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Effect of internal friction on the coil–stretch
transition in turbulent flows

Dario Vincenzi †

A polymer in a turbulent flow undergoes the coil–stretch transition when the Weissenberg number, i.e.

the product of the Lyapunov exponent of the flow and the relaxation time of the polymer, surpasses a

critical value. The effect of internal friction on the transition is studied by means of Brownian dynamics

simulations of the elastic dumbbell model in a homogeneous and isotropic, incompressible, turbulent

flow and analytical calculations for a stochastic velocity gradient. The results are explained by adapting

the large deviations theory of Balkovsky et al. [Phys. Rev. Lett., 2000, 84, 4765] to an elastic dumbbell

with internal viscosity. In turbulent flows, a distinctive feature of the probability distribution of polymer

extensions is its power-law behaviour for extensions greater than the equilibrium length and smaller

than the contour length. It is shown that although internal friction does not modify the critical

Weissenberg number for the coil–stretch transition, it makes the slope of the probability distribution of the

extension steeper, thus rendering the transition sharper. Internal friction therefore provides a possible

explanation for the steepness of the distribution of polymer extensions observed in experiments at large

Weissenberg numbers.

1 Introduction

The coil–stretch transition is the complete unravelling of a polymer
that occurs when the polymer is immersed in a non-uniform flow
field and the magnitude of the velocity gradient surpasses a critical
value. It was initially predicted1,2 and observed experimentally3,4 in
a laminar extensional flow. The essential features of the coil–
stretch transition, such as the strong distortion of the polymer
and the associated conformational hysteresis, can be predicted1,2

by using a model as simple as the elastic dumbbell, which
consists of two inertialess beads connected by a spring. More-
over, if the contour length of the polymer is used as fitting
parameter, the dumbbell model satisfactorily reproduces the
experimental measurements of the end-to-end distance.3,5–7

Ref. 8–11 contain a comprehensive review of single-polymer
dynamics in laminar flows.

It was later discovered12–14 that the coil–stretch transition also
occurs in chaotic or turbulent flows, albeit with partially different
features. The most notable difference between extensional and
turbulent flows is in the probability distribution of the polymer
end-to-end distances. In turbulent flows, indeed, the core of the
distribution displays a power-law behaviour, which indicates that
a wide range of polymer extensions is observed even when the

magnitude of the velocity gradient is very large. This feature of
the statistics of the end-to-end distance was predicted by
applying large-deviations techniques to the dumbbel model
in a random flow12 and was observed in both microfluidics
experiments14–17 and numerical simulations of turbulent
flows13,18–22 (see also ref. 23, for a review).

The dynamics of a polymer involves internal dissipation
processes, generally referred to as ‘internal friction’, which
originate from local energy barriers to short-range conforma-
tional changes, such as bond rotations, or from interactions
between distant segments of the polymer that come close in
space.24 In coarse-grained models of elastic polymers, such as
the bead-spring chain,25,26 internal friction has been intro-
duced by adding a linear ‘dashpot’ to each elastic link, which
yields a resistive force proportional to the rate of deformation
of the link. This idea was proposed by Kuhn and Kuhn27 under
the name of ‘internal viscosity’. The early applications of
internal viscosity were mainly concerned with the rheology of
viscoelastic fluids (see ref. 25 and 28–31 and references
therein). For instance, internal viscosity is known to cause
shear thinning.29 More recently, there has been renewed inter-
est in bead-spring models with internal viscosity thanks to their
application to the study of biopolymer dynamics (see, e.g.,
ref. 32–36). The reader is referred to ref. 37 for a recent
introduction on the notion of internal friction and the use of
internal viscosity in polymer models.

It ought to be noted that the notion of internal viscosity has
been subject to some criticism,9,38,39 for the magnitude of the
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force exerted by the dashpot is not easily estimated from the
molecular properties of the polymer and it has been difficult
to find conclusive experimental evidence for the need of internal
viscosity in bead-spring chains. However, a protocol for
measuring the value of the internal-friction coefficient to be
used in bead-spring chain models has recently been proposed
in ref. 40.

The effect of internal viscosity on polymer stretching has
been studied for laminar, planar velocity fields.38,41–43 In particular,
it was shown in ref. 38 that a moderate internal viscosity reduces
the steady-state end-to-end distance, although without affecting the
critical velocity gradient for the coil–stretch transition. In contrast,
when the magnitude of internal viscosity exceeds a threshold value,
polymers hardly deform. The limiting case of a purely extensional
flow was shown to be special, since in such a flow internal viscosity
does not modify the steady-state configuration of the polymer. The
goal of this study is to examine the effect of internal friction on
the coil–stretch transition when the velocity field is turbulent. To
the author’s knowledge, indeed, the effect of internal dissipation
processes in turbulent flows has not been studied yet. Thus, the
dumbbell model with internal viscosity provides a simple setting
for a qualitative understanding of this phenomenon.

The study consists of Brownian dynamics simulations in
three-dimensional homogeneous and isotropic turbulence and
focuses on the statistics of polymer extension and the coil–
stretch transition. The numerical results are explained by
adapting the theory in ref. 12 to a dumbbell with internal
viscosity. In addition, a fully analytical solution for a stochastic
velocity gradient supports the interpretation of the results.
Finally, the concluding section discusses the experimental
evidence for the effect of internal friction on single-polymer
dynamics and identifies a phenomenon, namely the steepness
of the probablity distribution of the end-to-end distances,
that can be attributed to internal friction and not to other
forces usually included in bead-spring chains, such as hydro-
dynamic and excluded-volume interactions or a conformation-
dependent drag.

2 Model and methods
2.1 Elastic dumbbell with internal viscosity

The polymer is described as an elastic dumbbell. The extension
and orientation are specified by the vector q that connects the
two beads and represents the end-to-end separation vector of
the polymer. Internal viscosity is introduced in the dumbbell
model by adding the resistive force Fiv = �f(q� :q)q/q2 to the
equation for q (see ref. 27 and 29). Here q = |q| and f is termed
the internal viscosity coefficient. The resistive force is parallel
to �q and has a magnitude proportional to dq/dt. Thus, for a
finitely extensible nonlinear elastic (FENE) dumbbell with
internal viscosity the evolution equation for the connector
vector is44,45

:qi = Ai + Cijkkjk(t) + Bij
:

Wj (t) (1)

with

Ai ¼ �
qi

2tð1þ eÞð1� q2=L2Þ �
e

1þ e
4KT

z
qi

q2
; (2a)

Bij ¼

ffiffiffiffiffiffiffiffiffiffi
4KT

z

s
dij � 1�

ffiffiffiffiffiffiffiffiffiffiffi
1

1þ e

r !
qiqj

q2

" #
; (2b)

Cikl ¼ dik �
e

1þ e
qiqk

q2

� �
ql ; (2c)

where i, j, k = 1, 2, 3 and summation over repeated indices is
understood, t is the relaxation time of the polymer, L is its
contour length, z is the drag coefficient of the beads, K is the
Boltzmann constant, T is temperature, kij = qui/qxj is the
velocity gradient at the position of the centre of mass, and
W(t) is the three-dimensional Brownian motion [in eqn (1) the
noise term is interpreted in the Itô sense45]. The equilibrium
length of the dumbbell, defined as the standard deviation of q
for j = 0, is qeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12KTt=z

p
.

The parameter e = 2f/z describes the ratio of internal
viscosity to the hydrodynamic drag. The usual FENE dumbbell
model is recovered for e = 0, whereas for infinite e eqn (1) yields
the rigid dumbbell model.29 In the literature, e is typically taken
between 0 and 10.

The balance between polymer stretching and relaxation is
measured by the Weissenberg number, which in a chaotic flow
is commonly defined as Wi = lt, where l is the maximum
Lyapunov exponent of the flow, i.e. the average exponential rate
at which fluid particles separate.

Here eqn (1) is studied under the assumption that j(t) is the
gradient of a turbulent velocity field. It is worth mentioning
that even though eqn (1) assumes a linear velocity field, it
remains appropriate for turbulent flows, because the length of
a polymer is generally shorter than the viscous dissipation
scale, which is the smallest length scale in such flows.

2.2 Brownian dynamics simulations

The effect of internal viscosity is studied by using a database of
Lagrangian trajectories in homogeneous and isotropic, incom-
pressible turbulence generated at ICTS, Bangalore.46 Although
an isotropic turbulent flow has zero mean strain rate, line
elements are stretched exponentially with an asymptotic rate
l. Thus, a polymer in an isotropic turbulent flow experiences
strong stretching events that can unravel it completely.12,20,47

The database was obtained by tracking the positions of 105

fluid particles and calculating j(t) along their trajectories in a
direct numerical simulation of the three-dimensional Navier–
Stokes equations over a periodic cube and at Taylor-microscale
Reynolds number Rl = 111 (see ref. 46 for more details). The
time series of j(t) is then inserted into eqn (1). This procedure
assumes that the centre of mass of a polymer moves along a
fluid trajectory; therefore the effect of thermal noise on the
motion of the centre of mass is disregarded. Such an assump-
tion is justified in a turbulent flow, because thermal diffusion
is negligible compared to turbulent diffusion.
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For the numerical integration of eqn (1), ref. 37 proposes a
semi-implicit predictor-corrector scheme, which is adapted
from an analogous algorithm initially derived for e = 0.26

However, in the present setting the Euler–Maruyama method
supplemented with a rejection algorithm26 proved accurate
enough to prevent extensions greater than L (for e = 0 and the
largest value of Wi-the least favourable case-only 0.02% of
the time steps were rejected). In the Lagrangian database, the
velocity gradient was saved at a time interval Dt = 4 � 10�3. The
time step used for the integration of eqn (1) is dt = 4 � 10�4;
a linear interpolation between two subsequent values of the velocity
gradient is therefore required. In Section 3.1, the contour length is

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 103
p

and K, T, z, are such that qeq is unity. The ratio L2/q2
eq

is thus comparable to that of long DNA molecules4 and is the same
as that used in ref. 20 and 47. In Section 3.3, L is taken unrealis-
tically large, namely L = 103, in order accurately to resolve the power-
law behaviour of the distribution of q. The Weissenberg number is
varied between 0.05 and 8, while e is taken between 0 and 2.

3 Results and discussion
3.1 Polymer stretching in isotropic turbulence: the effect of
internal viscosity

The statistics of polymer stretching is described in terms of the
stationary probability density function (PDF) of the polymer end-
to-end distance, here denoted as Pst(q). It was already mentioned
in Section 1 that if e = 0, analytical,12 experimental,14–17 and
numerical13,18–22 studies of the dumbbell model have shown that
Pst(q) behaves as a power of q for qeq { q { L, with a slope that is
negative for small Wi, motonically increases as a function of Wi,
and crosses �1 when the Weissenberg number takes the critical
value Wicr = 1/2 (note that the present definition of t, and hence
of Wi, differs by a factor of 2 from that used in some of the
references cited above). Thus, in the L - N limit (linear
polymer), Pst(q) is no longer normalisable for Wi Z Wicr, and
this is interpreted as the indication of the coil–stretch transition
occurring at Wi = Wicr. The power-law behaviour of Pst(q) means
that the PDF is not dominated by a peak about its mean, but the

distribution of polymer extensions is broad. The transition is
characterized by a rapid increase of the mean extension and a
sharp maximum in the coefficient of variation of q, defined as
s/hqi, where s is the standard deviation of q (see ref. 14, 20 and
48). The latter behaviour is a further indication of the breadth of
the distribution and the heterogeineity of polymer configura-
tions in a turbulent flow.

Fig. 1 shows that, in the presence of internal viscosity, Pst(q)
continues to behave as a power of q for intermediate extensions,
but the slope of the power law changes significantly with e.
Internal viscosity indeed makes the power steeper: the PDF falls
faster than for e = 0 at small Wi and rises faster at large Wi. As a
consequence, the mean polymer extension displays a sharper
transition from the coiled to the stretched state as e is increased,
and its asymptotic value is larger at higher e (see Fig. 2(a)). At the
same time, the dispersion of the PDF around the mean is
reduced by internal viscosity, as is quantified by a systematically
smaller coefficient of variation for e 4 0 (inset of Fig. 2(a)).

This behaviour of Pst(q) may be inferred from the fact that,
in a turbulent flow, large deviations from the mean extension
are the cumulative result of strong fluctuations of the velocity
gradient, and the effect of internal viscosity is to attenuate the
response of the polymer to sudden variations in the velocity
gradient. However, a rigorous explanation of this phenomenon
will be given in the following sections.

The coil–stretch transition also manifests itself in a signifi-
cant increase of the correlation time of the polymer end-to-end
distance.20 A related phenomenon is the slowing down of
the equilibration dynamics of the polymer in the flow.49 If
C(t) = hq(t)q(0)i � hq(t)i2 is the autocorrelation function of
the end-to-end distance, the correlation time is defined as
T ¼

Ð1
0 dtCðtÞ=Cð0Þ. The inset of Fig. 2(b) shows that C(t)

decays approximately as an exponential function, as was
already observed for e = 0 (see ref. 20). However, internal
viscosity strongly amplifies the aforementioned increase of
the correlation time near the coil–stretch transition: T displays
a higher and higher peak near Wicr as e grows (in Fig. 2(b), time
is rescaled by the Kolmogorov time tZ, which is the time scale
associated with viscous dissipation in turbulent flows).

Fig. 1 Stationary PDF of q for different values of e and (a) Wi = 0.35 and (b) Wi = 2. Panel (c) is the same as panel (b) but on a linear scale.
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Finally, the orientation dynamics of polymers in isotropic
turbulence has also attracted some attention.20,21,50 Internal
viscosity obviously does not affect the orientation of a polymer
directly, because Fiv is parallel to q. However, it may in principle
do so indirectly, since it modifies the statistics of q. The
numerical results (not shown) indicate that internal viscosity
causes a mild reduction of the alignment of the polymer with
the vorticity only for Wi smaller than Wicr and close to Wicr. The
effect on the orientation dynamics is otherwise negligible.

3.2 An exactly solvable model

The stationary PDF of q can be calculated exactly if the
turbulent velocity gradient is modelled as a stochastic tensor
with suitable statistical properties. In the Batchelor regime of
the three-dimensional Kraichnan model,51 j(t) is an isotropic
traceless tensorial white noise, which means that j(t) is Gaussian,
has zero mean, and two-time correlation

hkijðtÞkklðt 0Þi ¼Kijkldðt� t 0Þ; i; j; k; l ¼ 1; 2; 3 (3)

with Kijkl = l(4dikdjl � dijdkl � dildjk)/3. This stochastic model of the
velocity gradient has been widely used in the study of turbulent
transport51 and was applied for the first time to single-polymer
dynamics in ref. 52. With this choice of j(t), the velocity gradient
plays the role of a multiplicative noise in the second term on the
right hand side of eqn (1) and is interpreted in the Stratonovich
sense.51,52

By using the methods presented in ref. 53, it can be shown
that if j(t) is as above, then the PDF of the vector q, denoted as
f (q,t), satisfies the Fokker–Planck equation

@f

@t
¼ � @

@qi
Vi fð Þ þ 1

2

@2

@qi@qj
Dij f
� �

(4)

with drift and diffusion coefficients

Vi ¼ Ai þ
1

2
KklmnCjmn

@Cikl

@qj
;

Dij ¼ BikBjk þKklmnCiklCjmn;
(5)

where Ai, Bij, Cijk have been defined in eqn (2). Summation over
repeated indices is assumed also in this section. The change
to spherical coordinates q = (q sin y cosj,q sin y sinj,q cos y)
transforms eqn (4) into a Fokker–Planck equation for f (q,y,j,t)
with coefficients:

Vq ¼
4KT

ð1þ eÞzq�
q

2ð1þ eÞtð1� q2=L2Þ þ
ð4þ 3eÞlq
3ð1þ eÞ2 ;

Vy ¼ 2
KT

zq2
þ l
3

� �
cot y; Dyy ¼

4KT

zq2
þ 4l

3
;

Dqq ¼
4KT

ð1þ eÞzþ
2lq2

3ð1þ eÞ2; Djj ¼ 4
KT

zq2
þ l
3

� �
csc2 y;

and Vj = Dqy = Dqj = Dyj = 0 (see ref. 54, p. 88, for the
transformation rules of a Fokker–Planck equation under a
change of variables). Taking into account the statistical isotropy
of the flow, it is now assumed that the stationary PDF of q is of
the form fst(q,y,f) = Pst(q) sin y. By replacing this expression into
the Fokker–Planck equation for f (q,y,f,t), it is then found that
Pst(q) satisfies the equation

2qq(VqPst) = q2
q(DqPst), (6)

which is solved with a reflecting boundary condition in q = 0.
This implies that in the steady state the probability current

Fig. 2 (a) Mean extension rescaled by the contour length as a function of Wi for different values of e. The inset shows the coefficient of variation of q for
the same values of Wi and e. (b) Correlation time of the polymer end-to-end distance as a function of Wi for different values of e. The inset shows the
autocorrelation of the polymer extension vs. time for Wi = 0.6. The time scale tZ is the Kolmogorov time.
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vanishes everywhere.54 The solution of eqn (6) corresponding to
zero probability current is54 PstðqÞ / Dqq

�1 exp 2
Ð
Vq=Dqqdq

� �
,

whence the analytical expression of Pst(q) is

PstðqÞ / q2 1þ 2Wi

ð1þ eÞ
q2

q
eq
2

" #3
2
e�ge

1� q2

L2

� �ge

(7)

with

ge
�1 ¼ 2

3

q
eq
2

L2
þ 2Wi

ð1þ eÞ

" #
: (8)

If e is set to zero, the above PDF reduces to that found in ref. 48 for
a polymer with zero internal viscosity in the Batchelor–Kraichnan
flow. At small q, the PDF is proportional to q2, because the
dynamics is dominated by thermal fluctuations. At very large q,
the last term in eqn (7), which originates from the nonlinear
elastic force, introduces a cut-off at the length L. For qeq { q { L,
the stationary PDF of q behaves as Pst(q) B q�1�ae with

ae ¼
3

2
ð1þ eÞ 1

Wi
� 2

� �
: (9)

The factor 1 + e has the effect of reducing the slope of Pst(q) for
Wi o Wicr and increasing it for Wi 4 Wicr. This makes Pst(q)
narrower and the coil–stretch transition sharper, although it does
not modify Wicr, which is defined as the value of Wi at which ae
vanishes. Thus, the stochastic model captures the effect of internal
viscosity on the steady-state statistics of polymer extension as
observed in the Brownian dynamics simulations and provides an
analytical tool for the study of internal viscosity in turbulent flows.

3.3 Predictions for a general random flow

The behaviour of Pst(q) observed in the Brownian dynamics
simulations and reproduced by the stochastic model can be
predicted for a general random flow by invoking the theory in
ref. 12. This is briefly recalled below in the version provided in
ref. 18, which uses the generalized Lyapunov exponents.

Let l(t) be a line element in a random flow. Its time

evolution is given by the equation _lðtÞ ¼ jðtÞ � lðtÞ, which in
turn yields the following equation for the length of the line
element:

d

dt
ln l ¼ l̂ � jðtÞ � l̂ (10)

with l̂ ¼ l=‘. The p-th generalized Lyapunov exponent is
defined as55,56

LðpÞ ¼ lim
t!1

1

t
ln

‘ðtÞ
‘ð0Þ

� �p	 

; (11)

where h�i denotes the average over the statistics of the velocity
field. L(p) represents the rate of exponential growth of the p-th
moment of c(t). It is a positive and convex function of p and
satisfies L(0) = L(�d) = 0, where d is the space dimension. In
addition, L0(0) = l.

Ref. 12 and 18 express Pst(q) in terms of L(p) (or its
Legendre transformation). It is first observed that if e = 0
and thermal noise is disregarded, the end-to-end distance and

the orientation of a linear polymer evolve according to the
following equations:12,57

d

dt
ln q ¼ bðtÞ � 1

2t
ðe ¼ 0Þ (12a)

dq̂

dt
¼ jðtÞ � q̂� bðtÞq̂ (12b)

with b(t) = q̂�j(t)�q̂. The similarity between eqn (12a) and (10)
makes it clear that the statistics of q must be related to the
generalized Lyapunov exponents of the flow. Extensions much
greater than qeq are observed after the polymer has experi-
enced large values of b(t). Thus, q is expressed in terms of b(t)
by writing the first of eqn (12a) in integral form, and then the
probability of large values of b(t) is approximated with its
large-deviations form to find:12,18

Pst(q) B q�1�a0 with a0 = 2tL(a0) (13)

for qeq { q { L. The value of a0 is therefore sought as the
nonzero intersection of the straight line a0/2Wi with the graph
of the function L(a0)/l. Since L(p) is convex, the above
equation indeed has two solutions, of which a0 = 0 is not
meaningful and should be discarded (except of course at the
coil–stretch transition, when the two solutions coincide). By
using the aforementioned properties of L(p) as a function of p,
it is easy to see that the non-zero solution is positive for small
Wi and decreases with Wi, until it vanishes for Wi = Wicr.
It then becomes negative for Wi 4 Wicr. Close to p = 0, the
generalized Lyapunov exponent can be expanded as L(p) = lp +
Dp2/2 + O(p3) with D ¼

Ð
bðtÞbðt 0Þh i � l2

� �
dt 0. This expansion

allows the explicit calculation of a0 for Wi near to Wicr:

a0 ¼
l
D

1

Wi
� 2

� �
: (14)

In particular, the latter expression shows that Wicr = 1/2.
Finally, in the limit of very large Wi, the straight line a0/2Wi
becomes parallel to the horizontal axis. Since L(p) vanishes at
p = �d, for infinite Wi the intersection of the straight line
a0/2Wi with the graph of L(a0)/l is located at a0 = �d, i.e.

lim
Wi!1

a0 ¼ �d: (15)

Thus, in the limit of very large Wi the stationary PDF of
q remains broad and reaches an asymptotic shape such that
Pst(q) Bq�1�d for qeq { q { L. A saturation of the PDF of
polymer extensions is observed also in the regime of elastic
turbulence of the Oldroyd-B model.58 In that case, however, the
asymptotic shape results from the back reaction of the linear
polymers on the flow and therefore differs from the prediction
in eqn (15).

It is worth mentioning that eqn (13) holds under very mild
assumptions on the random flow, namely that the correlation
time of b(t) is finite.12 Moreover, even though eqn (13) is
derived for a dumbbell, ref. 20 has shown that the steady-
state statistics of the end-to-end distance is the same for a
dumbbell and a chain with multiple beads, provided that a
suitable mapping between the parameters of the two systems is
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applied. Hence the validity of eqn (13) is not restricted to the
dumbbell model.

It is now discussed how internal viscosity modifies the above
predictions. If e 4 0, the analogue of eqn (12a) can be obtained
by multiplying eqn (1) by qi, neglecting the noise term, summing
over i, and dividing by q2 to find:

d

dt
ln q ¼ 1

1þ e
bðtÞ � 1

2t

� �
ðe � 0Þ: (16)

Contrastingly, eqn (12b) is unchanged. Therefore, for e 4 0, the
time evolution of q(t) is the same as that of a polymer with e = 0,
provided that t is multiplied by 1 + e and b(t) is rescaled by the
same quantity. It follows immediately that Pst(q) must display a
power-law behaviour also in the presence of internal viscosity:

Pst(q) B q�1�ae (qeq { q { L) (17)

with an exponent that can be determined as follows. Rescaling
b(t) by (1 + e) is equivalent to considering the evolution of q in a
flow with generalized Lyapunov exponents Le(p) = L(p/(1 + e)).
This can be seen by noting that the solution of eqn (10) is

‘ðtÞ ¼ ‘ð0Þ exp½
Ð t
0dsl̂ � jðsÞ � l̂�; if this expression is replaced into

eqn (11), it follows that considering a flow with a rescaled b(t) is
the same as taking a moment of c(t) of a rescaled order in the
original flow. Hence, the equivalent of eqn (13) for e 4 0 is

ae
1þ e

¼ 2tLeðaeÞ ¼ 2tL
ae

1þ e

� �
: (18)

Comparing eqn (18) with eqn (13) finally yields

ae = (1 + e)a0. (19)

Therefore, the effect of internal viscosity on the PDF of polymer
extensions is to multiply a0 by a factor of (1 + e). Since the
criterion for the coil–stretch transition in random flows is ae = 0,
internal viscosity does not modify the critical Weissenberg
number. However, the statistics of q is affected. Indeed,
�1 � ae o �1 � a0 when a0 o 0, i.e. for Wi o Wicr, whereas
�1 � ae 4 �1 � a0 in the opposite case. Thus, below the coil–
stretch transition the probability of large extensions is depleted
by internal viscosity; above the transition it is the small exten-
sions that are disfavoured. As a result, the mean extension is
reduced when Wi is below Wicr and increased for Wi 4 Wicr,
while the width of the PDF of the extension is systematically
decreased by internal viscosity. The coil–stretch transition there-
fore becomes sharper with increasing e. Fig. 3 clearly illustrates
the validity of eqn (19) by showing ae rescaled by (1 + e) from the
Brownian dynamics simulations described in Section 2.2. The
value of ae is estimated by fitting Pst(q) for qeq { q { L with a
power law (in order to obtain an accurate estimate, here the ratio
of L and qeq is taken larger than in Section 3.1, i.e. L/qeq = 103).
Fig. 3 also shows that, for large Weissenberg numbers, ae tends
to �d(1 + e), as can be seen by combining eqn (15) and (19).

In the Batchelor–Kraichnan flow studied in Section 3.2, L(p)
is exactly quadratic for all p (see ref. 51). Hence the expression
for a0 given in eqn (14) holds for all Wi and not only near the
coil–stretch transition. In addition, l/D = d/2 for this flow.51

Therefore, eqn (9) is an explicit example of the general relation
given in eqn (19).

4 Summary and conclusions

The effect of internal friction on polymer stretching in turbulent
flows has been studied by considering an elastic dumbbell with a
linear dashpot. The results are based on Brownian dynamics
simulations using a database of fluid trajectories in isotropic
turbulence, an exact solution for a stochastic velocity gradient,
and a generalization of the large deviations approach of ref. 12
that takes internal viscosity into account. Although it does not
modify the critical Weissenberg number for the coil–stretch
transition, internal viscosity strongly affects the statistics of
polymer extension in two opposite ways below and above the
transition. Its effect is indeed to multiply a0 by a factor of (1 + e).
This depletes the probability of large extensions below the
transition and the probability of small extensions above the
transition, thus leading to a sharpening of the transition itself.
Internal viscosity also enhances the peak of the correlation time
of the extension near Wicr, whereas it has a negligible effect on
the orientation statistics of the polymer.

It remains to consider the question of the experimental
evidence for the phenomenon described here. If internal viscosity
is disregarded, the theory12 predicts that, in the limit of very large
Weissenberg numbers, a0 should tend to�d, and hence, in a three
dimensional flow, Pst(q) B q2 for qeq { q { L. However,
experiments16 show PDFs as steep as q4 when the Weissenberg
number is large. The e = 0 theory therefore does not explain the
shape of Pst(q) in the large-Wi regime. Contrastingly, if internal
viscosity is taken into account, eqn (15) and (19) imply that ae -
�d(1 + e) and hence Pst(q) Bqd(1+e)�1 as Wi - N. Thus, internal
friction provides a possible explanation for the steep behaviour of

Fig. 3 Exponent ae rescaled by 1 + e as a function of Wi for different values
of e.
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Pst(q) observed in experiments at large Wi. Moreover, the experi-
mental slope Pst(q) B q4 found in ref. 16 is recovered by taking
e = 0.67, a value of e which falls in the range typically considered in
studies of internal friction.

These predictions also imply that, as Wi is increased, the
statistics of polymer extensions becomes independent of Wi,
but the asymptotic shape of Pst(q) is sensitive to the magnitude
of internal viscosity and is therefore non-universal. It would be
interesting to perform experiments that compare different
polymers in the same flow conditions in order to examine
this point.

Finally, it is important to note that other forces that are
usually included in bead-spring chain models cannot increase
the steepness of Pst(q) for large Wi. Hydrodynamic interactions
between the beads have the effect of delaying the unravelling of
the polymer, and once this is sufficiently stretched, they
become negligible. Therefore, in a turbulent flow, hydrody-
namic interactions reduce the probability of large extensions
for all Wi. Excluded-volume interactions are short-range and do
not impact the statistics of large polymer extensions.
A conformation-dependent drag, which interpolates between
the drag coefficient of a sphere in the coiled state and that of a
thin cylinder in the stretched state,2 impacts the dynamics of
the polymer around the coil–stretch transition, but has little
effect at large Wi, when most of the polymers are highly
stretched anyway.4,7,49 In particular, by using the analytical
results of ref. 49, it is easy to check that, in the Batchelor–
Kraichnan flow, Pst(q) B q2 as Wi - N, even if the drag
coefficient of the polymer depends on its conformation. Thus,
the present study identifies a phenomenon that is the unam-
biguous result of internal friction.
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