Interrogation écrite du 22 avril 2014 (durée: 30mn) - Barème (à titre indicatif): 10, 12.

Documents, calculatrices et téléphones portables sont interdits. Il sera tenu compte de la rédaction dans la notation des copies.

Exercise 1. Dans l'espace euclidien usuel \mathbb{R}^3 on considère le plan affine \mathcal{P} d'équation x-2y+z-2=0.

- 1. Munir \mathcal{P} d'un repère orthonormé $\mathcal{R} = (O, e_1, e_2)$ et pour un point $M = (x, y, z) \in \mathbb{R}^3$, calculer les coordonnées (x_1, x_2) (dans le repère \mathcal{R}) du projeté orthogonal M' de M sur \mathcal{P} .
- 2. On pose $A_m = (m, 0, 2)$ où m est un paramètre réel. On note $d(A_m, \mathcal{P})$ la distance du point A_m au plan \mathcal{P} . Pour quelle(s) valeur(s) du paramètre réel m le point A_m est-il à la distance 1 de \mathcal{P} (c'est-à-dire $d(A_m, \mathcal{P}) = 1$)?

Exercise 2. Soit \mathcal{P} un plan affine euclidien muni d'un repère orthonormé $\mathcal{R} = (O, \vec{i}, \vec{j})$. Pour $M \in \mathcal{P}$, on note (x, y) les coordonnées de M dans le repère \mathcal{R} . Si \mathcal{D} est une droite affine de \mathcal{P} , on note $d(M, \mathcal{D})$ la distance de M à la droite \mathcal{D} . On notera d(M, O) la distance du point M à l'origine du repère.

Soient \mathcal{D}_1 et \mathcal{D}_2 les deux droites affines d'équations cartésiennes respectives 4x - 3y - 10 = 0 et y = -2.

- On dit que le point M est équidistant à D₁ et D₂ si d(M, D₁) = d(M, D₂). Montrer que le point M de coordonnées (x, y) est équidistant à D₁ et D₂ si et seulement si (4x 3y 10)² = 25(y + 2)². En déduire que l'ensemble des points équidistants à D₁ et D₂ est la réunion de deux droites Δ₁, Δ₂ et que ces deux droites sont orthogonales.
- 2. On dit que le point M est équidistant à O et \mathcal{D}_2 si $d(M,O)=d(M,\mathcal{D}_2)$. Montrer que le point M de coordonnées (x,y) est équidistant à O et \mathcal{D}_2 si et seulement si $x^2+y^2=(y+2)^2$. En déduire la nature de l'ensemble des points équidistants à O et \mathcal{D}_2 .
- 3. Dans un repère orthonormé, tracer le lieu des points équidistants à \mathcal{D}_1 et \mathcal{D}_2 et le lieu des points équidistants à O et \mathcal{D}_2 . D'après votre dessin, combien y a-t-il de points M équidistants à O, \mathcal{D}_1 et \mathcal{D}_2 (c'est-à-dire tels que $d(M,O)=d(M,\mathcal{D}_1)=d(M,\mathcal{D}_2)$)?

1