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Abstract. In this paper, we consider the periodic discrete one-dimensional
Schrödinger operator

(HV ψ)n = −(ψn+1 + ψn−1) + Vnψn, n ∈ Z,

with Vn+N = Vn, ∀ n ∈ Z, for some N ∈ N∗ and V = {Vj}N−1
j=0 ∈ R. We show the

dispersive estimate

‖e−itHV ψ‖`∞ . ‖ψ‖`1(1 + |t|)−min{ 1
3
, 1
N+1}, ∀ ψ ∈ `1(Z), ∀ t ∈ R.

1. Introduction and main result

Consider the periodic discrete one-dimensional Schrödinger operator

(1) (HV ψ)n = −(ψn+1 + ψn−1) + Vnψn, n ∈ Z

with Vn+N = Vn, ∀ n ∈ Z, for some N ∈ N∗ and V = {Vj}N−1
j=0 ⊂ R. It is well known

that HV has purely absolutely continuous spectrum (see, e.g., [12]) and its time
evolution e−itHV presents ballistic transport (see [5]), i.e., the weighted `2−norm(∑

n∈Z
n2
∣∣(e−itHV ψ)n

∣∣2) 1
2

grows linearly with t provided that
∑

n∈Z n
2 |ψn|2 < ∞. In this paper, we are

interested in the `1-`∞ dispersive estimate of e−itHV . In general, the dispersion and
ballistic transport for a one-dimensional linear operator are related to the absolutely
continuous spectrum, even though there is not yet rigorous argument describing the
link between them.

We recall that for the free Schrödinger operator, −∆ : `2(Zν)→ `2(Zν), ν ≥ 1,

(−∆ψ)n = −
∑

|m−n|=1

ψm, n ∈ Zν ,

the `1-`∞ dispersive estimate

(2) ‖eit∆ψ‖`∞ . (1 + |t|)−
1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Zν),

is well known (see [15, 18]). The estimate (2) implies that, for a given well-localized
initial condition ψ, the `∞−norm of eit∆ψ tends to zero as time goes to infinity,

with the “|t|−
1
3 ” decay rate. In other words, as time goes, eit∆ψ does not keep

well-localized as ψ.
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For the discrete one-dimensional Schrödinger operator H : `2(Z)→ `2(Z),

(Hq)n = −(qn+1 + qn−1) + Vnqn , n ∈ Z ,

Pelinovsky-Stefanov [16] have shown that

(3) ‖e−itHPacψ‖`∞ . (1 + |t|)−
1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Z) ,

for “generic”1 potentials (Vn)n∈Z decaying sufficiently fast at infinity. Here Pac
denotes the projection on the absolutely continuous part of the spectrum. For the
2−periodic potential case, we have shown the same estimate [14]. For other related
works, one can refer to [1, 4, 6, 11, 13]. For the dispersive estimates for continuous
Schrödinger operators, we can refer to [17].

Recently, Bambusi and the second author [3] have considered the quasi-periodic
Schrödinger operator Hθ : `2(Z)→ `2(Z),

(4) (Hθψ)n = −(ψn+1 + ψn−1) + v(θ + nω)ψn, n ∈ Z,

where v ∈ Cω(Td,R) with T := R/2πZ, d ≥ 1, and ω ∈ DCd(γ, τ) for γ > 0 and
τ > d− 1, i.e.,

inf
j∈Z
|〈k, ω〉 − jπ| > γ

|k|τ
, ∀ k ∈ Zd \ {0}.

It is well known that the spectrum of Hθ is usually a Cantor set for every θ ∈ Td.
When the potential function v is sufficiently small, it has purely absolutely continu-
ous spectrum . Moreover, the time evolution e−itHθ presents ballistic transport (see
[22]). As for the dispersion, it is shown that, if v is sufficiently small, then for every
θ ∈ Td:

‖e−itHθψ‖`∞ . | ln |v|r|a ln ln(3+|t|))2d(1 + |t|)−
1
3 ‖ψ‖`1 , ∀ ψ ∈ `1(Z),

for some absolute constant a > 0, which implies a |t|−ζ−dispersive decay for any
0 < ζ < 1

3 .
In this paper, the main conclusion is:

Theorem 1.1. For the operator HV given in (1), there exists a constant CV > 0,
depending on V , such that, for any t ∈ R,

‖e−itHV ψ‖`∞ < CV ‖ψ‖`1(1 + |t|)−min{ 1
3
, 1
N+1}, ∀ ψ ∈ `1(Z).

As usual, from this estimate in Theorem 1.1, one can deduce Strichartz estimates
via [10] as well as decay for the solution of the nonlinear periodic discrete Schrödinger
equation

(5) iq̇n = −(qn+1 + qn−1) + Vnqn ± |qn|p−1 qn, n ∈ Z,

with V = {Vj}N−1
j=0 ⊂ R as in (1), provided p is large enough. If we just focus

on dispersive decay in `∞, we can give the following result for p ≥ max{5, N + 3}
(indeed 1

p−2 ≤ min{1
3 ,

1
N+1} is necessary).

Corollary 1.1. Under the assumptions of Theorem 1.1, consider Eq. (5) with
p ≥ max{5, N + 3}. There exist C > 0 and δ > 0 s.t., if the initial datum q(0)
fulfills ‖q(0)‖`1(Z) < δ, then the solution of Eq. (5) fulfills

(6) ‖q(t)‖`∞ ≤ C(1 + |t|)−min{ 1
3
, 1
N+1}.

1See Definition 1 of [16].
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The proof of Corollary 1.1 is similar to that of Corollary 2 of [3].

The remaining part of paper will be organised as follows. In Section 2, we make
some analysis on the periodic Jacobi matrix, and show the C1−regularity of its
eigenvectors and the transversality of its eigenvalues. In Section 3, after getting the
explicit form of the time evolution e−itHV via Fourier transform, we apply Van der
Corput lemma (Lemma A.1 in Appendix A) to estimate the oscillatory integrals in
e−itHV , which gives the dispersive estimate.

2. Periodic Jacobi matrix

A straightforward way to establish the dispersive estimate is to get the explicit
expression of the time evolution e−itHV via Fourier transform as in [14, 18]. As the
period N grows, the expression becomes more and more complicated. To realize
such an expression, some properties of the periodic Jacobi matrix, which will be
defined below, are needed.

Fix N ≥ 3. We consider the periodic Jacobi matrix

(7) A(θ) =



V0 −e−iθ 0 · · · 0 −eiθ

−eiθ . . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . −e−iθ

−e−iθ 0 · · · 0 −eiθ VN−1


, θ ∈ T = R/2πZ,

with V = {Vj}N−1
j=0 ⊂ R. More precisely, the entries of matrix A(θ) are

Amn(θ) =


Vn, n = m
−e−iθ, n = m− 1 or (m,n) = (N − 1, 0)
−eiθ, n = m+ 1 or (m,n) = (0, N − 1)

0, otherwise

, m, n = 0, · · · , N − 1.

In particular, for N = 3,

(8) A(θ) =


V0 −e−iθ −eiθ

−eiθ V1 −e−iθ

−e−iθ −eiθ V2

 .

We will give some properties needed in the sequel in this section. The relation
between A(θ) and the time evolution e−itHV will be shown in Section 3 (see, (26) –
(29)). For more properties of the periodic Jacobi matrix in a more general form, we
can refer to [2, 9, 20, 21].
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For the Hermitian A(θ), there is an N ×N orthonormal matrix U(θ),

(9) U(θ) =


U0,0(θ) U0,1(θ) · · · U0,N−1(θ)

U1,0(θ) U1,1(θ) · · · U0,N−2(θ)

...
...

...
...

UN−1,0(θ) · · · UN−1,N−2(θ) UN−1,N−1(θ)


such that

(10) U∗(θ)A(θ)U(θ) = Λ(θ) := diag {λj(θ)}N−1
j=0 ,

with {λj(θ)}N−1
j=0 the set of eigenvalues of A(θ). We note that the eigenvalues and

the eigenvectors of A(θ) are analytic with respect to θ (see [8] and P.195 of [7]).

Lemma 2.1. The characteristic polynomial of A(θ) satisfies that

det (λI −A(θ)) = P (λ)− 2 cos(Nθ),

with P (λ) a monic real polynomial of degree N .

Proof. Let {Cm,n(λ, θ)}N−1
m,n=0 be the elements of the matrix λI −A(θ). Then

(11) det (λI −A(θ)) =
∑
σ∈SN

sgn(σ)
N−1∏
m=0

Cm,σm(λ, θ).

Here, the sum is computed over all permutations σ of the set 0, 1, · · · , N − 1, σm
denotes the value in the mth position after the reordering σ, SN is the set of all such
permutations, and sgn(σ) denotes the signature of σ. For any permutation σ, we

have
∑N−1

m=0 σm =
∑N−1

m=0 m. Note that there are only 3 nonzero elements in each
column of A(θ). More precisely,

C0,n ≡ 0, if n 6= 0, 1 or N − 1

Cm,n ≡ 0, 1 ≤ m ≤ N − 2, if n 6= m, m− 1 or m+ 1

CN−1,n ≡ 0 if n 6= 0, N − 2 or N − 1

.

We focus on the nonzero products
∏N−1
m=0 Cm,σm(λ, θ). For the permutation with

σ0 = N − 1,

• if σN−1 = 0, then
∑N−2

m=1 σm =
∑N−2

m=1 m. Then we have

]{1 ≤ m ≤ N − 2 : σm = m− 1} = ]{1 ≤ m ≤ N − 2 : σm = m+ 1} = K

with some 0 ≤ K ≤ N − 2. It means, in this case,

N−1∏
i=0

Ci,σi = C0,N−1 · CN−1,0 ·
∏

1≤m≤N−2
σm=m−1

Cm,σm ·
∏

1≤m≤N−2
σm=m+1

Cm,σm ·
∏

1≤m≤N−2
σm=m

Cm,σm

= (−eiθ)(−e−iθ) · (−eiθ)K · (−e−iθ)K
∏

1≤m≤N−2
σm=m

(λ− Vm)

=
∏

1≤m≤N−2
σm=m

(λ− Vm).(12)
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• if σN−1 6= 0, then, to keep the conservation
∑N−1

m=0 σm =
∑N−1

m=0 m, the unique
way is σm = m− 1, 1 ≤ m ≤ N − 1. In this case,

(13)
N−1∏
i=0

Ci,σi = C0,N−1 ·
∏

1≤m≤N−1

Cm,m−1 = (−eiθ)N .

For the permutation with σ0 6= N − 1,

• if σN−1 = 0, then, to keep the conservation
∑N−1

m=0 σm =
∑N−1

m=0 m, the unique
way is σm = m+ 1, 0 ≤ m ≤ N − 2. In this case,

(14)
N−1∏
i=0

Ci,σi = CN−1,0 ·
∏

1≤m≤N−1

Cm,m+1 = (−e−iθ)N .

• if σN−1 6= 0, then, by the conservation
∑N−1

m=0 σm =
∑N−1

m=0 m, we have

]{1 ≤ m ≤ N − 1 : σm = m− 1} = ]{0 ≤ m ≤ N − 2 : σm = m+ 1} = K

with some 0 ≤ K ≤ N − 1. In this case,

N−1∏
i=0

Ci,σi =
∏

1≤m≤N−1
σm=m−1

Cm,σm ·
∏

0≤m≤N−2
σm=m+1

Cm,σm ·
∏

0≤m≤N−1
σm=m

Cm,σm

= (−eiθ)K · (−e−iθ)K
∏

0≤m≤N−1
σm=m

(λ− Vm)

=
∏

0≤m≤N−1
σm=m

(λ− Vm).(15)

To sum up with (12)− (15), we see that, in the summation (11),

• all θ−dependent terms come from (13) and (14), with the sum equals to

(−1)N−1 · (−1)Ne−iNθ + (−1)N−1 · (−1)NeiNθ = −2 cos(Nθ);

• the sum of (12) and (15) is a monic real polynomial of degree N , denoted
by P (λ). �

Lemma 2.2. The eigenvalues of A(θ) satisfy that

sup
θ∈T
|λ′j(θ)| ≤ 2, j = 0, 1, · · · , N − 1.

Proof. Let vj(θ) be the normalized eigenvector corresponding to the eigenvalue λj(θ).

It is actually the jth−column of U(θ), i.e.,

vj(θ) =


U0,j(θ)
U1,j(θ)

...
UN−1,j(θ)

 .
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It is well-known that λ′j(θ) = 〈A′(θ)vj(θ), vj(θ)〉. Since

A′(θ) =



0 ie−iθ 0 · · · 0 −ieiθ

−ieiθ . . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . ie−iθ

ie−iθ 0 · · · 0 −ieiθ 0


or, for N = 3,

A′(θ) =


0 ie−iθ −ieiθ

−ieiθ 0 ie−iθ

ie−iθ −ieiθ 0


and vj(θ) is the normalized eigenvector, we have

|λ′j(θ)| = |〈A′vj , vj〉|

≤
∣∣∣ie−iθ

(
U1,jU0,j + U2,jU1,j + · · ·+ UN−1,jUN−2,j + U0,jUN−1,j

)∣∣∣
+
∣∣∣ieiθ

(
U1,jU0,j + U2,jU1,j + · · ·+ UN−1,jUN−2,j + U0,jUN−1,j

)∣∣∣
≤ 2

(
|U0,j |2 + |U1,j |2 + |U2,j |2 + · · ·+ |UN−2,j |2 + |UN−1,j |2

)
= 2. �

Proposition 2.1. There exists a constant δ > 0, depending on V , such that, for
j = 0, 1, · · · , N − 1,

(16) |λ′′j (θ)|+ |λ′′′j (θ)|+ · · ·+ |λ(N+1)
j (θ)| ≥ δ, ∀ θ ∈ T.

Proof. To show (16), it is sufficient to show that there is no θ ∈ T such that

λ′′j (θ) = λ′′′j (θ) = · · · = λ
(N+1)
j (θ) = 0,

since |λ′′j (θ)|+ |λ′′′j (θ)|+ · · ·+ |λ(N+1)
j (θ)| is continuous for j = 0, 1, · · · , N − 1.

In view of Lemma 2.1, we see that, for all θ ∈ T,

(17) P (λj(θ)) = 2 cos(Nθ), j = 0, 1, · · · , N − 1.

Suppose that, for some j, there exists θ∗ ∈ T such that

λ′′j (θ∗) = λ′′′j (θ∗) = · · · = λ
(N+1)
j (θ∗) = 0.
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Then, (17) implies that

P (λj(θ∗)) = 2 cos(Nθ∗),(18)

P ′(λj(θ∗))λ
′
j(θ∗) = −2N sin(Nθ∗),(19)

P ′′(λj(θ∗))λ
′
j(θ∗)

2 = −2N2 cos(Nθ∗),(20)

P ′′′(λj(θ∗))λ
′
j(θ∗)

3 = 2N3 sin(Nθ∗),(21)

...

N !λ′j(θ∗)
N =

{
(−1)

N+1
2 2NN sin(Nθ∗), N is odd

(−1)
N
2 2NN cos(Nθ∗), N is even

,(22)

0 =

{
(−1)

N+1
2 2NN+1 cos(Nθ∗), N is odd

(−1)
N
2

+12NN+1 sin(Nθ∗), N is even
.(23)

Recalling that N ≥ 3, (22) and (23) imply that

(24) |λ′j(θ∗)| =
(

2

N !

) 1
N

N > 2.

Indeed, by a direct computation, the above inequality holds for N = 3, 4, 5, 6, and
for N ≥ 7,

NN

N !
=

N−1∏
k=1

(
1 +

1

k

)N
·
N−1∏
i=1

i∏
k=1

(
1 +

1

k

)−1

=
N−1∏
k=1

(
1 +

1

k

)N
·
N−1∏
i=1

(
1 +

1

i

)−(N−i)

=

N−1∏
i=1

(
1 +

1

i

)i

>

N−1∏
i=1

(
e1 ·

(
1 +

1

i

)− 1
2

)

=
eN−1

√
N

which implies that

2
1
NN

(N !)
1
N

>
e1− 1

N

2N
√
N

= e ·
(
e
√
N
)− 1

N
> 2.

(24) contradicts with Lemma 2.2, hence Proposition 2.1 is shown. �
With Proposition 2.1, for j = 0, 1, · · · , N − 1, we have the decomposition of T

according to the optimal order of transversality of λj :

(25) T =
N⋃
i=1

Θ
(i)
j , Θ

(i)
j :=

θ ∈ T :
|λ(i+1)
j (θ)| ≥ δ

N

|λ(i′+1)
j (θ)| < δ

N , 1 ≤ i′ ≤ i− 1 if i ≥ 2

 .
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Since the eigenvalues λj(θ) of the matrix A(θ) is analytic on θ, in view of Lemma

3 of [7], we see that Θ
(i)
j consists of finitely many disjoint subintervals. We denote

this number by M
(i)
j .

3. Proof of Theorem 1.1

3.1. Expression of time evolution via Fourier transformation. Since the
sharp estimate for the cases N = 1, 2 is already known (see [14, 15, 18]), we can
focus on the linear N−periodic discrete Schrödinger equation with N ≥ 3:

(26)

{
iq̇n = −(qn+1 + qn−1) + Vn qn, n ∈ Z

q(0) ∈ `1(Z)
.

By the Fourier transform

(qn)n∈Z 7→ G(θ) :=
∑
n∈Z

qne
inθ, θ ∈ T = R/2πZ,

(26) becomes

i∂tG(θ, t) =
∑
n∈Z

[−(qn+1(t) + qn−1(t)) + Vnqn(t)]einθ.

Decompose G(θ, t) as G(θ, t) =
∑N−1

j=0 Gj(θ, t), with

(27) Gj(θ, t) :=
∑
k∈Z

qkN+j(t)e
i(kN+j)θ, j = 0, 1, · · · , N − 1.

We find that, for j = 0, 1, · · · , N − 1,

i∂tGj(θ, t) = i
∑
k∈Z

q̇kN+j(t)e
i(kN+j)θ(28)

=
∑
k∈Z

[−(qkN+j+1(t) + qkN+j−1(t)) + VkN+jqkN+j(t)] e
i(kN+j)θ

= −(e−iθGj+1(θ, t) + eiθGj−1(θ, t)) + Vj Gj(θ, t).

Actually, we can rewrite them as the N−dimensional system

(29) i∂tG(θ, t) = A(θ)G(θ, t),

with G(θ, t) := (Gj(θ, t))
N−1
j=0 , where A(θ) is a periodic Jacobi matrix given in (7) or

(8). Hence, according to (10), the solution to Eq. (29) is

G(θ, t) = U(θ)e−iΛ(θ)tU∗(θ)G(θ, 0), with e−iΛ(θ)t := diag{e−iλj(θ)t}N−1
j=0 .

Then, for n = k∗N + j with k∗ ∈ Z and 0 ≤ j ≤ N − 1, we have

qn(t) =
1

2π

∫
T
Gj(θ, t)e

−i(k∗N+j)θ dθ

=
1

2π

∫
T

N−1∑
l1,l2=0

e−iλl1 (θ)tUj,l1(θ)U∗l1,l2(θ)Gl2(θ, 0)e−i(k∗N+j)θ dθ

=
1

2π

N−1∑
l1,l2=0

∫
T
e−iλl1 (θ)tUj,l1(θ)U∗l1,l2(θ)

∑
k∈Z

qkN+l2(0)ei((k−k∗)N+l2−j)θ dθ
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To summarise, we have

Proposition 3.1. Given ψ ∈ `1(Z), t ∈ R, for n = k∗N + j with k∗ ∈ Z and
0 ≤ j ≤ N − 1, j ∈ Z, we have(
e−itHV ψ

)
n

=
1

2π

N−1∑
l1,l2=0

∑
k∈Z

ψkN+l2

∫
T
Uj,l1(θ)U∗l1,l2(θ)ei[−λl1 (θ)t+((k−k∗)N+l2−j)θ] dθ.

3.2. Dispersive estimate. Now let us consider the oscillatory integral in Proposi-
tion 3.1, which leads us to the dispersive estimate.

Since U(θ) is an orthonormal matrix for every θ ∈ T, we have immediately that

(30) |Uj,l1(θ)U∗l1,l2(θ)| ≤
|Uj,l1(θ)|2 + |U∗l1,l2(θ)|2

2
≤ 1, ∀ j, l1, l2 = 0, 1, · · · , N − 1.

Due to the analyticity of the elements of U(θ), there exists a constant D > 0,

depending on V = {Vj}N−1
j=0 , such that, for j, l1, l2 = 0, 1, · · · , N − 1,

(31) sup
θ∈T

∣∣Uj,l1(θ)U∗l1,l2(θ)
∣∣+

∫
T

∣∣(Uj,l1(θ)U∗l1,l2(θ))′
∣∣ dθ ≤ D.

For |t| ≤ 1, since 2
1

N+1 (1 + |t|)−
1

N+1 ≥ 1, we have, by (30),

(32)

∣∣∣∣∫
T
Uj,l1(θ)U∗l1,l2(θ)ei[−λl1 (θ)t+((k−k∗)N+l2−j)θ] dθ

∣∣∣∣ ≤ 2π · 2
1

N+1 (1 + |t|)−
1

N+1 .

Now we assume that |t| > 1, which implies that

2ζ(1 + |t|)−ζ > |t|−ζ for all ζ =
1

2
,
1

3
, · · · , 1

N + 1
.

According to the definition of Θ
(i)
j given in (25), we apply Van der Corput lemma

(Lemma A.1 in Appendix A) for k = i + 1, i = 1, 2, · · · , N on each subintervals of

Θ
(i)
l1

, and get

(33)

∣∣∣∣∣
∫

Θ
(i)
l1

Uj,l1(θ)U∗l1,l2(θ)ei[−λl1 (θ)t+((k−k∗)N+l2−j)θ] dθ

∣∣∣∣∣ ≤ Cl1,i(1 + |t|)−
1
i+1 .

with the constant defined by

Cl1,i := M
(i)
l1
·D · (5 · 2i − 2)

(
δ

N

)− 1
i+1

· 2
1
i+1 ,

recalling that M
(i)
l1

is the number of subintervals in Θ
(i)
l1

, and D is the upper bound

given in (31).
Back to the expression of e−itHV given in Proposition 3.1. Since

N−1∑
l2=0

∑
k∈Z
|ψkN+l2 | = ‖ψ‖`1 ,

by (32) and (33), we have, for every t ∈ R,∣∣(e−itHV ψ
)
n

∣∣ ≤ 1

2π

N−1∑
l1,l2=0

∑
k∈Z
|ψkN+l2 |

∣∣∣∣∫
T
Uj,l1(θ)U∗l1,l2(θ)ei[−λl1 (θ)t+((k−k∗)N+l2−j)θ] dθ

∣∣∣∣
≤ CV ‖ψ‖`1(1 + |t|)−

1
N+1 , ∀ n ∈ Z,
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for some positive constant CV depending on V . Thus Theorem 1.1 is proved.

Appendix A. Van der corput lemma

For the convenience of readers, we present Van der Corput lemma which is used
in this paper. The original statement can be found in many textbooks on Harmonic
Analysis (see, e.g., Chapter VIII of [19]).

Lemma A.1. Suppose that ψ is real-valued and Ck in (a, b) for some k ≥ 2, and

that |ψ(k)(x)| ≥ c for all x ∈ (a, b). Let h be C1 in (a, b). Then∣∣∣∣∫ b

a
eiλψ(x)h(x)dx

∣∣∣∣ ≤ (5 ·2k−1−2)c−
1
k

[
|h(b)|+

∫ b

a
|h′(x)|dx

]
|λ|−

1
k , ∀ λ ∈ R\{0}.

The proof of Lemma A.1 is given in Appendix of [3, 14].
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Email address: miyue1995@163.com
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