effective viscosity [34]. In
fig. 8, we show the probability density function of Π in the
elastic-turbulence regime of the shell model with ϵ = 0.3
at different concentrations for a fixed value of Wi. We find
that Π takes positive and negative values with comparable

probabilities, i.e. in elastic turbulence there are continu-
ous energy transfers between the flow and the polymers
without a definite preferential direction (see also the inset
of fig. 8). This result is consistent with the behaviour of
the energy-exchange rate in decaying isotropic turbulence
with polymer additives, the long-time stage of which has
properties in common with elastic turbulence [47].

Conclusions. – We have considered a shell model of
viscoelastic fluid that describes the coupled dynamics of
the velocity and polymer fields in the flow of a polymer so-
lution. In the regime of large inertia and large elasticity,
this model was previously shown to reproduce the main
features of turbulent drag reduction. We have studied the
regime in which inertial nonlinearities are negligible and
have shown that, when the Weissenberg number becomes
sufficiently high, the system shows a transition to a chaotic
state. A detailed analysis of this chaotic state indicates
that the shell model under consideration qualitatively re-
produces the transition to elastic turbulence observed in
experiments and in numerical simulations. The simplic-
ity of the shell model also allows us to study the elastic-
turbulence regime over a wide range of values not only
of the Weissenberg number but also of polymer concen-
tration. In particular, we find that, when the concentra-
tion is increased while the Weissenberg number is fixed,
the emergence of the chaotic regime follows a dynamics
analogous to that observed when the Weissenberg num-
ber is increased at fixed polymer concentration. Thus the
transition to elastic turbulence shows similar features as a
function of Wi and of c.

This study enhances our understanding of the transi-
tion to elastic turbulence in polymer solutions. The shell
model that we have studied mimicks the interactions be-
tween the Fourier modes of the velocity field and of the
polymer end-to-end separation field in a viscoelastic fluid,
but it contains no information on the spatial structure of
these fields. The fact that such a model can replicate the
main features of elastic turbulence shows that the spe-
cific geometrical configuration of the system does not play
an essential role in the transition to elastic turbulence and
that the physical mechanisms leading to elastic turbulence
do not rely on the boundary conditions or the mean flow.

It would be interesting to analyze, through a systematic
examination of the parameter space, how the slope of E(k)
and the probability density function of Π depend on the
concentration and the Weissenberg number.

Finally, low-Reynolds-number instabilities are also
found in non-Newtonian fluids that are not viscoelastic,
namely in rheopectic fluids [49]. Such instabilities do not
rely on phenomena of alignment of the dissolved phase
with the flow, because the non-Newtonian nature of the
fluid is modelled through a time- and space-dependent vis-
cosity. It is an open question whether the low-Reynolds-
number instabilities observed in rheopectic fluids can
develop into a chaotic state and how the latter compares
with elastic turbulence.
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