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Abstract The dynamics of fluid particles on cylindrical manifolds is investigated. The ve-
locity field is obtained by generalizing the isotropic Kraichnan ensemble, and is therefore
Gaussian and decorrelated in time. The degree of compressibility is such that when the
radius of the cylinder tends to infinity the fluid particles separate in an explosive way. Nev-
ertheless, when the radius is finite the transition probability of the two-particle separation
converges to an invariant measure. This behavior is due to the large-scale compressibility
generated by the compactification of one dimension of the space.

Keywords Turbulence · Lagrangian trajectories · Kraichnan ensemble · Cylindrical
manifolds

1 Introduction

Many physical systems display a strong dependence on the space dimensionality, the best
known example being given by phase transitions in equilibrium statistical physics. As for
non-equilibrium systems, hydrodynamic turbulence shows a remarkable dependence on the
space dimension as well. In three dimensions, the kinetic energy flows from large to small
scales in the form of a Kolmogorov–Richardson cascade. Conversely, in two dimensions,
energy is transferred upscale at a constant rate, in an inverse cascade process [18]. Addi-
tionally, three-dimensional turbulence is characterized by a breakdown of scaling invariance
and small-scale intermittency [13], whereas the inverse cascade is apparently self-similar [2]
and even shows some intriguing signatures of conformal invariance [1].

These observations have spurred the search of a critical dimension between d = 2 and
d = 3 in the hope that it could provide a starting point for an analytical attack of three- or
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two-dimensional turbulence, or both. This approach has been mainly applied to simplified
models of turbulence, such as EDQNM [12], the shell model [16], or a model obtained by
generalizing the form of the two-dimensional stream function [24]. In those studies, the
spatial dimension has been most conveniently reduced to a formal parameter that could take
arbitrary values. The approach undertaken in the present paper differs from previous work at
least in two important aspects. First, we shall consider a geometrical, rather than formal, way
of looking in between dimensions. Namely, we shall study the dynamics of fluid particles on
cylindrical manifolds where the compactified dimension can be collapsed or inflated at will
so as to connect continuously the two extreme cases. Second, we shall focus on a system
that is fully under analytical control, that is the Kraichnan ensemble of velocities rather than
Navier–Stokes turbulence.

To study the turbulent transport of a passive scalar, Kraichnan introduced a Gaussian
ensemble of decorrelated-in-time velocity fields [19]. A compressible generalization of
the Kraichnan ensemble in the d-dimensional Euclidean space has been investigated by
Gawȩdzki and Vergassola under the assumption of statistical isotropy [15].1 In this model,
the dynamics of fluid particles depends on three physical quantities: the space dimension,
the degree of compressibility, and the (spatial) Hölder exponent of the velocity. The Hölder
exponent ξ/2 is greater than zero and less than one. This property mimics the behavior of a
turbulent velocity field, whose realizations are typically non-Lipschitz in the limit of infinite
Reynolds number. For any given d < 4 and 0 < ξ < 2, Gawȩdzki and Vergassola have iden-
tified a critical degree of compressibility separating two different phases of the Lagrangian
dynamics. Below the critical value (incompressible or weakly compressible velocity fields),
fluid particles separate superdiffusively. The probability distribution of fluid-particle separa-
tions does not have a stationary limit in this regime. Above the threshold (strongly compress-
ible fields), Lagrangian trajectories tend to collapse to zero distance, and the distribution of
the separations degenerates into a Dirac delta function. For d ≥ 4, the former regime is the
only possible one and the phase transition does not occur.2 The above results have been
subsequently elaborated by Le Jan and Raimond in the context of non-Lipschitz stochastic
differential equations [21, 22].

Here we consider a generalization of the Kraichnan ensemble on a cylindrical surface.
A d-dimensional cylindrical surface can be constructed by taking R

d and compactifying
d − d ′ dimensions. The radius of the cylinder is the size of the compactified dimensions.
When the radius tends to infinity we recover R

d ; when it tends to zero we obtain R
d ′

. Thus,
varying the radius of the cylinder produces a smooth transformation from dimension d to
dimension d ′.

We define a zero-mean Gaussian velocity field on a cylindrical surface by imposing the
form of its covariance. We require that the covariance of the field tends to the one of the
isotropic d-dimensional Kraichnan ensemble as the radius of the cylinder tends to infinity
and to the one of the isotropic d ′-dimensional Kraichnan ensemble as the radius vanishes.
The degree of compressibility is such that the velocity is weakly compressible in the limit
of infinite radius and strongly compressible in the opposite limit. It is therefore possible to
gradually move from one regime to the other by varying the radius of the cylinder.

As we shall see, if in the limit of infinite radius the Hölder exponent is equal to ξ , then
in the limit of vanishing radius it is equal to ξ + (d − d ′). Hence, if attention is restricted
to non-smooth velocities, the model under consideration is meaningful only when a single

1The smooth limit of this model had been previously considered in Ref. [3].
2For d = 4, the collapsed phase can exist only for smooth velocity fields (ξ = 2).
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dimension is compactified (d ′ = d − 1). For the sake of simplicity, we shall conduct the
analysis in two dimensions, where the two extreme cases are the two-dimensional plane and
the straight line. We shall show that the dynamics of fluid particles results from two oppo-
site effects. At small separations, Lagrangian trajectories exhibit a superdiffusive dynamics
owing to the weakly compressible nature of the small-scale velocity. At large separations,
fluid particles experience the trapping effect of a strongly compressible field. Consequently,
the probability distribution of the two-particle separation tends to an invariant measure. This
behavior is to be contrasted with the one observed in the two-dimensional isotropic case
with the same Hölder exponent and degree of compressibility.

In the present context, the separation vector between two fluid particles is a stochastic
process solving an Itô stochastic differential equation with non-Lipschitz diffusion coeffi-
cient. To guarantee the existence and the uniqueness in law of the solution, we shall add pure
diffusion to the velocity field. By considering an appropriate Lyapunov function, we shall
demonstrate that there exists an invariant measure for the fluid-particle separation. The in-
variant measure is unique, ergodic, and non-degenerate as a consequence of the irreducibility
and the strong Feller property of the process.

The paper is divided as follows. Section 2 describes a generalization of the Kraichnan
model on a d-dimensional cylindrical surface. The two-dimensional case is studied in detail
in Sect. 3. Sections 4 and 5 contain the results on the fluid-particle separation and its invari-
ant measure. The limit of vanishing diffusivity, the effect of a viscous regularization of the
velocity field, and the role of the Prandtl number are discussed in Sect. 6.

2 Kraichnan Model on a d-dimensional Cylindrical Surface

We consider the dynamics of fluid particles in a turbulent flow on a d-dimensional cylindri-
cal surface S . The velocity field is a family of white noises taking their values in the space
of vector fields on S . Specifically, v(t,x) is a Gaussian stochastic process with zero mean
and covariance

E(vα(t,x)vβ(s,y)) = Dαβ(x − y)δ(t − s), (1)

where x,y ∈ R
d ′ × [−πL,πL)d−d ′ ⊂ R

d (d > d ′) and L is the radius of the cylinder. The
velocity is by definition statistically homogeneous in space, stationary in time, and invariant
under time reversal. Moreover, we assume periodicity in the d − d ′ “radial” coordinates.

It is convenient to write the spatial covariance Dαβ(r) in terms of its Fourier-space rep-
resentation:

Dαβ(r) = 1

(2π)d ′
(2πL)d−d ′

∑

k′′∈ 1
L

Zd−d′
eik′′ ·r ′′

∫

Rd′ dk′ eik′ ·r ′
Fαβ(k)

with k = (k′,k′′) ∈ R
d ′ × 1

L
Z

d−d ′
, r = (r ′, r ′′) ∈ R

d ′ ×[−πL,πL)d−d ′
, and α,β = 1, . . . , d .

The presence of a series in the k′′-coordinates accounts for the periodicity of the velocity
field in the r ′′-coordinates.

We adopt the following form for the spectral tensor:

Fαβ(k) = Aαβ(k;℘)

(‖k‖2 + �−2)
d+ξ

2

(2)
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with � ∈ R+, ξ ∈ [0,2], ℘ ∈ [0,1], and

Aαβ(k;℘) = (1 − ℘)δαβ + (℘d − 1)
kαkβ

‖k‖2
.

As we shall see in the latter part of this section, Fαβ(k) has been chosen in such a way that,
in the limits L → 0 and L → ∞, Dαβ(r) tends to the covariance of an isotropic random
field.3

The spectral tensor is real, symmetric (Fαβ(k) = Fβα(k)) and non-negative definite ∀k ∈
R

d ′ × 1
L
Z

d−d ′
, i.e.,

∑

1≤α,β≤d

Fαβ(k)uαuβ ≥ 0 ∀ (u1, . . . , ud) ∈ R
d ,

as can be checked using the Cauchy–Schwartz inequality. These properties guarantee that
Dαβ(r) is the spatial covariance of a homogeneous random field (e.g., Ref. [25], p. 20).
Moreover, Fαβ(k) is an even function of k, and therefore the velocity is statistically invariant
under parity: Dαβ(−r) = Dαβ(r).

As a consequence of statistical homogeneity and parity invariance, the covariance of
velocity differences can be expressed in terms of Dαβ(r):

E([vα(t,x + r) − vα(t,x)][vβ(s,x + r) − vβ(s,x)]) = 2dαβ(r)δ(t − s) (3)

with dαβ(r) = Dαβ(0) − Dαβ(r) [25].
The meaning of the parameters ℘, �, and ξ may be understood by considering the limit

of Dαβ(r) for L → ∞ and for L → 0.
The limit L → ∞ (and 1/L → dk′′) yields:

lim
L→∞

Dαβ(r) = 1

(2π)d

∫

Rd−d′ dk′′
∫

Rd′ dk′ eik′ ·r ′+ik′′ ·r ′′
Aαβ(k;℘)

(‖k′‖2 + ‖k′′‖2 + �−2)
d+ξ

2

= 1

(2π)d

∫

Rd

dk
eik·rAαβ(k;℘)

(‖k‖2 + �−2)
d+ξ

2

. (4)

In this limit, Dαβ(r) tends to the spatial covariance of a d-dimensional isotropic field with
correlation length � and degree of compressibility ℘ [11, 15]. The parameter ξ/2 represents
the inertial-range Hölder exponent of the velocity:

∑d

α=1 dαα(r) = O(‖r‖ξ ) as ‖r/�‖ → 0.
For ξ = 0 the velocity field is purely diffusive; for ξ = 2 it is spatially smooth, and its spatial
regularity decreases with decreasing ξ . In particular, the Kolmogorov scaling is obtained
for ξ = 4/3, for the time integral of (3) must be proportional to ‖r‖4/3 in Kolmogorov’s
phenomenology [13].4

It is worth noting that for a finite L equation (4) describes the velocity covariance at
space separations much smaller than L.

3The spectral tensor could in principle be multiplied by a positive coefficient determining the intensity of the
velocity fluctuations. For the sake of simplicity, we set that coefficient to one.
4The same conclusion can be reached rigorously by defining the Kraichnan ensemble as the limit of an
Ornstein–Uhlenbeck process for vanishing correlation time [10].
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In the second limit, L → 0, we obtain5

lim
L→0

Dαβ(r) = δ(r ′′)
K

(2π)d ′

∫

Rd′ dk′ eik′ ·r ′
Aαβ(k′;℘ ′)

(‖k′‖2 + �−2)
d′+ξ ′

2

with ξ ′ = ξ + (d − d ′) and

℘ ′ = ℘(d − 1)

℘ (d − d ′) + d ′ − 1
, K = 1 + ℘(d − d ′)

d ′ − 1
if d ′ > 1,

A11(k
′;℘ ′) = 1, K = ℘(d − 1) if d ′ = 1 and ℘ > 0.

We thus recover the covariance of a d ′-dimensional isotropic velocity field with Hölder
exponent ξ ′/2, correlation length �, and degree of compressibility ℘ ′ [11, 15].

The exponents ξ and ξ ′ must satisfy the inequalities 0 ≤ ξ ≤ 2 and 0 ≤ ξ ′ ≤ 2. Therefore,
the limit L → 0 makes sense only in two cases:

(a) d ′ = d − 1, ξ ∈ [0,1], and ξ ′ = ξ + 1 ∈ [1,2];
(b) d ′ = d − 2, ξ = 0, and ξ ′ = 2.

We are interested in the situation where the fluid particles disperse when L → ∞ (d-
dimensional isotropic flow) and collapse when L → 0 (d ′-dimensional isotropic flow).
Moreover, we focus on spatially rough velocity fields leaving aside the cases ξ = 0
and ξ ′ = 2. This situation can be realized only in case (a), for ξ ∈ (0,1), and under the
conditions [15]:

℘ <
d

ξ 2
and ℘ ′ ≥ d ′

ξ ′2 .

The first inequality is actually satisfied for all d and ξ given that ξ ∈ (0,1) and ℘ ∈ [0,1].
The second inequality can be rewritten in terms of ℘ as follows:

℘ ≥ d − 2

ξ(ξ + 2)
. (5)

The restriction 0 ≤ ℘ ≤ 1 and inequality (5) imply the additional condition d < 5.
In the remainder of the paper, we shall investigate the statistics of fluid-particle separa-

tions on a two-dimensional cylindrical surface (d = 2).

3 Two-Dimensional Cylindrical Surface

For d = 2, case (a) is the only realizable one, corresponding to d ′ = 1. Condition (5) reduces
to ℘ ≥ 0 independently of ξ .

5This can be shown by multiplying Dαβ(r) by a function f (r ′′), integrating over r ′′ ∈ [−πL,πL), taking
the limit L → 0, and noting that only the term corresponding to k′′ = 0 has a non-zero limit equal to

f (0)
K

(2π)d
′
∫

Rd′ dk′ eik′·r ′
Aαβ(k′;℘′)

(‖k′‖2 + �−2)
d′+ξ ′

2

.
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The spatial covariance of the velocity field takes the form

Dαβ(r) = 1

4π2L

∞∑

j=−∞
ei

j
L

r2

∫

R

dk1
eik1r1Aαβ((k1,

j

L
);℘)

[k2
1 + (

j

L
)2 + 1

�2 ] 2+ξ
2

(6)

with r = (r1, r2) ∈ Ω = R × [−πL,πL). In (6) we have written k = (k1, k2) with k2 = j/L

and j ∈ Z to make the dependence on L explicit. We shall keep this notation in the remainder
of the paper.

We now restrict attention to space separations much smaller than �. Formally, this is
equivalent to considering the limit � → ∞. The spatial variance of the velocity field, Dαβ(0),
diverges as � tends to infinity (Appendix A); this behavior reflects the divergence of the
average kinetic energy of the fluid. Nevertheless, dαβ(r) has a finite limit for all r , and the
statistics of velocity differences remains well defined.

The limit of dαβ(r) for � → ∞ can be computed explicitly (Appendix A). The correlation
of the axial component is written:

lim
�→∞

d11(r) = ℘|Γ (− 1+ξ

2 )|
23+ξπ3/2Γ (1 + ξ

2 )L
|r1|1+ξ

+ Lξ

2π3/2Γ (2 + ξ

2 )

∞∑

j=1

j−1−ξ

{
1 + (1 − ℘)ξ

2
Γ

(
1 + ξ

2

)

− 2 cos

(
jr2

L

)[
℘

(
1 + ξ

2

)(
j |r1|
2L

) 1+ξ
2

K 1+ξ
2

(
j |r1|
L

)

+ (1 − 2℘)

(
j |r1|
2L

) 3+ξ
2

K 3+ξ
2

(
j |r1|
L

)]}
, (7)

where Kν(z) denotes the modified Bessel function of the second kind of order ν and argu-
ment z. The correlation of the radial component has the form:

lim
�→∞

d22(r) = (1 − ℘)|Γ (− 1+ξ

2 )|
23+ξπ3/2Γ (1 + ξ

2 )L
|r1|1+ξ

+ Lξ

2π3/2Γ (2 + ξ

2 )

∞∑

j=1

j−1−ξ

{
1 + ℘ξ

2
Γ

(
1 + ξ

2

)

− 2 cos

(
jr2

L

)[
(1 − ℘)

(
1 + ξ

2

)(
j |r1|
2L

) 1+ξ
2

K 1+ξ
2

(
j |r1|
L

)

+ (2℘ − 1)

(
j |r1|
2L

) 3+ξ
2

K 3+ξ
2

(
j |r1|
L

)]}
. (8)
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Finally, the mixed correlations can be written as follows:

lim
�→∞

d12(r) = lim
�→∞

d21(r) = (2℘ − 1)Lξ

2π3/2Γ (2 + ξ

2 )

∞∑

j=1

j−1−ξ

(
jr1

L

)
sin

(
jr2

L

)

×
(

j |r1|
2L

) 1+ξ
2

K 1+ξ
2

(
j |r1|
L

)
. (9)

The limit � → ∞ will be hereafter understood.

3.1 Large-Scale Form of the Covariance of Velocity Differences

To understand the nature of the random velocity field, it is useful to consider the covariance
of velocity differences at space separations much greater than the radius of the cylinder.

The series in (7)–(9) converge uniformly (Appendix A). For |r1|/L → ∞, it is therefore
possible to deduce the asymptotic expansion of dαβ(r) from the limiting behavior of the
single terms of the series. The asymptotic expansion of Kν(z) for z → ∞ is (e.g., Ref. [9],
formula II 7.13(7))

Kν(z) ∼
√

π

2z
e−z (|arg z| < 3π/2).

Thus, the r2-dependent contributions to dαβ(r) decay exponentially fast with increasing
space separation. The remaining contributions give

d11(r) ∼ D1 |r1|1+ξ + κ1 as
|r1|
L

→ ∞ (10)

with

D1 = ℘|Γ (− 1+ξ

2 )|
23+ξπ3/2Γ (1 + ξ

2 )L

and

κ1 = [1 + (1 − ℘)ξ ]LξΓ (
1+ξ

2 )

2π3/2(2 + ξ)Γ (1 + ξ

2 )
ζ(1 + ξ).

In the latter equation

ζ(s) =
∞∑

j=1

1

j s
(s > 1)

is the Riemann Zeta function. Likewise, we have

d22(r) ∼ D2 |r1|1+ξ + κ2 as
|r1|
L

→ ∞ (11)

with

D2 = 1 − ℘

℘
D1, κ2 = 1 + ℘ξ

1 + (1 − ℘)ξ
κ1.
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Finally, the off-diagonal terms vanish at large space separations:

lim
|r1|/L→∞

d12(r) = lim
|r1|/L→∞

d21(r) = 0. (12)

The above asymptotic expressions show that, at separations much greater than the radius of
the cylinder, the velocity difference may be regarded as the superposition of two independent
one-dimensional random fields. One field is directed along the axial direction; the other one
is directed along the radial direction. Both the fields depend only on r1. In particular, the
axial field is a one-dimensional Kraichnan velocity field with Hölder exponent 1 + ξ like
the one considered in Ref. [30].

At large separations, the small-scale dynamics manifests itself through an effective dif-
fusivity represented by the constants κ1 and κ2.

4 Fluid-Particle Dynamics

In the present context, the separation between two fluid particles can be regarded as a sto-
chastic process on Ω with diffusion coefficient dαβ(r) (and drift coefficient equal to zero).
To ensure the (weak) existence and uniqueness of the trajectories of the process, we add
diffusion to the velocity field and replace dαβ(r) by

dκ
αβ(r) := dαβ(r) + 2κδαβ, κ > 0.

The additional term can model the action of molecular diffusion on fluid particles as, e.g.,
in Ref. [15]. The constant κ will be referred to as diffusivity.

The separation vector between two fluid particles will be denoted by R. According to the
above remark, R satisfies the Itô stochastic differential equation6

dR(t) = √
2σ(R(t))dB(t), R(0) = r ∈ Ω, (13)

where B is Brownian motion on Ω and σ is defined through the Cholesky decomposition
of the matrix dκ :

σσ T = dκ

with

σ(r) =
⎛

⎝

√
dκ

11(r) 0
dκ

12(r)√
dκ

11(r)

√
dκ

22(r) − [dκ
12(r)]2
dκ

11(r)

⎞

⎠ , r ∈ Ω.

Although the diffusion matrix dκ is nor Lipschitz continuous nor bounded, the existence and
uniqueness of the solution of (13) can be proved using Stroock’s and Varadhan’s theory of
martingale problems [28]. To directly exploit this theory, we shall first consider the periodic

6If X and Y denote the positions of two fluid particles, the separation vector between the two particles is
defined as R := Y − X. The common physical notation for the evolution equation for R would be

dR

dt
= δRv(t) + 2

√
κ ξ(t)

where ξ is white noise and the statistics of δRv(t) := v(t,Y (t)) − v(t,X(t)) is defined by (3).
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extension of (13) on R
2, and then project the resulting process on Ω . We therefore introduce

the projection p : R
2 → Ω with

p(r) =
(

r1,−πL + r2 − 2πL

⌊
r2

2πL

⌋)
,

and define σ̃ := σ ◦ p. Likewise we denote d̃κ := dκ ◦ p = σ̃ σ̃ T.
Before proceeding further, it is convenient to define some notation. The spaces of

bounded measurable and bounded continuous functions on Ω will be denoted by Bb(Ω)

and Cb(Ω), respectively. The set C2(Ω) will be the space of functions having two continu-
ous derivatives. Analogous definitions will apply to functions defined on R

2.

Proposition 1 The Itô stochastic differential equation on R
2:

dR̃(t) = √
2 σ̃

(
R̃(t)

)
dB̃(t), R̃(0) = r ∈ R

2, (14)

where B̃ is the standard Brownian motion on R
2, has a unique (in law) weak solution. In

particular, the solution is a continuous Markov process.
For r ∈ R

2 and U ⊆ R
2 measurable, let

P̃ (0, r; s,U) := P
(
R̃(s) ∈ U if R̃(0) = r

)

be the transition probability distribution of R̃, and let (T̃t )t≥0 be the associate transition
semigroup:

T̃tf (r) :=
∫

R2
f (ρ)P̃ (0, r; t, dρ)

with f ∈ Bb(R
2). Then, the semigroup (T̃t )t≥0 has the strong Feller property, i.e.

T̃t (Bb(R
2)) ⊂ Cb(R

2) for all t > 0.

Proof The diffusion matrix has the following properties:

1. d̃κ is continuous;
2. d̃κ (r) is symmetric and strictly positive definite for all r ∈ R

2. The diffusivity κ is indeed
assumed to be strictly positive, and the spatial covariance of velocity differences must be
symmetric and uniformly non-negative definite for all r (Ref. [25], p. 97), i.e.,

∑

1≤α,β≤2

dαβ(r)uαuβ ≥ 0 ∀ (u1, u2) and r ∈ R
2;

3. there exists a positive constant C1 such that for all α, β , and r

|d̃κ
αβ(r)| ≤ C1(1 + ‖r‖2). (15)

This property is a consequence of the asymptotic behaviors (10) to (12) and of the fact
that d̃κ (r) is bounded at the origin and continuous on R

2.

Under the above conditions, Stroock’s and Varadhan’s uniqueness theorem apply to the mar-
tingale problem for d̃κ [28]. Then, the proposition follows from the equivalence between the
well-posedness of martingale problems and the existence and uniqueness in law of weak so-
lutions of stochastic differential equations (Ref. [27], pp. 159 and 170). �
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The process R can be regarded as the projection of R̃ on Ω : R(t) = p(R̃(t)). The prop-
erties of R can then be deduced from those of R̃.

Corollary 1 Equation (13) has a unique (in law) weak solution. The transition semi-
group (Tt )t≥0 associated with R has the strong Feller property: Tt (Bb(Ω)) ⊂ Cb(Ω) for
all t > 0.

Proof Given an initial condition r ∈ Ω , a weak solution of (13) can be constructed by taking
a solution of (14) with the same initial condition and projecting it on Ω .

The key observation to prove uniqueness in law is that any solution of (13) on Ω can be
uniquely mapped into a continuous solution of (14) on R

2. Then, uniqueness in law in R
2

guarantees that also the solution on Ω is unique in law.
Finally, (T̃t )t≥0 has the strong Feller property and the projection p is locally invertible

(with continuous inverse). Hence, (Tt )t≥0 has the strong Feller property. �

5 Invariant Measure of Fluid-Particle Separations

An invariant measure for R can be constructed by adapting to the case under examination
the procedure described in Ref. [26]. Clearly, an invariant measure may exist only if the
trajectories of the stochastic process do not “escape to infinity”. To control the behavior
of the first component of R, which is not bounded, we therefore introduce the Lyapunov
function V : Ω → R+:

V (r) =
{

h(h+1)c4+2(1−h2)c2r2
1 −h(1−h)r4

1
4(1−h)c2(h+1) if |r1| ≤ c,

1
2(1−h)

|r1|2(1−h) if |r1| > c,

where c > 0 and 1 > h > 0. The function V is twice continuously differentiable and has the
asymptotic behavior needed for the proof.

Lemma 1 If (1+ ξ)/2 > h > 1/2 and A denotes the infinitesimal generator of (Tt )t≥0, then
the Lyapunov function has the following properties for all ξ ∈ (0,1):

1. lim‖r‖→∞ AV (r) = −∞;
2. there exists m ∈ R such that AV (r) ≤ m for all r ∈ Ω ;
3. TtV (r) = V (r) + ∫ t

0 Ts AV (r)ds.

Proof For f ∈ C2(Ω), the infinitesimal generator of (Tt )t≥0 has the form

Af (r) = tr[σ(r)σ T(r)D2f (r)],
where D2f denotes the Hessian of the function f . The action of the generator A on V (r)

is written:

AV (r) = σ 2
11(r)

∂2V

∂r2
1

.

From (10) we obtain

AV (r) ∼ −(2h − 1)D1|r1|1+ξ−2h as ‖r‖ → ∞.
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For all ξ ∈ (0,1), there exists h such that (1+ξ)/2 > h > 1/2 and lim‖r‖→∞ AV (r) = −∞.
It is worth noting that this latter result relies on the fact that d11(r) = O(|r1|1+ξ ) as ‖r‖ → ∞
with 1 + ξ > 1.

Property 2 is a consequence of the continuity of AV and of property 1.
Finally, the transition semigroup satisfies

Ttf (r) = f (r) +
∫ t

0
Ts Af (r)ds

for any f ∈ C2
b (Ω). The same property holds true for the function V , as can be shown using

an approximation procedure similar to the one described in Ref. [26], pp. 167–168. The
details are given in Appendix B. �

We now make use of the properties of the Lyapunov function to obtain the following
result.

Proposition 2 There exists an invariant measure μ for the stochastic process R, i.e.

∫

Ω

(
Ttf

)
(r)μ(dr) =

∫

Ω

f (r)μ(dr) (16)

for all f ∈ Cb(Ω) and for all t > 0.

Proof Given r0 ∈ Ω , we have

1

t

∫ t

0
Ts(m − AV )(r0)ds = m − 1

t

∫ t

0
Ts AV (r0)ds

= m + V (r0) − TtV (r0)

t
≤ m + V (r0)

t
.

Hence

sup
t≥1

[
1

t

∫ t

0
Ts(m − AV )(r0)ds

]
< ∞. (17)

We now introduce the family of “average” measures (μt )t≥1 on Ω defined, for any f ∈
Cb(Ω), as

∫

Ω

f (r)μt (dr) = 1

t

∫ t

0
Tsf (r0)ds.

We show that (μt )t≥1 is uniformly tight. For a given N > 0 we define

EN = {r ∈ Ω : m − AV (r) ≤ N}.

The set EN is compact: it is closed since it is the preimage of a closed subset of Ω , and must
be bounded since AV (r) → −∞ as ‖r‖ → ∞. As a consequence of Markov’s inequality,
the measure of the complement of EN satisfies:

μt(E
c
N) ≤ 1

N

∫

Ω

[m − AV (r)]μt(dr) = 1

Nt

∫ t

0
Ts(m − AV )(r0)ds.
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Using (17) we conclude that for all ε > 0 there exists EN ⊂ Ω with

N = 1

ε
sup
t≥1

[
1

t

∫ t

0
Ts(m − AV )(r0)ds

]

such that μt(E
c
N) ≤ ε for all t ≥ 1. The family (μt )t≥1 is therefore uniformly tight. Then,

there exists a measure μ and a sequence (tp)p≥0 with limp→∞ tp = ∞ such that μtp con-
verges weakly to μ as p → ∞. This means that

∫
Ω

f dμtp → ∫
Ω

f dμ as p → ∞ for
all f ∈ Cb(Ω) (e.g., Ref. [6], Theorem 11.5.4, p. 404).

We now show that μ is invariant. For any f ∈ Cb(Ω), for t > 0, and for all p such
that tp ≥ t , we have:

∣∣∣∣
∫

Ω

f (r)μtp (dr) −
∫

Ω

Ttf (r)μtp (dr)

∣∣∣∣

=
∣∣∣∣

1

tp

∫ tp

0
Tsf (r0) ds − 1

tp

∫ tp

0
TsTtf (r0) ds

∣∣∣∣

=
∣∣∣∣

1

tp

∫ tp

0
Tsf (r0) ds − 1

tp

∫ t+tp

t

Tsf (r0) ds

∣∣∣∣

=
∣∣∣∣∣

1

tp

∫ t

0
Tsf (r0) ds − 1

tp

∫ t+tp

tp

Tsf (r0) ds

∣∣∣∣∣ ≤ 2t‖f ‖∞
tp

.

Hence, for all t > 0,
∫

Ω

f (r)μtp (dr) −
∫

Ω

Ttf (r)μtp (dr) → 0 as p → ∞.

The semigroup (Tt )t≥0 satisfies Tt (Cb(Ω)) ⊂ Cb(Ω) since (T )t≥0 has the strong Feller prop-
erty. By using the weak convergence of μtp to μ, we can thus conclude that (16) holds for
all f ∈ Cb(Ω) and for all t > 0. The measure μ is therefore invariant for R. �

To show that the invariant measure is actually unique, we need the following result stating
that R has no closed invariant set different from the whole space.

Lemma 2 The semigroup (Tt )t≥0 is irreducible, i.e. the transition probabilities of R,
P (0, r; t,U), are strictly positive for all t > 0, for all r ∈ Ω , and for all non-empty open
sets U ⊆ Ω .

Proof For all r ∈ R
2 the linear transformation associated with σ̃ (r) is invertible, and there-

fore maps R
2 into itself. Hence, the semigroup (T̃t )t≥0 is irreducible (Ref. [29], Theorem 24,

p. 66).
The transition probabilities of R are connected to those of R̃ as follows: P (0, r; t,U) =

P̃ (0, r∗; t,U ∗) where U ∗ = p−1(U) and r∗ is any point in p−1({r}). Therefore, (Tt )t≥0 is
irreducible. �

We can now state the main result regarding the invariant measure of R.

Theorem 1 There exists a unique invariant measure μ for the stochastic process R. The
measure μ is ergodic and equivalent to any transition probability P (0, r; t,U) with r ∈ Ω ,
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t > 0, and U ⊆ Ω measurable. Moreover, μ is absolutely continuous with respect to the
Lebesgue measure, and is therefore non degenerate (i.e., broad in r).

Proof We have already proved that μ is invariant. Its uniqueness, ergodicity, and equiva-
lence to any transition probability follow from the fact that the transition semigroup asso-
ciated with R has the strong Feller property and is irreducible [7, 17] (see also Ref. [5],
Chap. 4).

To prove the absolute continuity of μ with respect to the Lebesgue measure, we introduce
the family of transition probabilities

Qλ(r,U) = λ

∫ ∞

0
e−λsP (0, r; s,U)ds

with r ∈ Ω and U ⊆ Ω measurable, as well as the associate transition semigroup

Tλf (r) =
∫

Ω

f (y)Qλ(r, dy).

Likewise, we define an analogous family Q̃λ(r,U) for the process R̃. The measure μ is
invariant also for (Tλ)λ≥0:

∫

Ω

μ(dy)Tλf (y) = λ

∫ ∞

0
ds e−λs

∫

Ω

μ(dy)Tsf (y) =
∫

Ω

μ(dy)f (y)

for any f ∈ Bb(Ω), and hence

μ(U) =
∫

Ω

μ(dy)Qλ(y,U) (18)

for any measurable set U ⊆ Ω .
For all r ∈ R

2, the measure Q̃λ(r, ·) is absolutely continuous with respect to the Lebesgue
measure (see Ref. [29], Theorem 10, p. 24). It follows that Qλ(r, ·) has the same property
for all r ∈ Ω since Qλ(r,U) = Q̃λ(r

∗,p−1(U)) for a given r∗ ∈ p−1{r}. From (18), μ is
therefore absolutely continuous with respect to the Lebesgue measure. �

As a consequence of Lemma 2 and Theorem 1, the transition probability of R has a
positive density with respect to the Lebesgue measure: P (0, r; t, dρ) = p(0, r; t,ρ)dρ. The
probability density function is the (possibly weak) solution of:

∂tp = Mp, (19)

where, for f ∈ C2(Ω),

Mf (ρ) =
∑

1≤α,β≤2

∂ρα ∂ρβ
dκ

αβ(ρ)f (ρ).

6 Conclusions

We have studied the dynamics of fluid particles in a compressible turbulent velocity field on
a cylinder. The model that we have introduced is a generalization of the isotropic Kraichnan
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ensemble. Although the parameters of the velocity have been set in such a way as to produce
explosive separation of the fluid particles in the isotropic limit (L → ∞), on the cylinder the
probability distribution of the separation tends to an invariant measure. This behavior is a
result of the compressibility effects generated at large scales by the compactification of the
“radial” dimension.

The diffusivity κ has been taken strictly positive to guarantee the existence of solutions
to (13). The addition of Brownian motion to Lagrangian trajectories influences the dynam-
ics of fluid particles at small separations. Therefore, the presence of a nonzero diffusivity
may be relevant for the non-degeneracy of the invariant measure, but should not affect the
existence of the invariant measure itself, which rather depends on the large-scale form of
the velocity field. The limit κ → 0 may be tackled by means of Wiener chaos decomposi-
tion methods [20–23]. We conjecture that our results remain valid in that limit. Indeed, in
the situation considered, the small-scale dynamics of fluid particles is the same as in the
weakly compressible phase of the isotropic Kraichnan ensemble. In that regime, Lagrangian
trajectories separate in time even for vanishing κ owing to the poor spatial regularity of the
velocity [15]. Thus, the invariant measure should remain non-degenerate as κ → 0.

The Reynolds number is infinite in our study since the viscosity of the fluid, ν, has been
set to zero from the beginning. For the same reason the Prandtl number Pr = ν/κ is equal
to zero. The viscosity can be taken into account by multiplying the spectral tensor (2) by
the factor e−η2‖k‖2

, where η ∝ ν3/4 plays the role of the viscous length of the flow [11]. This
modification has a small-scale regularizing effect on the velocity field, which for any η > 0
is locally Lipschitz continuous. Obviously, a positive η does not alter the proofs of the results
shown in the paper.

The order of the limits κ → 0 and η → 0, however, deserves a detailed discussion. Tak-
ing the limit κ → 0 before η → 0 is equivalent to letting Pr tend to infinity. The opposite
order corresponds to the limit Pr → 0. As first observed in Ref. [8], when these limits are
considered the range of weak compressibility splits into two ranges: what is now called the
range of weak compressibility in the strict sense, 0 ≤ ℘ < (d −2+ξ)/(2ξ), and the range of
intermediate compressibility, (d − 2 + ξ)/(2ξ) ≤ ℘ < d/ξ 2. In the former range, the order
of the limits κ → 0 and η → 0 is not relevant for the Lagrangian dynamics [14]. At small
scales, fluid particles disperse irrespective of the order of the limits, and therefore we expect
the invariant measure of the separation to be non-degenerate. By contrast, the order matters
in the latter range [14]. For intermediate values of the compressibility, if the viscous regu-
larization is removed before the diffusivity (Pr → 0), the small-scale Lagrangian dynamics
is once more characterized by the explosive separation of the trajectories. If κ goes to zero
before η (Pr → ∞), the trajectories coalesce also at small scales, and the invariant measure
of the separation should degenerate into a Dirac delta function.

In summary, we believe that the present study captures the behavior of the Lagrangian tra-
jectories on cylindrical manifolds for all Pr except for the limit Pr → ∞ in the intermediate-
compressibility regime. These results are, moreover, relevant to turbulent transport of pas-
sive scalar fields in virtue of the relation subsisting between the scalar correlations and the
dynamics of fluid particles [11, 15].

We conclude by noting that when both the dimensions of the plane are compactified one
obtains the Kraichnan flow on a two-dimensional periodic square studied in Ref. [4]. The
velocity field considered there was however smooth in space.

Acknowledgements The authors are grateful to F. Flandoli and Y. Le Jan for fruitful discussions.
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Appendix A: Covariance of Velocity Differences

For d = 2, d ′ = 1, ξ ∈ (0,1), ξ ′ ∈ (1,2), the spatial covariance of the velocity field takes the
form

Dαβ(r) = 1

4π2L

∞∑

j=−∞
ei

j
L

r2

∫

R

dk1
eik1r1Aαβ((k1,

j

L
);℘)

(k2
1 + j2

L2 + 1
�2 )

2+ξ
2

with r ∈ Ω . We first establish the convergence of the above series. It is convenient to denote
the integrals by D

(j)

αβ (r1) and thus rewrite the covariance as follows:

Dαβ(r) = 1

4π2L

∞∑

j=−∞
D

(j)

αβ (r1)e
i

j
L

r2 = D
(0)
αβ (r1)

4π2L
+ 1

2π2L

∞∑

j=1

D
(j)

αβ (r1) cos

(
jr2

L

)
. (20)

Using the inequality

|Aαβ(k);℘)| ≤ 1 − ℘ + |2℘ − 1| ∀α,β = 1,2 and ∀k ∈ R × 1

L
Z,

we obtain that the coefficients of the series satisfy for all r1

|D(j)

αβ (r1)| ≤ (1 − ℘ + |2℘ − 1|)Mj

with (e.g., Ref. [9], formula I 1.5(2))

Mj =
∫

R

dk1

(
k2

1 + j 2

L2
+ 1

�2

)− 2+ξ
2

=
√

πΓ (
1+ξ

2 )

Γ (1 + ξ

2 )

(
j 2

L2
+ 1

�2

)− 1+ξ
2

.

The series
∑∞

j=1 Mj converges for all ξ ∈ (0,1) and � > 0 as well as in the limit � → ∞, as
it can be checked by means of the integral test. Then, the Weierstrass criterion guarantees
that the series in the right-hand-side of (20) converges uniformly and absolutely on Ω .
The uniform convergence will allow us to compute lim�→∞ dαβ(r) by exchanging limit and
summation.

The basic analytical ingredient to derive (7)–(9) is

∫ ∞

−∞

eik1r1

(k2
1 + z2)ν+1/2

dk1 = 21−νπ1/2Kν(|zr1|) |r1|ν
Γ (ν + 1

2 )|z|ν (21)

with Re(ν) > −1/2 and |arg z| < π/2 (e.g., Ref. [9], formula II 7.12(27)).
We first compute the correlation of the axial component of the velocity; the correlation

of the other components may be easily derived from D11(r).
In the limit � → ∞, we have

lim
�→∞

D
(j �=0)

11 (r1) =
∫ ∞

−∞
dk1

eik1r1 [(1 − ℘)
j2

L2 + ℘k2
1]

(k2
1 + j2

L2 )2+ ξ
2

= (1 − ℘)
j 2

L2

∫ ∞

−∞
dk1

eik1r1

(k2
1 + j2

L2 )2+ ξ
2

+ ℘

∫ ∞

−∞
dk1

k2
1e

ik1r1

(k2
1 + j2

L2 )2+ ξ
2
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= (1 − 2℘)
j 2

L2

∫ ∞

−∞
dk1

eik1r1

(k2
1 + j2

L2 )2+ ξ
2

+ ℘

∫ ∞

−∞
dk1

eik1r1

(k2
1 + j2

L2 )1+ ξ
2

= (1 − 2℘)

∣∣∣∣
j

L

∣∣∣∣

1−ξ
2 π1/2 |r1|(3+ξ)/2K 3+ξ

2
(| j

L
r1|)

2(1+ξ)/2 Γ (2 + ξ

2 )

+ ℘

∣∣∣∣
j

L

∣∣∣∣
− 1+ξ

2 2(1−ξ)/2π1/2 |r1|(1+ξ)/2K 1+ξ
2

(| j

L
r1|)

Γ (1 + ξ

2 )
.

To compute D
(j)

11 (0) we can use the asymptotic expansion of Kν(x) for x → 0

Kν(x) ∼ Γ (ν)

2

(
x

2

)−ν

+ Γ (−ν)

2

(
x

2

)ν

+ O(x2−ν) (ν < 1), (22)

Kν(x) ∼ Γ (ν)

2

(
x

2

)−ν

− Γ (ν)

2(ν − 1)

(
x

2

)2−ν

+ O(xν) (1 < ν < 2). (23)

Hence we obtain

lim
�→∞

D
(j �=0)

11 (0) = ℘

∣∣∣∣
j

L

∣∣∣∣
−1−ξ π1/2Γ (

1+ξ

2 )

Γ (1 + ξ

2 )
+ (1 − 2℘)

∣∣∣∣
j

L

∣∣∣∣
−1−ξ π1/2Γ (

3+ξ

2 )

Γ (2 + ξ

2 )

=
∣∣∣∣
j

L

∣∣∣∣
−1−ξ π1/2(1 + ξ − ℘ξ)Γ (

1+ξ

2 )

2Γ (2 + ξ

2 )
.

For j = 0 and � < ∞, we have

D
(0)

11 (r1) = ℘

∫ ∞

−∞
dk1

eik1r1

(k2
1 + �−2)

2+ξ
2

= ℘
2

1−ξ
2 π1/2

Γ (1 + ξ

2 )
|�r1| 1+ξ

2 K 1+ξ
2

(∣∣∣∣
r1

�

∣∣∣∣

)
.

The asymptotic expansion (22) shows that D
(0)

11 (0) diverges like �1+ξ as � → ∞. By using
expansion (22), it is nonetheless possible to show that

lim
�→∞

[D(0)

11 (0) − D
(0)

11 (r1)] = ℘
π1/2|Γ (− 1+ξ

2 )|
21+ξΓ (1 + ξ

2 )
|r1|1+ξ

(note that Γ (−(1 + ξ)/2) < 0 for 0 < ξ < 1). Hence, the covariance of the axial component
of the velocity difference, d11(r), has a finite limit as � → ∞.

For the other components we have:

D
(j)

22 (r1) =
∫ ∞

−∞
dk1

eik1r1 [(1 − ℘)k2
1 + ℘

j2

L2 ]
(k2

1 + j2

L2 )(k2
1 + j2

L2 + 1
�2 )

2+ξ
2

and

D
(j)

12 (r1) = D
(j)

21 (r1) = (2℘ − 1)
j

L

∫ ∞

−∞
dk1

k1e
ik1r1

(k2
1 + j2

L2 )(k2
1 + j2

L2 + 1
�2 )

2+ξ
2

.
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Therefore, D
(j)

22 (r1) can be derived from D
(j)

11 (r1) by replacing ℘ with 1 − ℘:

lim
�→∞

D
(j �=0)

22 (r1) = (2℘ − 1)

∣∣∣∣
j

L

∣∣∣∣

1−ξ
2 π1/2K 3+ξ

2
(| j

L
r1|) |r1|(3+ξ)/2

2(1+ξ)/2Γ (2 + ξ

2 )

+ (1 − ℘)

∣∣∣∣
j

L

∣∣∣∣
− 1+ξ

2 2(1−ξ)/2π1/2K 1+ξ
2

(| j

L
r1|) |r1|(1+ξ)/2

Γ (1 + ξ

2 )
,

lim
�→∞

D
(j �=0)

22 (0) =
∣∣∣∣
j

L

∣∣∣∣
−1−ξ √

π (1 + ℘ξ)Γ (
1+ξ

2 )

2Γ (2 + ξ

2 )
,

lim
�→∞

[D(0)

22 (0) − D
(0)

22 (r1)] = (1 − ℘)
π1/2|Γ (− 1+ξ

2 )|
21+ξΓ (1 + ξ

2 )
|r1|1+ξ .

The mixed correlation can be obtained, for j �= 0, by differentiating formula (21) with re-
spect to r1 and by using d

dx
[xνKν(x)] = −xνKν−1(x) (e.g., Ref. [9], formula II 7.11(21)):

lim
�→∞

D
(j �=0)

12 (r1) = i(2℘ − 1)
j

L

∣∣∣∣
j

L

∣∣∣∣
− 1+ξ

2
√

π |r1|(3+ξ)/2

2
1+ξ

2 Γ (2 + ξ

2 )
K 1+ξ

2

(∣∣∣∣
j

L
r1

∣∣∣∣

)
sgn(r1).

Hence

lim
�→∞

D
(j �=0)

12 (0) = 0.

For j = 0 we have

D
(0)

12 (r1) = 0 ∀ r1 ∈ R.

Finally, (7)–(9) may be derived by recalling that

dαβ(r) = 1

4π2L

∞∑

j=−∞

[
D

(j)

αβ (0) − D
(j)

αβ (r1)e
i

j
L

r2

]

and using the uniform convergence of the series in the right-hand-side of (20).

Appendix B: Proof of Lemma 1

To prove property 3 of Lemma 1, we first observe that

E
(‖R(t)‖2

) = ‖R(0)‖2 + 2 E

(∫ t

0
‖σ(R(s))‖2ds

)
≤ C2

(
1 +

∫ t

0
E

(‖R(s)‖2
)
ds

)
,

where C2 > 0 and ‖σ‖ := [Tr(σσ T)]1/2. The above inequality is a consequence of (15).
Gronwall’s inequality then yields

E
(‖R(t)‖2

) ≤ C2e
C2t (24)

for all t > 0.
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Following Ref. [26], we consider, for all γ > 0, a monotonically non-decreasing function
ϕγ ∈ C2(R+) such that

ϕγ (z) =
{

z 0 ≤ z ≤ γ,

ϕγ (γ + 1) γ + 1 ≤ z.

Moreover, we define Vγ := ϕγ ◦ V . Applying A to Vγ and taking into account (10) yield

|AVγ (r)| = σ 2
11(r)

∣∣∣∣∣ϕ
′
γ (V (r))

∂2V

∂r2
1

+ ϕ′′
γ (V (r))

(
∂V

∂r1

)2
∣∣∣∣∣ ≤ C3(1 + |r1|3+ξ−4h) (25)

as ‖r‖ → ∞ with 3 + ξ − 4h < 2 and C3 > 0.
Since Vγ ∈ C2

b (Ω), we have for all γ > 0

TtVγ (r) = Vγ (r) +
∫ t

0
Ts(AVγ )(r)ds.

We now show that each term of the above equation tends as γ → ∞ to the corresponding
term in property 3 of Lemma 1.

Obviously, limγ→∞ Vγ (r) = V (r) for all r ∈ Ω . Likewise, Vγ (R(t)) ↗ V (R(t)) almost
everywhere as γ → ∞. Therefore, by the monotone convergence theorem
limγ→∞ TtVγ (r) = TtV (r). Finally, limγ→∞ AVγ (R(t)) = AV (R(t)) and, from (25)
and (24), |AVγ (R(t))| ≤ C3(1 + ‖R(t)‖2) with C3 > 0 and E(‖R(t)‖2) < ∞. Then, it
follows from the bounded convergence theorem that

lim
γ→∞

∫ t

0
Ts(AVγ )(r)ds =

∫ t

0
Ts(AV )(r)ds.

This concludes the proof.
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