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Abstract

In this paper, we construct time quasi-periodic solutions for the nonlinear lattice
Schrédinger equation

ign + €(gnt1 + qn-1) + tanzw(na + x)g, + e\qn|2qn =0, nez,

where & satisfies a certain Diophantine condition and x € R/Z. We prove that for e
sufficiently small, the equation admits a family of small-amplitude time quasi-periodic
solutions for “most” of x belonging to R/Z.

1 Introduction and main result

During the past two decades or so, the celebrated KAM (Kolmogorov-Arnold-Moser)
theory and the CWB(Craig-Wayne-Bourgain) method were successfully generalized to
infinite dimensional Hamiltonian systems, motivated by the construction of quasi-periodic
solutions for Hamiltonian partial differential equations(see [1, 11, 16, 17, 19, 20, 21, 22,
23, 24, 25, 26, 28, 29, 30, 31, 32, 35, 36, 37, 41, 43, 44, 45, 46] for the KAM method, and
[4,5,6,7,8,9, 13] for the CWB method). In this paper, we focus on the nonlinear lattice
Schrédinger equation

ign, + €(qn+1 + gn—1) + tanm(na + x)gy + elqn|2qn =0, nez, (1.1)

where & € R satisfies the Diophantine condition, i.e., there exist constants 7 > 1, ¥ > 0
such that

Indly > —=, n#0, (1.2)

n|™"

with |z|; the absolute value of 2 modulo 1 defined so that 0 < |z|; < 1.
We start with some physical motivation for studying Equation (1.1). The time-

dependent Maryland model, i.e., the linear Schrédinger equation

ign, + €(gna1 + gn—1) + tanm(na + x)q, = 0,
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describes the motion of particles or waves in some quasi-crystal material, where n is the
primary lattice site index, the Diophantine number & € R is some ratio between the
wavenumbers of two lattices, z € R/Z is an arbitrary phase, and ¢, is a complex vari-
able whose modulus square gives the probability of finding a particle at the lattice site n.
It is important in the study of Bose-Einstein condensation and nonlinear optics. When
we consider the interactions(nonlinearities) additionally, we can start from the Gross-
Pitaevskii(GP) equation[27, 34] in Hartree-Fock theory, and get a generalized Maryland
model which includes an additional nonlinear term that represents the mean-field interac-
tion. The Hamiltonian is

o - 1
H =" |e(qnt1Gn + Gn+14n) + tan(né + ) |qn|® + §e|qn\4 ,
nez
and the equation of motion is generated by ig,, = ~ 95 yielding the nonlinear Schrodinger

n
equation

idn + €(qui1 + Gn_1) + tanw(na + )g, + €lgn?¢n =0, n € Z,

which can be considered as the GP equation on a discretized lattice. Similar versions of a
discretized GP equation have been already used to investigate the dynamics of condensates
in different situations(see, for instance, [40]). Other physical motivations can be found in
Section 4.2 of Reference [18].

As a mathematical model, the spectral property of the linear problem has been thor-
oughly studied(see [2, 12, 39] and Section 10.3 of [14]). Bellissard-Lima-Scoppola[2] inves-
tigated the linear operator on ¢2(Z%),

(Lzq)n = —€ Z a(n —m)gm + tanw((n, &) + x)qn,
mez?

where & € R? is a given Diophantine vector, and a(n) decays exponentially with |n|.
Clearly, there exist 4 > 0 and 7 > d such that

g

|tan7w({(m, &) + x) — tanw((n, &) + z)| > Tl

> ,  Vm #n, (1.3)
They have shown that, if € is small enough, then for a.e. € R/Z, L, has only pure point
spectrum with exponentially localized states, and a dense set of eigenvalues in the real
line. This estimate (1.3) is exactly the condition needed in a perturbation theory to avoid
a tunneling effect at large distance. Thanks to this work, we can diagonalize the linear
Schrodinger operator to avoid the difficulty brought by the coupling term €(gn+1 + ¢n—1)
in Equation (1.1). We shall give a precise statement of this result of [2] before proof of
the main theorem.

From the perspective of Hamiltonian PDE’s, there are also some related works. Craig-
Wayne[13] retrieved the origination of the KAM method - Newtonian iteration method
together with the Lyapunov-Schmidt decomposition which involves the Green’s function
analysis and the control of the inverse of infinite matrices with small eigenvalues. They
succeeded in constructing periodic solutions of the one-dimensional semi-linear wave e-
quations with periodic boundary conditions. Bourgain[4, 5, 6, 7, 8] further developed the



Craig-Wayne’s method and proved the existence of quasi-periodic solutions for Hamilto-
nian PDE’s in higher dimensional spaces with Dirichlet boundary conditions or periodic
boundary conditions. In a similar way, Bourgain-Wang[9] constructed time quasi-periodic
solutions to the nonlinear random Schrédinger equation

ign, = e(AQ)n + Vogn + 5’Qn‘ZPQn (p > 0)7 ne Zd7 teR,

with €, sufficiently small, and {Vj}jezd, the potential, is a family of time-independent
independent identically distributed(i.i.d.) random variables. We point out that the Craig-
Wayne-Bourgain’s method allows one to avoid explicitly using the Hamiltonian structure
of the systems. We will not introduce their approach in detail. The reader is referred to
[4,5,6,7, 8,9, 13].

Comparing with Craig-Wayne-Bourgain’s approach, the KAM approach has its own
advantages. Besides obtaining the existence results, it allows one to construct a local
normal form in a neighborhood of the obtained solutions, and this is useful for better
understanding of the dynamics. For example, one can obtain the linear stability and
zero Lyapunov exponents. The KAM method was successfully applied by Kuksin[29] and
Wayne[41] (see also [30, 32, 36, 37]) to, as typical examples, one-dimensional semi-linear
Schrodinger equations

ity — Uy + mu = f(u),

and wave equations
Ut — Ugg + MU = f(u),

with Dirichlet boundary conditions. Geng-You[21, 22] proved that the higher-dimensional
nonlinear beam equations and nonlocal Schrodinger equations admit small-amplitude lin-
early stable quasi-periodic solutions. The breakthrough of constructing quasi-periodic
solutions for more interesting higher dimensional Schrédinger equation by modified KAM
method was made recently by Eliasson-Kuksin [17]. They proved that the higher di-
mensional nonlinear Schrodinger equations admit small-amplitude linearly stable quasi—
periodic solutions. Recently, quasi-periodic solutions of two-dimensional cubic Schrodinger
equation
iy — A+ |ul?u =0, r €T? tER,

with periodic boundary conditions are obtained by Geng-Xu-You [19]. By appropriately
choosing tangential sites {i1,---,iy} € Z2, the authors proved that the above nonlinear
Schrodinger equation admits a family of small-amplitude quasi-periodic solutions.
However, all the KAM results mentioned above fail in dealing with the dense point
spectrum. In this paper, we try to attack this case. Concretely, we consider Equation
(1.1) as a model, note that {tanm(n& + x)},ecz is dense on the real line when & is an
irrational number. We shall give an abstract KAM theorem which can be applied to
an equation deriving from Equation (1.1), via some suitable change of variables, and
use the theorem to construct the quasi-periodic solutions for Equation (1.1). To estab-
lish the KAM theorem, we have to impose further restrictions both on the unperturbed
part and on the perturbation. In the existent infinite dimensional KAM theorems, e.g.,
Kuksin[29], Poschel[37], Wayne[41], Eliasson-Kuksin[17], Geng-Viveros-Yi[26], Geng-Xu-
You[19], some assumptions on the regularity of the frequencies and the perturbation are
required (See (A1) — (A4) in Section 2). In addition, we also assume that the perturba-
tion has a special form defined in (A5) in Section 2, which is called gauge invariance. In



fact, the condition (A5) means the 12 norm (37 |qn|2)% is a conserved quantity. With such
a special form, our proof is simplified, compared with previous KAM theorems, because
some terms, which can not be eliminated easily, are zero(see (4.2) in Subsection 4.1).

Now we are going to state our main result. Consider the lattice Schrodinger equation
idy, + €(qni1 + qn-1) + tanm(na + 2)q, + €lgnl*qn =0, n € Z, (1.4)

where @ satisfies the Diophantine condition (1.2), and x belongs to the full-measure subset
1
X = {xER/Z:nd+x#2, VnEZ}.

Theorem 1 For J = {ni,---,my} C Z, b > 1, and k > 0, given an initial datum
q2(0) = (gn(0))nez supported in J with qz(0) € €7 - [0,1]°. There is a sufficiently small
positive number €, = €,(&, k, J), such that if 0 < € < €, one can find a subset X of X
with
mes(X \ X.) < € for some 0<¥ <1
such that the following holds for fized © € X..
There exists a Cantor set O, = O(z) C [0,1]° with

10,1°\ O] = 0 as e—0,!

such that if qz(0) € €2 - Oc, qz(t) = (qu(t))nez € €' is a small-amplitude b-frequency

quasi-periodic solution of Equation (1.4), with the frequencies slightly deformed from
(tanm(nia + x), - -+, tan(npa + x)).

Remark 1.1 The nonlinear term €|q,|*qn in Equation (1.4) has its physical meaning, but

its special form in the Hamiltonian, i.e., €|qn|*, is not essential, as long as it is finite-range

or sufficiently short-range and of bounded degree, for example, €|q,|* can be replaced by

€|Qn‘4 + €|Qn|2(jn%1+1 + €|Qn’2(hLQn+l

in the finite-range case and
elgn|? D e gyt
k

in the short-range case.

Remark 1.2 In the above theorem, we construct time quasi—periodic solutions for a cor-
responding appropriate set of small initial data with compact support, which means that
for such initial data, the corresponding solutions are bounded in ¢*. Clearly such initial
data are a subset of all small initial data. It should be very interesting whether one can
prove the similar result like that in [10, 42].

The rest of this paper is organized as follows. We present the abstract KAM theorem,
which can be applied to an equation which conjugates with Equation (1.1) in Section 2,
and prove Theorem 1 via this KAM theorem in Section 3. In Section 4, we give the details
for one step of the KAM iteration. The proof of the abstract KAM theorem is completed
in Section 5 by an iteration lemma, giving a convergence result, and finally conducting
the measure estimates of the remaining parameters.

Hereafter, we use the symbol |O| to denote the Lebesgue measure of O C R.



2 An abstract KAM theorem

2.1 Function space norms and gauge invariance

Given Z1 C Z, and d,p > 0, let E}L p(Zl) be the space of summable complex-valued
sequences ¢ = (qn)nez,, With the norm

dpi= Y lan|(n)?e”M < oo,
nezi

lg
where (n) := 1 +n2. For r,s >0, let Dg,(r,s) be the complex b-dimensional neighbor-
hood of T x {0} x {0} x {0} in T x R® x £} (Z1) x £} ,(Z1), i.e.,
/deﬂ(’r» S) = {(Q,I,q, (7) : |Im0| = |Im(917 o "Hb)| <, ‘I| < 827 ||Q||d,p = andm < 8}7

where | - | denotes the £!-norm of complex vectors.

Given a real-analytic function F(6,1,q,q;&) on D = Dy ,(r, s), Cl(i.e., C!in the sense
of Whitney) dependent on a parameter ¢ € 0,2 a closed region in R®. We expand F into
the Taylor-Fourier series with respect to 0,1, q, q:

F0,1,q,3:€) =Y Fap(0,1;€)q",

a7B
where, for multi-indices a 1= ), c; anén, B := >, cp Bnen, Qn,Bn € N, with finitely
many non-vanishing components,
Faﬁ(ev I; 5) = Z Fklaﬂ(i)jlei<k79>7 qaq—ﬁ = H qgn@gn'
kezb,leNd (an,Bn)#(0,0)

(Here e,, denotes the vector with the n*® component being 1 and the other components
being zero.)

Definition 2.1 For each non-zero multi—index (o, ) = (amn, Bn)nezys Qn,Bn € N, with
finitely many non-vanishing components, we define

supp(a, B) = {n € Z1 : (o, Bn) # (0,0)},

n:ﬁ = max{n € supp(a,ﬂ)}, n(;/j = mln{n € Supp(avﬁ)}7 nZz,B = max{’n;@’a ’n;ﬁ’}a

and |af = Znezl an, |B] = Znezl Bn-
In particular, for |a| =|8| =0, define n;rﬁ =n,5=ngps =0.

Remark 2.1 The notations above are closely related to the notations of support and di-
ameter for the monomials in [10] and [42]. The decay properties of functions on phase
space in terms of the index n are important to this study.

In the rest of the paper, all dependencies on ¢ are assumed of class Cj, thus all derivatives with
respective to the parameter £ € O will be interpreted in this sense.



With [0¢ Frias| := >0—1 |0¢, Friap| and [Fyiaplo = supgco (|Friagl + [0c Friagl), let

1Fasllo =Y |Fuaslo '™ |Flo = Y |Fuaslo [I'|e™™|g7)3%).
ol kb3

Define the weighted norm of F' as
IFlp.0 = sup |[Fllo- 2.1)

For the Hamiltonian vector field Xp = (01 F, —0pF, (—i0y, F' )nez, , (10g, F')necz, ) associated
with F' on D x O, define its norm by

1XFllp,0 = [|01F|p,0 + i2||f9eF||D,o +sup - >~ (104, Fllo + 1105, Fllo) (n)%el"®.
§ D 8 nezi
Sometimes, for the sake of notational simplification, we shall not write the subscript O in
the norms defined above if it is obvious enough.

In what follows in the formulations and proofs of various assertions, we shall encounter
absolute constants depending on the Hamiltonian, the dimension and so on. All such
constants will be denoted by ¢, ¢y, co, - -, and sometimes even different constants will be
denoted by the same symbol.

For d,p,r,s > 0, let F,G be two real-analytic functions on D = Dy ,(r, s), both of
which Cf;; depend on the parameter ¢ € O.

Lemma 2.1 The norm || - ||p, o satisfies the Banach algebraic property, i.e.,
IFGllp,0 < |[Fllp,0llGlp,0-
Proof: Since (FGQ)yiap = Z Fl%idBGk[an we have that
k+k=k, [+i=1

até=a, f+p=p

IFGllp.0 = sup 37 [(FG)uaslola®||a’ |||
k7l7a7/3

< sup ) Yo |FuiasGiiag

D klaf ek, itiz
atéa=a, B+p=p

1Elp,0llGlip, 0

olq®) ||| FIHRDIme)

IN

Lemma 2.2 (Generalized Cauchy Inequalities) The various components of the Hamil-
tonian vector field Xg satisfy: for any 0 <1’ <r, 0 < p' < p,

C
HaGFH,Dd’p(T/,S) <

—IFIp.

C
191 Fllp, 0, 5) < 5 IF >

/ C
sup > (104, Fllo + 105, Fllo) (n)e™" < ﬁ\\FHD-
Dd,p(T»%) nezl s\p P

3In the case of a vector-valued function F' : D x @ — C’(b < +00), the norm can be defined as
b
IFllp,0 =3, IF]p,0.



Proof: We only prove the third inequality, with others shown analogously. Given
wE %,p(Zl) \ {0}, f(t) = F(-,-,q + tw,-) is an analytic function on the the complex disc
{zeC:|z| < m} Hence

|f,(0)‘ = Z wn * Og, F'

neZq

C
< S IFlp - lIwlla,p,

by the usual Cauchy inequality. As a linear operator on Eé? p(Zl), Oq F satisfies

Z w .87LF
10, Fllp 1= sup 1 Zncz %o ]

C
< -lFlp.
S

Let ||wl/q,, = 5, then

Oy I - o.F
|0g, F| < sup 194, ] - |wn| < 10, ||80p‘wn|

lwla,=5  wllap 2

c 4 -
< SIFlp(n) ™% nle.
Hence, for any 0 < p’ < p,

’ C —Inl(p—p'
> 104, Fl(n) e < 37 || F|lpeIM07) < ———< || Fp.

c
nezy n€Zq s(p—1p)

With F = Zk’mﬂ(85Fklag)llei<k’9>qaqﬁ, it can be proved similarly that

> 100, Fle? < —=—|[Fllp.

= s(p—¢')
Since in the process above, £ € O and (0,1,q,q) € Dg,(r, 5) are arbitrarily chosen, this
inequality is proved. [ |

Let {-,-} denote the Poisson bracket of smooth functions, i.e.,

{F,G} = (01F,09G) — (0pF, 01G) +1 Y (04, F - 05,G — 93, F - 0,,G).

nezi

Lemma 2.3 If | Xp|p <&, | Xa|p < ", then

||X{F,G} HDd,p(rfU, ns) < 60'7177725/5”7

forany0 <o <rand<n<l.
The proof is similar to that of Lemma 7.3 in [20].
Definition 2.2 The function F(0,1,q,q;§) is said to have gauge invariance, if

Fklag(f)zo, when k1 +ka+ -+ ky + |o| — |B] # 0.

Remark 2.2 This property means the 1> norm (3 |qn|2)% s a conserved quantity. It is
also related to the fact that solutions of the original equation are invariant with respect to
rotations in the complexr plane.



Lemma 2.4 If both of F and G have gauge invariance, then {F, G} has gauge invariance.

Proof: F and G can be written as

F=3" Frapl;0)e™ g, G =" Grap(I; )¢,
k,a,B k,a,B

with Fiog = Grag = 0 if 22:1 kj + |a] — |B] # 0. By a simple calculation, we have

{F.GYhag = 1 ) (<31F;;a3,/5>6’ — (k,01G45) kaﬁ) (2.2)

HOY D (Fk(a+e7n)BGm(B+em) - Fka(mem)Gk(aJrem)B)- (2.3)

k+k=k MEZ

Assume 22:1 k;j + |a| —|B] # 0. Then, in the summation above, it is impossible that

7j=1 7j=1
or
b § b X
ij+|d+em| - |6’ :ij+|d| - |/6+em| =0,
j=1 j=1
b 5 b R
dki+lal =B+ em| =) kj+|d+em| — |8 =0.
j=1 j=1
This means, in (2.2) and (2.3), each term = 0. Thus Lemma 2.4 is obtained. [ ]

2.2 Statement of the abstract KAM theorem

Associated with the symplectic structure dI A df + i),z dgn A dGn, Z1 C Z, we
consider the following family of real-analytic Hamiltonians

H=N+P= e(f) + <w(£)vl> + Z Qn(&)‘]n‘jﬂ + P(Q’Ia q,4q; 5)7 (2'4)

nezi

on some D = D, ,(r, s), parametrized by £ € O C [0,1]°.

Clearly, when P = 0, the Hamiltonian reduces to N which is completely integrable
and admits a family of special quasi-periodic solutions (#,0,0,0) — (6 + wt,0,0,0), cor-
responding to invariant b—tori in the phase space. To show the persistence of most of
these b—tori(in Lebesgue measure sense), we need to impose the following conditions on
the frequencies w, §2,, and the perturbation P.

(A1) Nondegeneracy of tangential frequencies: The map & — w(¢) is a C}, diffeomorphism
between O and its image.



(A2) Regularity of normal frequencies: For each n € Z1, Q, is a C}j, function of ¢ with
SUpgeo [0:82n| < 1.

(A3) Regularity of the perturbation: The perturbation P is real-analytic in 6,1, q,g and
C; smoothly parametrized by & € O.

(A4) Decay property of the perturbation: P can be decomposed as P+ P, where

P=P0,1,4,G:€) = Papa®d = > Puasl' ¢,
B (10

P=P(q3€) = Pupg®d’ = Poasa®d’,
a7/3

a?ﬁ
with
N ee a8, ol +18] <2
5 ) e, =2 2.5
[ Pasllpo < { e Mas ol +|B] >3 7
, ce Plas laf + 8] < 2
Pusllpo < - Cn >3 *
1 Paslio, { e~Phasmas) o] + | > 3 v

(A5) Gauge invariance of the perturbation: For P = Z Pklagllei<k’9>q“q , we have
kezb, lend
.8

b

Puap =0 if D kj+ o] — |8 #0.
j=1

Theorem 2 Assume that the Hamiltonian H in (2.4) satisfies (A1) — (A5). There is
a positive constant e, = e, (w,Qn,€,7,8,d, p) such that if | Xp|po < € < e, then there
exists a Cantor set O, C O with |O\ Os] — 0 as € — 0 such that

(a) there exists a O, map @ : O. — R®, such that |© — w|p, — 0 as € — 0;

(b) there exists a map ¥ : T® x O, — Dgo(r/4,0), real-analytic in 6 € T and C},
parametrized by £ € O, such that |V — Wollp, (r/4,0),0. = 0 as e = 0, where ¥y is
the trivial embedding: T? x O — T® x {0} x {0} x {0};

(c) foranyf € T and & € O, V(0+@(E)L, &) = (0+@(E)t, I(t), q(t),q(t)) is a b-frequency
quasi-periodic solution of equations of motion associated with the Hamiltonian (2.4);

(d) for each t, q(t) = (qn(t))nez, € L40(Z1)-

3 Proof of Theorem 1

3.1 Diagonalization of the linear operator

First, we consider the Schrédinger operators on £2(Z)

(Lyq)n = €(qn-1 + Gnt1) + tanm(na + x)q,, =€ X, (3.1)



which can be interpreted as an infinite dimensional matrix, with the matrix entry

tanm(na +x), n=m
(Ly)nm = €, n—m==1,
0, otherwise

where @ € R satisfies the Diophantine condition (1.2).

Theorem 3 (Bellissard-Lima-Scoppola [2]) Consider the Schridinger operators Ly de-
fined in (3.1) on (?(Z). There exists a positive constant ey = €o(&), such that if 0 < € < e,
then the following holds for every x € X.

There is a periodic-one meromophic function V on {z € C : [Imz| < R} for some
R > 0 satisfying

- 1
e The poles of V are {n—i— 3 n GZ},

e V(z) — tanmz is real-analytic on R/Z, with 51];1/)2 V() — tanmz| <e,
S

and an orthogonal transform U, : (2(Z) — (*(Z) with
Uz = Iz)mn| < ee”2m71, (3.2)
such that U LU, = diag{V (né + z)}.

This theorem (in its original form) is due to Bellissard-Lima-Scoppola[2]. The detailed
statement will be given in Appendix A.1.

Remark 3.1 Typically, there is a polynomial or exponential factor in front of the ex-
ponential decay in (3.2), which is called semi-uniform localized eigenstate(SULE). For
example, the random Schrodinger operator and the almost Mathieu operator exhibit such
a phenomenon. It is necessary to point out that, the method needed to investigate such
models is totally different from that of the present paper, because there are infinitely many
resonances.

Compared with SULE, the uniform localized eigenstate in (3.2) is not generic[15].
Correspondingly, the Maryland model is a special quasi-crystal model. Howewver, in the
presence of nonlinearity, many problems related to the model are still unsolved and attract
plenty of attention.

3.2 The Hamiltonian
Consider Equation(1.4). For every x € X, after the coordinate transformation
qz. = UIQZ’

with U, given in Theorem 3, there is no difference in the linear part, and the new Hamil-
tonian has the form

~ = 2 ~ ]- ~ R o~ =
H(@z, Go) = A+ G =3 Vol + 3¢ 30 ijnmGidjGndm: (3.3)

nez %,7,n,MEZ

10



where V,, = V() := V(nd + z). The off-diagonal decay of U, in (3.2) implies the
short-range estimates of coefficients u;jnm, i.e.,

’Uijnm‘ <0672(max{i,j,n,m}7min{i,j,n,m}). (34)

Indeed, for fixed x € X, we can calculate that

Uijnm = Z(Ux)lz(Ux)l](Ux)ln(Ux)lm (35)

lez

Without loss of generality, assume that ¢ < j < n < m, then

tijm| < €3 e 2=l n=il+m—)

lez
< cem2mmD) Y g 2ill+in—l)
lez

Now we fix J = {n1,---,np} C Z, and Z; = Z\ J. When ¢ is sufficiently small, we
have |n;| < &|lne| fori=1,---,b.

Fix r,d > 0 and p = %, s < ¢3%. Define D = Dy p(r,s) as in Subsection 2.1. Before

introducing action-angle variables and parameters, we need to transform H into a Hamil-
tonian with a nice normal form. Hereafter, we will write the variable gz instead of ¢z in

the Hamiltonian for convenience.

Proposition 1 For e sufficiently small, there exists a subset X. of X with
mes(X \ X,) < €@ for some 0<¥ <1,

such that for every x € X, there is a symplectic transformation ¥ = W(x), which trans-
forms H in (3.3) into

HoV¥ = N+P
= e(§) + (w(§), ) + Z Q0 (§)angn + P(0,1,49,7;6), (3.6)

nezi
a real-analytic Hamiltonian on D, C, parametrized by £ € O = [6%, 1]°. Here,
e w is a O}, diffeomorphism between O and its image,

e for eachn € Z1, Q, is a Cjy, function of & with sup [0¢Qy| < €.
£eo

Moreover, P has gauge invariance, and can be decomposed as P+ P with

P=P0,1,4,:6) = Pasg"d’ = Y Puasl'eé™q*g’,
:

(k1) 70
a,fB
pP= P(q, q;¢) = ZPagq"‘qﬁ = ZPOOaﬁqa(TBa
Q’,ﬁ OCVﬁ

11



satisfying

P 1, %

o 523_§na5’ ol + <2

HPaﬂHD,oﬁ{ te 0l ol + 16 (3.7)
e 2"as, o] + || >3
P 1, %

, 4 _Enaﬁ <2

[Baglpo < <5 0" lelrIols (33)
e 2Mas Mg/ a4+ (8] >3

Proof: We decompose the proof into the following parts.
e Symplectic changes of variables

According to the form of H = A + G, let

_ 1 _
T(qz, Gz) = € > Uijnmqiqjdndm.,
[il,13],In],lm|<k|In €]
_ i Ujjnm _
Flgz, @) = 5e > ;0 Gnm,

‘/i_‘/j+vn_vm

V'L*Vj+‘7n*‘7m#0
lil, 131, nl,lml <sl ln €]

and WL be the time-one map of the flow of associated Hamiltonian systems. For fixed
i,j,n,m € Z with |i|, ||, |n|,|m| < k|In€|, consider the function

Vigimm(@) := Vi(z) = Vi(@) + V() = Vin().
Since € is small enough, by Lemma 3.1 below, there exists a subset X, of X with

mes(X \ X.) < € for some 0 <9 <1,

such that if v € X and {i,n} # {j,m}, then |V, j ,m ()| > ¢1. This guarantees that there
is a uniform lower bound for the denominators in coefficients of F'.
In view of the homological equation

1
{(MFY+T =2 > wigjlal’lal®

lil, 17| <[ Ine]

we know that the change of variables W1, sends H to

~ 1 -
HoWp =Y Vilgil*+=e > wijlal’lg* + R, (3.9)

i€Z [i],17]<r|In €|
where
- 1 1
1 1

n n

12



Expand R as R = PO Rarg/q%/cjg. Here (o, 8') = (an, Bn)nez, with finitely many non-
vanishing components, for which notations supp(a/, ), n;'/ﬂ,, Ny Miyg and /|, 18]
can be defined as in Definition 2.1. By the construction of R, we have

Ralﬁ/ =0 if |O/| + |B/| <4 or |O/| 75 |ﬂ,‘, (310)

and 3
Ryp =0 if |o/|+|8| =4 and nlyg < k[Inel. (3.11)

Moreover, by applying Lemma 3.2 below iteratively,

~ _ + -
‘Ra/ﬁ/| SEG 2(”0/[3/ na’ﬁ’)'

e Introduction of action-angle variables
Introducing the action-angle variables in the tangential space
G =VE+&e", G=VEi+& %, ied,

where (6,1) = (0n,,--+,0n,, In,, -+, Iy,) are the standard action-angle variables in the
(Gn, Gn)neg-space around &, with & = (&,,,---,&,,) € ¢"[e12,1]® a parameter, and

(q’ CY) = (an (jn)nezl

the remaining normal variables. Then the Hamiltonian in (3.9) becomes

- ~ 1
HoVp = Z‘/i([i'f’fi)"_Z%|Qi|2+§ﬁzuiiii(fi+§i)2

eJ 1€7Z1 eJ
1 1
t5¢ > (L + &)lgs + 7€ > wigi (I + &) (I + &)
i€J,j€L ,jE€ET
[71<k|In €| i#]
1 3
t5¢ > wigglallg P + R
1,JEL

[il;|7]|<k|In €|

N N 1
= > ViLi+ Y Vilgl + €Y wiikili + 3¢ > wiigi (&l + &)

ieJ 1€7Z1 eJ i,j€ET
i
| ) 1 , 1
+oe S wag&ilaP + | DD V& + 3¢ > wil + 3¢ > wigi&ids
i€J,j€L] ieJ ieJ ,jeT
[71<k|In €] j#i
+R,

where

- 1 1 1
R=R+ 56 Z uszzz + 56 Z uiijjIZ-Ij + 56 Z ’U,Z‘Z‘jjfi’qj‘z.

eJ ijeJ i€d,jen
i#] [71<k|In €
By the scaling in time
0—6, I— e%"“[, q— e%”q, q— e%“q, & — €€, (3.12)

13



we finally arrive at the rescaled Hamiltonian

2

Ho \II}E, = 6—(1+§n)(H o W%)(Q,E%KI,Egﬂq,egﬁq; €)= N + P,

where N = ¢+ (w,I) + 3 cz, Onlgnl?, with

wi() = €IV fug + = Z uiiji&, 1€ J, (3.13)
—(1+r) Y 1 e
€ n+ Z uunnéz; ’n’ < ﬁ| ln€|
Q, = 2 £i€d Z 3.14
() { e tny In| > k|Ine| neh ( )

and P = ef(H%”)R(ﬂ, e%”I, E%Hq, e%ﬂq; €"¢).
e Properties of the Hamiltonian N

In view of (3.13), the b x b matrix %‘g satisfies that

ow\  _ Stz | (Un)al?, j=1i .
(8§>ij { 5 Yie Un)alPUa)jul?, G #i° vied,

since uiij; = Yyez |(Us)a|?|(Us)ju|* as is shown in (3.5). By (3.2), we have
(Uz)ii — 1] < € and |(Up)al < ee 271, 144,

Hence, Y717 [(Uz)ul* > ¢(1 — €)*, while sup;; >iez |(Uz)al?|(Uz) ju|* < ce*. The diagonal
dominance of g—%’, which is deduced from the smallness of €, implies that w is a CW
diffeomorphism between O and its image.

The formulation of €, given in (3.14) implies that 0:Q, = 0 for |n| > k|Ine|. As for
the case |n| < k|Ine€|, we have

’8&9 ‘_ Z‘ :l?ll‘ ’ znl‘2SC€2, ’Lej

lGZ

e Properties of the Hamiltonian P

By (3.10), each non-zero term of R can be rewritten as

RupdS' @ = Rupd 07 ¢°7°, ||+ 18] >4, || =8,

where oy = (an)ney, Bs = (Bu)neg: and q7 = (Gn)nes: @7 = (@n)ney, then the intro-
duction of action-angle variables brings us

o (H (Vv g™ e w—%) e

neJ

which, after the scaling (3.12), becomes
~ P an+PBn )
ERwp | ] (\/63 I, + gn) el an=Pn)0n | pagh (3.15)
neJg

14



where £ = ¢~ (1150 5 (lagl 187N +3r(al+18) - Ag a term of P = > ko Prop(D)el®0¢ogs,

this means,

b
ki = (om— Bn).

1 neJ

<

Then Y0, k;j +|a| — | 8] equals to its initial value Y,,c; 0 — ez B = |o/| — |3']. Thus,

by (3.10),
b

Prop =0 if ij+|a|—|6|: /| —|B'| # 0.
j=1

The gauge invariance of P is deduced by expanding Py, with respect to I.

We need to verify the decay property of P. Decompose P as P = P+ P, which has
been given in the proposition.

1) lag|+Bs] =0
In this case, |/| + |8'| = |a] + |B] > 4 in view of (3.10), and the term in (3.15) is

6_(1+%“)eg"(‘ﬂﬂﬂ')ﬁa/ﬁ/qaqﬁ. This is a higher-order term of P, with its coefficient
smaller than

E_q 5 K _ —2(nt, ,—n" & —2(nt, —n_
€3 1|Ra’ﬁ/| < €3 1 . €e (na/ﬁl no/,B’) < e€3e (na’ﬁ’ na’ﬁ’)‘ (316)

2) |agl+ 187121
This means supp(, ) N [—§|Ine|, §|Inel] # 0, i.e., there exists [n| < §|Ine| such
that (o, 8,) # (0,0), then we have that

K
* * + —
na/B/ — E‘ 11’16‘ S na/ﬁ/ — |n| S nOé//Bl - na/B/-
Hence,
~ _ + - I, Yo Y, Yo
‘Ro/ﬁ/| < ee 2(no/,8’ no/,B’) < eegunde 2'”0/5/ :el—ge 2na’,8/.
By (3.10), we can consider Case 2) in the following two situations.

— If |o/| +|B| > 6, then §(lag|+|Bs]) + k(|| +|B]) > 3k and € < €351, This
means the coefficient is not more than

*

S‘Ra/5/| S 6%'{71 . 6175672“;/5, S 6%672@1,5,. (317)
— If [o/| +|B'| = 4, then by (3.11), n}/g > k[Ine[, and hence
’RO/,@’/‘ < eligeiﬂllndein";'ﬁ' _ 61+%K/677L;/Bl‘

This means the coefficient in (3.15) is not more than

*

~ 7 2 —n* [ —
E|Ryp| < e (IH5R2RdF5Re Ny < g5 Malsl (3.18)

15



Thus, Case 2), the coefficient of ¢*® in (3.15) can be controlled as

~ n an+Bn )
ERws (n (Vi +c) <>)
neJ

In expanding /I, + &, around &,, we need to keep &, apart from 0 to avoid singu-
larity. This is why we choose € € [¢12,1]"(after scaling).

D,O

There is no doubt that terms of P are all generated in Case 2), so, applying the basic
fact supp(«, ) C supp(c, f),

HpaBHD,O < cie s < 6%6*"25’

which implies (3.7).

,

Terms of P come from both cases. When the term in (3.15) satisfies that a7 = 87,
by expanding /I, + &, around &, we can obtain

ERuwp (H (\/?n)aﬁﬁn> 7,

neJ

which contributes one term to P due to cancelation of angle variables. As in Case
2), the corresponding coefficient is not more than ese” "e#, which can be replaced by

k _1 +
efe 2(Mapas) as we need, since %(n:ﬁ —n,5) < nhg. Together with (3.16), (3.8) is
proved. [ |

Combing (3.16) — (3.18) together, we have

ool

”XP"Dd,p(Trs)vo S gi=€8.

To this stage, we have that all the assumptions of Theorem 2 hold for (3.6), which conju-
gates with (1.4). Thus, Theorem 1 follows from Theorem 2.

We have applied several conclusions directly in proving Proposition 1. Now we give
their precise statements. The first lemma shows that the function

Vijnm(z) = V(z +id) — V(z + ja) + V(z +na) — V(z +ma)
on X is not identically zero, if |i|,|j],|n|, |m| < k|Ine€| and {i,n} # {j, m}.
Lemma 3.1 For € sufficiently small, there exists a subset X, of X with
mes(X \ X.) < €’ for some 0< <1,
such that for any |il,|j|, |n|, |m| < k|In€| and {i,n} # {j,m}, we have

Vijmm(®)| > €1, Ve X.. (3.19)



The proof of Lemma 3.1 is very similar to Appendix A in [22], and the measure estimate
is an analogue with Lemma 5.3 in [33]. For the sake of completeness, we give its proof in
Appendix A.2.

The next lemma implies that the property (3.4) about the coefficients of the Hamilto-
nian is preserved under the poisson bracket.

Lemma 3.2 Consider two real-analytic functions*
G(QZ» (jZ) = Z GaﬁQ%éga F(QZa qZ) = Z Faﬂqg%gv
Dl,ﬁ D"E
naﬁfnaﬁgM

with

-n_

(n aﬁ)7

+ - +
|Gapl < cae " MasMas) | Fop| < cpe "M

for some positive cg, cp and 0. We have that

nez a,B

satisfies

_ +
|Kop| < ¢ Mcgere 7(PapMap)

Proof: A straightforward calculation yields that
Kapg = IZ ( dtenffapren — Gd,B+enFa+en,B) ) (3.20)

with the summation notation

S:{n+€Z7 (d B) ( 7A):(a76+7 }
&76"1‘671 n&,B"l‘en S M or nd+en73 B n&+en7B S M

For G n (3.20), note that

a+en B &,B+en

nt nt
B < maX{n an? B'f’en}’ /B > maX{n +enaﬂ7 & B+€n}7
then
+ o= apt . o= St o
Notend ™ Naten T Mapren ~ Mabte, = Maf T Map:

Hence

_ + T B _ + N —n . _ + -
Gatenstapre | < cgerpe O ten s Maken 8 e " Mafben "abten) < cgepe O Mapap)
n ) n' = -

Doing the same for G Bten Fa+e 5 in (3.20), and noting that K,g is a finite sum in view

of the definition of S, we have completed the proof of this lemma. [ |

“Here we use (a, 8) instead of (¢/, 5') to denote (un, Bn)nez for convenience.
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4 KAM step

The remaining sections are devoted to the proof of Theorem 2. In this section we
present the KAM iteration scheme applied to (2.4). This is a succession of infinitely
many steps, to eliminate lower-order 6-dependent terms in P. At each KAM step, the
perturbation is made smaller at the cost of excluding a small-measure set of parameters.
It will be shown that the KAM iterations converge and that, in the end, the total measure
of the set of parameters that has been excluded is small.

4.1 Normal form

In order to perform the KAM iteration scheme, we shall first write the Hamiltonian
(2.4) into a normal form that is more convenient for this purpose. For simplicity, we only
outline the derivation of the normal form. Detailed construction and estimation is similar
to those for the general KAM step which we will show 5later.

To begin the KAM iteration, we set 79 = %, €9 = €4, and K¢ = 2|In elp~™, po = Ko_l.
Let so be such that 0 < sp < min{eg, s}, and define Dy = Dy ,, (70, S0)-

Consider terms of P and P. According to (2.5) and (2.6) in the assumption (A4) and
the definition of norm (2.1), we have that coefficients of

P= 3" Puapl'é®q?q?, P =" Pyasq®d®

(k,1)7#0 o,
a,B
satisfy that
|Pataglo < ee”Mese™ ™ VR €2, 21| + ol + 18] < 2. (4.1)
Decompose P as P = R+ (P — R), with
Ri= Y Puase®™qq,
nz <Kjp

2[l+]el+]B]<2

and then

P_R= Z pklaﬁexk,e)ﬂqaqﬁ + Z Pklaﬁei<k,0)llqaqﬁ_
k,l,n:’;ﬁ>K0

k,l
2|1 +|e|+|8]>3
1<21]+ || +] 8] <2 [l +lel+181=

It follows, from (4.1) and the definition of the vector field norm, that one can make sg
small enough so that

ot

1
| XpP-rllDy,0 < 560 =

N |

€4,
-2
We can rewrite R as
R = Z Prooe 01 4 Z (PK10g, 4+ pkOlg yeilk6)
s InI<Ko
+ Y (PEgugm + P Gndm + PE2GnGm)e ™),
k

In|,|m|<Kq

18



where

PO = Proe,0, P = Prooe,,
Pflfg? = Pkl(€n+€m)07 Prlf%zl = Prie,ems Pflfgf = Pklo(en+em)-
The gauge invariance of P implies that for all n,m € Z1,
010 001 020 pHO02 _
P, PP P Pt = 0. (4.2)

To handle terms of R, we need to construct a symplectic transformation ®, = <I>1*
defined as the time-1 map of the Hamiltonian flow associated with a real-analytic Hamil-
tonian Fj of the form

F, = Z Fklooei<k‘,9>ll + Z (F’r]::loqn + F,IfOlq_n)ei<k’9>

k0 k£0
ltj<1 [n|<Kq

Y (B 200gm + FEL g + FE2G,G) e ),
k0

In|,|m|<Kq

such that all non—resonant terms

Pugol'e®®, k0, 1| <1,
PkOaﬁei<k’6>qaqﬂv k 7é 07 n;;/j < K07 1< ‘Ck’ + ‘/8’ < 27

will be eliminated, and terms

Poool', Il <1 Pogngm, |n|,Im| < Ko,

m

will be added to the normal form part of the new Hamiltonian. More precisely, we shall
construct <I>};* such that F} satisfies the homological equation

{(NFEY+R=> Pul'+ > P lanGm.

lf<1 nl,[m|<Ko

One can show that it is solvable on the parameter set

k#0, |n|,Im| < Ko

By virtue of (4.2), which is guaranteed by gauge invariance of P, we need not consider the
lower bound of |,| or |, + Q]

The parameter set satisfies that (O \ Og| = O(70). Indeed, by the assumptions on w
and €2, we have

Therefore, by excluding some parameter set with measure O(7y), we have that

70
k Q£ Q| > .
’< 7w>+ | ‘k‘TKg
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The other conditions can be handled similarly.
With ®, = ®}, , the Hamiltonian (2.4) can be transformed into Hy = Ho®, = Ny+ Py
with

No = eo(€) + (wo(€), 1) + (Ao(&)z0, Z0) + Y n(£)qnin,

|n|>K0
Po=Py+ Py = P0,1;€)¢*d +>_ Pls(&)a*d,
a?ﬂ a7ﬁ

where zg = (q")\n\SK()’ 20 = (qn)m‘SKo and
eo(§) = e(§) + Poooo(§),
wo(§) = w(§) + Poroo(y=1)(&),
(A0(©)20,20) = D Wan@n+ D Pt (E)anGm-
In|<Ko [n],lm|<Ko

Moreover, Py satisfies || X p, | Dy.0, < et =0 and

] TPOMas ol 4|8 < 2
PO < gpe . ) -
1 Pasllpo,00 < { e Pas ol + |8 >3

?

. gge” POMas lo| + 18] < 2
PYsllpp.00 < + -
H OL,BH 0,%0 eipo(naﬂinaﬁ)’ |Oé| + |ﬁ| 2 3

We shall prove that the decay property is preserved during the KAM iteration in Subsec-
tion 4.4.

Suppose that, we have arrived at the v KAM step, and we consider the Hamiltonian
H, = N, + P,, which is real-analytic on D, = Dy, (r,,5,), and Cyy parametrized by
£ € O,, with

Ny = e (&) + (w(€), 1) + (A (©)z, 20) + D> (€ nbn,

In|>Ky
P, = PZ/ WLPV = chl:ﬂ(eal;£>qaq +chlxjﬁ(£>qaqﬂa

a?IB a75

where 2, = (qn)n|<K,» Zv = (Gn)n|<K, - Moreover, P, satisfies that || Xp,|p, 0, <&, and

y eve "8, Ja| 4] <2
. [ e, <2 4.3
|| aﬁ”DmOV — { efpl’na[% |O[| + |ﬁ’ 2 3 ( )
7pyn*
) eye a,B’ |O[|+|ﬁ| §2
o _ B 4.4
|| aﬁHDy,OV = { 6—pu(n;rﬁ—noé,g)7 |a| + |ﬁ| >3 ( )

In what follows, we shall construct a subset 0,11 C O,, and a symplectic transfor-
mation ®, : D,41 — D,, so that the Hamiltonian H,41 = H, 0o ®, = Nyy1 + P41, CI}V
parametrized by & € Op41, has similar properties with H,, and

5
||XPV+1 ”Du+1,(’)y+1 <ef = Ev+1-
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From now on, to simplify notations, the subscripts (or superscripts) “v” of quantities
at the v*™" step are neglected, and the corresponding quantities at the (v + 1) step are
labeled with “+”. In addition, all constants labeled with ¢, cg, ¢, --- are positive and
independent of the iteration step.

Let Ky = 2|ln¢|K. In the KAM step detailed below, terms with (gn,n) x<jn|<K
will be added to the new normal components 2z, z;. To facilitate the calculations when
solving a homological equation later on, we will also adopt the following expression of IV,

N = e©+ W@, D+ A0+ > U@mdn + Y. W()ndn
K<|n|<K4 |n|>K
= (&) + WO, I+ A2+, 24) + > () nn,

|n|>K+

where A is a Hermitian matrix with dim([l) < 2K, 41 given by

~ A
A= < A £ ) (4.5)
"/ K<n|<Kj
and 24 = (Gn)jnj<k, » 2+ = (Gn)n|<kK, -
4.2 Truncation and homological equation
Expand P and P into their Taylor-Fourier series,
P= Z Pklagei<k’0>llqa(jﬁ, P= ZPOOaﬁqan'
(k,1)#0 .
B
By (4.3) and (4.4), and the definition of norm | - ||p,0,
|Priaglo < ceMase” B vk e 78 20|+ |a] + (8] < 2. (4.6)

Associated with terms in the normal form N, let R be the following truncation of P:

RO.1,20,2:) = Y. Puape™1'¢*¢° = Ro+ Ry + Ry,
2|l +|al+B]<2
HZBSKJF
with

Ry = Y Pune®Or
|l\kSl

Bio= 3 (P P a)e 0 = 3IURM, 2y (RO, 2)) )
|n‘§kK+ k

Ry = S (PEOqm + PEY GnGm + PR GG )0
|"LM”:€‘§K+

= D (B2, z) + (B 2y 24) + (B2, 20)) ),

k
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where RF10 RKOL - RE20 - RELL - REO2 are defined as

k10 .__ k10 k01 .__ k01
RK10 . (Pn ) . RMU.— (Pn ) ,
In|<K4 [n|<K4

Rk20 ._ (szo) Rk . (Plcll) RkOL . (Pk01> ‘
" In,m| <Ky " Il m| <Ky ") ] fm| <Ky

Since P = P, it is clear that

P00 = Prioo, R(-k)10 R’“O1 R(K)01 = Rk10

W: RkOZ’ R(—k) _ Rkll’ W: Rk20. (4'7)
From our definition of norms, it follows that
[ Xrllpo < | Xplpo <e.
Let py = K;l, ry =4+ andn= e1. Since
P-R= > Pus™I'¢"@+ > Puasd™1'¢°d,  (48)
211+l 418123 ;Jﬁgﬁ:;;

combining with (4.6), there exists ¢; > 0 such that

IXe—rllp, prrs o <6 2 €¢I 4 cms < gt (4.9)

\"|>K+

provided that

1

(C1) e (Pmr)Es < lea 5 <

1

8¢
We are going to construct a Hamiltonian /', defined on a new domain Dy = Dg . (r4,54)

such that, the time-1 map & = @}p associated with the Hamiltonian vector field Xp, is

a (symplectic) map from Dy to D which transforms H into H,, the Hamiltonian in the
next KAM cycle. Let F' be of the form

F(0,1,24,24) = Fo+ Fy + Py,
with

Fy = ZFk100€i<k’9>I
k#0
<1

Fio= Y (B0 + Fgn) ™0 = 3 (FH0 2y) + (PR 2,))el®0),

k#0
[n|<K k70

Fy, = Z (FkQOQan + an AnQm + an GnGm)e" ik 0)
e
\”lalm\gK.t,_

= Z(<Fk2oz+’ Z+> + <Fkllz+a 2+> + <Fk022+7 Z+>)ei<k79>>
k#£0
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and satisfy the homological equation

{N,F}+ R=¢"+ (', 1)

+(R™M 2y, 2,),

(4.10)

where e’ = Pygpp and w’ = Pyjgo(|l| = 1). By simple comparison of coefficients, we can see
Equation (4.10) is equivalent to the following system

for every k # 0 and [I| < 1.

(k, w}I A)FFI0 —

{
(
((k
(
(
(

k,w) Frio0 = iPrioo,

Rkl(]

— {RKO1.
— PR J — iRk,
L FRIA — iR
1 k02 § _ ko2

Since A is Hermitian, there is a unitary matrix @ such that
Q*AQ = A := diag{p;} )<k, »

where {11;};|<x, denote the eigenvalues of A. Tn addition, by (4.5), the eigenvalues of A
are all labeled with [j| < K, and p; = Q; for K < [j| < K. Due to the block-diagonal
structure of A in (4.5), we have that

Indeed, the diagonalization of A is just the diagonalization of A.

Qmn =0 if |m—n|>2K + 1.

Define the new parameter set O, C O as

€ € € €

>

)
)
)
)

I+ pin + fim| >
I+/~Ln_ﬂm‘ >W7

- 4
’
k[T K3

k40,

|7”L|, |’I7’L| < K+

(4.17)

The same as the construction of Oy in Subsection 4.1, we need not consider the lower
bound of |uy| or |, £ |, in view of gauge invariance of P.

Obviously, (4.11) can be solved on O. As C 1
define the vectors R0, RFOl and the matrices R¥20, RFI1 RKO2 a5

RklO Q*Rklo Rk(]l Q*RkOI

Rk20 Q*RkQOQ Rkll

for k # 0. We consider the equations

((k,w)I — A)F*10 — i RK10.
k,w)I + A)FROL = jRkOL
((k,w) ) ,
((k,w)T — A)F*20 — FR20p
((k,w)I — A)FFL 4 PRI
((k,w)I 4+ A)F*02 4 fRO2\

As for solvability of (4.12) —

Q*RkllQ RkOQ

(4.16), let us



These equations is equivalent to

)
I — pin + Nm)ﬁ;’;rlnl = inL%a
VPR = 1Rl
for k # 0, |n|, |m| < K4, which can be solved on O4. Then (4.12) — (4.16) are also solved
with _ _
FklO — C)ﬁﬂclo7 FkOl = QFkOl,
Fk20 . QFkQOQ*, PR . Qﬁwkll@*7 Fk02 . QFMBQ*.

By (4.7), it is easy to show that

F(_pyi00 = Frioo, FERI0 = kol F(=k)01 = pki0,
F(—k)20 — Fk02’ (F(—k)ll)* _ Fkll’ F(—k)02 — pk20

Thus F = F.

4.3 Property of the coordinate transformation

Lemma 4.1 F has gauge invariance, and for ¢ sufficiently small, the coefficients of F
satisfy that

|Froolo, < e [k[>H eIk, (4.18)
’FTIlclo‘OM !F,]fm\o+ < gglk‘27+167\k\refp|n|’ (4.19)
’Fafan?‘Ow ’Fafrlnl‘ow ’Fafr())f‘o+ < E% ’k‘2T+1ei‘k‘reipmaxﬂn"'m'}- (4-20)

Proof: Let us first consider F*2Y for instance, with other terms in (4.19) and (4.20)
analogous. By the construction above, we can present F¥20 as

Fk?O — IZ Qn"l Q:UTLQ ng?z;z, Qn3n4 Q;kum ’ (421)
" F (k,w) = pny — iy

where the summation notation F denotes

{ Inal, [nal, 3], na| < Ky, }
b

Ine —n|, [ng —mi[ 2K +1, [ng—m|, [ng —ng| <2K +1
by virtue of the structure of @ in (4.17). Then by (4.6),

S |EEO) < ely T KR Drcepmelirtinlle i
+

Here we have applied the property of the orthogonal matrix @), and used the factor e(2E+1)p

to recover the exponential decay.
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To estimate |J¢, Fjiz’|, we need to differentiate both sides of (4.14) with respect to &;,

J=1,2,---,b. Then we obtain the equation about 0, Fk20

(k) — A)(96, F*) — (3, F*) A = G,
which can be solved by diagonalizing A via Q as above, where
GEX =10, R + F*(0g; A) — [0g, ((k, w) T — A F**.
Just like (4.21), we get the formulation

aéka% _ Z anl thnz (ijzo)mnsQnst;z;m'
s F <k7w> — Hny — Hny

By the decay property of R*2° and the construction of A, we have that

;%p |(G’§]20)nm| < c(,yfl|k_’T+1Kjlr)K5€(4K+2)pE€fpmax{\n|,|m|}€f\k\r‘
€U+

Thus there exists co > 0 such that

sup (|7 + [0 Py )
§e0y
62(7—2’k‘27+1K§_)K9€(6K+3)p€€—pmax{|n|,|m|}€—|k|r

IN

< E% |k,’27—+16—pmax{|n|,|m|}€—|k|'r’.

It is easy to see that

| Fraoolo, < [(k,w)| 72|k Proolo, <y 2k e Mre, k0, |1 <1,
by the definition of O . Thus, (4.18) — (4.20) hold under the assumption
(C2) 027_2K§K96(6K+3)95% <1

Suppose that 22:1 k; +2 # 0, which means R¥20 = . By the formulation of F,]fg? in
(4.21), F¥?0 = 0. Doing the same thing for FF1 FF02 kO [ROL a5 above, we obtain
the gauge invariance of F. [ |

We proceed to estimate the norm of Xz and to study properties of ®1., on domains
D; := Dd,p+ (TJr + i(’l“ - T+)a is)v i=1,2,3,4.

Lemma 4.2 For ¢ sufficiently small, we have | XF|p, 0, < €s.

Proof: In view of (4.18) — (4.20), it follows that

: - 5
57||89F|’D3,0+7 101 F||ps,0, <c(r—ry) (27+0+1) .5
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and

1
swp — > (105 Fllo, + 104, Fllo,) (n)ter=i

Ds nezy

< st > (IEN o + |E o, ) MO0 ) der

3 5 kzo

C N
+sup Yo (Flos + |E oy +1Fmrlo.) gm0 50770 (n)dep+I
3
\”|a|]:n7|é2K+

< e(r— r+)—(27+b+1)Ki€p+K+€%.
Putting together the estimates above, there exists a constant c3 such that
||XF||D3,(’)+ < e3(r — 7«+)—(2T+b+1)KieP+K+5%
Moreover, if
(C3) es(r — ry) "D ere e < 1,

then Lemma 4.2 follows. ]

Now let Dy := Dgp, (14 + i(r —7r4), %7]8), 1=1,2,3,4.

Lemma 4.3 For ¢ sufficiently small, we have ®% : Dy, — D3y, =1 <t < 1, and

moreover,
4
5

|D® — Id||p,, < 2e5.
Proof: Let

Hlil+ll+el+18|
00t 01'0 (24 )0(z4 )P

|ID™Fllp,o, = maX{H i+l 4 el + 18] = m > 2}.

D0,

Notice that F' is a polynomial of order 1 in I and of order 2 in z4, Z;. It thus follows
from Lemma 4.2 and Cauchy inequality (Lemma 2.2 in Section 2) that

ID™Fllp, 0, < &5, ¥m>2.

Using the integral equation
oL, = id +/0tXFo<I>§;ds
and Lemma 4.2, one sees easily that @4 : Dy, — D3y, —1 <t < 1. Moreover, since
Dol = Id+ /0 (DXp)D®% ds = Id+ /0 ' J(D*F)D®3 ds.
where J denotes the standard symplectic matrix, it follows that

4
|D® — Id|lp,, < 2| D*Fllp,, < 2¢5.
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4.4 Estimation for the new Hamiltonian
1
Let ® = oL s, = 3" D, =Dy, (ry,54) and
Ni=ey+ (Wi, D) +{(Avzr, 20) + Y Qntnda,s

|n|>K+

where e; = e+ ¢, wy =w+w', Ay = A+ R Then & : D, — D and, by Taylor’s
second-order formula,

Hi = HodP=(N+R)o®P+(P—-—R)o®
= N+{N,F}+R+/01(1—t){{N,F},F}ocb}dt

1
+/{R,F}O<I>%dt+(P—R)o<I>};
0
— N+{N,F}+R+P;
Ny + Py +{N,F} + R—¢ — (. I) = (R 2y, 24)
= Ny + Py,

1
where Py :/ {1 =t){N,F} + R,F}o®%dt+ (P — R)o®kL.

0
~ The new normal form N, has properties similar to those of N. Observe that, since
A* = A and (R'1)* = RO we have A% = Ay ie., Ay is a Hermitian matrix. Then,
from the assumptions on P and P, we further have that

i —wlo, <&, (A — Apmlo, < eepmaxtinkimly (4.22)

which will be used for the measure estimates. The eigenvalues of A, {,uj}‘ j|<K,» can be
labeled with ],uj — pjlo, < ce in view of the min-max principle[38].

Let R(t) = (1 —t)(Ny — N) +tR. Then P can be rewritten as
1 1
P, - /0 (1= ){{N, F}, F} o O dt + /0 (R, F} o ®udt + (P — R) o Bk
1
- / (R(t), F} o ¥ dt + (P — R) o ®k.
0
Hence, Xp, = f01(¢%)*X{R(t)7F} dt + (®5)*X(p—g)- By Lemma 4.3,
ID@pllD,, <1+ D8k —I]py, <2, —1<t<1.

Furthermore, by Lemma 2.3, we also have

_9 9
1 X (rt), 7} Day < cn”%e5

INIS

g4.

e

Then, combining with (4.9), [|Xp, b, 0, <&i =&,
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Note that
1 1
Pi = P—R+{P,F}+ 3 {{N,F},F}+ 3{{P,F},F} +---

+%{...{N’F}...’F}+%{...{P’F}...’F}_f_...'

n n

The reality of Py is verified easily because, for any two function F' and G satisfying F' = F
and G = G respectively, their Poisson bracket {F, G} satisfies {F, G} = {F,G} = {F,G}.

It has been proved that the gauge invariance is preserved during the KAM iteration
by Lemma 2.4, so we only need to examine the decay property of P,. More precisely, if
we decompose Py as Py = ]5+ + ]5+ with

P = Z 50, 1:00°, Pr=3 PL(€)dd
a.f

we will show that

)

1B o, o, < ] &€ 778 lal+ 181 <2
ePIPHOS = e e, o] + |8 > 3

—p4n;
» e o]+ 16| <2
Pt < -
For terms of P — R in (4.8), we have
v _ * , _ + -
|Paglis.0p < €8, (| Pagllp,.0, < e PMen"as), o] + 18] > 3.

If |af +[B] < 2, then by (C1) and nj 5 > K-,

9 , _ * _ * 1 — *
1PasllDs 0. s HPaﬂ|’D+,O+ < ge PMas < ce—(P=P)Ky | o=PtNGp < §€+e PTG

Here we applied the estimate |I| < s < e, to handle the case that |a| +|8] < 2 and
2/l + |a| + 8] = 3.

The decay property of remaining terms, which are made up of several Poisson brackets,
is covered by the following lemma.

Lemma 4.4 For ¢ sufficiently small, we have

i { ccoa, ol + 18] < 2

P F et A
I{ Yaslls,, 04 < 4 e Mes,al+ Bl =3

Proof: A straightforward calculation yields that

{P’ F}O‘B = 1 Z (Pd+en,BFd,B+en B Pd:B+en F@“!‘envé) (423)
[n|<Ky
(&,8)+(6,8)=(a,8)

+ 3 {Pag Fap}- (4.24)
(6.8)+(@B)=(cx.5)

: PR
In view of Lemma 4.1, we know that ||Fag|lp, 0, < e5e s,
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(1) Terms in (4.23)

Let us first consider the term P, +en,BFd,B ten which contains ]507 +6n,BFd,B te, and
P, ten, BF&, Bien In view of the construction of F', we have that
l&|+|B+en| =1 or 2. (4.25)
i) laf+ 8] <2
In this case, |&@ + en| + 6] = |a| + 18] + 1 - (|a| +18]) < 3.
o If |& + e,| + | 5] < 2, then, noting that nhs < max{n;%mﬁv, n;BJren}, we have
9 7’ —pn’i = 4 7pnf ~
HP@-&-enﬂFd,B-i-enHD?nOJr’ ”Ptfv-i—en,BFd,B—f—enHD&OJr < ce aten,p . g5¢ &,f+en
< eSe PMas, (4.26)

o If |t + e,| + | 8] = 3, then gauge invariance of P implies P&Jren’g = 0. By (4.25), we
can see that the only case, in which a higher-order term of P is transformed into a
lower-order term of {P, F}(indeed only {P,F}), is (&, 3) = (0,0), (&,3) = (a, ).
By the definition of norm || Xr||p, o0 and the decay property of P,

. o .
| Paten,sllDs0 < € otens, || Foe, |Ips,0, < csese plnl,

*
a-+ten

Thus, noting that n} s < max{n; . s, [n|}, we have

1Poren s FoenllDy,0, < cseie s < ceSe s, (4.27)

i) laf+[8]=3

In this case, |& 4 e,| 4+ |3| > 3. By the same argument as above, noting that nyg <

* B * * < + T 5 *
max{ng . 5 Maprent? O Mo S Mare 5 Navend T Ve’
~ —pnf ~ 4 —pnf o 4 —pn*
HP@-&-En,BF&,B-I—enHDs,OJr Se " atenf.ghe  aften S ese Tef, (4-28)

’

17

+ - x
—p(n; 57N, 5) L —pnt o i —pnt
&+en,BFéé,B+en“D3vo+ <e Matens Maten s . g5e Mabten < g5e e, (4.29)

Doing the same for P, 5, F, we finish estimates for terms in (4.23).

(St‘f'enaB’
(2) Terms in (4.24)

By Lemma 2.2 and the inequality nj,5 < max{ng F nz 3}, we have

(4.30)

I

e e, ol + 18] <2
P.s F,z Selr—rp) g2 R T <
||{ aps aﬁ}||D37I’O+ - ( +) n { €5€_pn°‘ﬁ, |a|+|ﬁ| 23

Combining (4.26) — (4.30), there exists ¢4 > 0 such that

9 _

ese as, o] +|B] <2
ese s, Ja|+ 8] > 3

P

H{PaF}045HD3n7(9+ < 04(7' - T+)_177_2K-21- { 5
applying the fact that |&| + | B[ < 2. Moreover, if
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(C4) cy(r —ry) LK2em < L,

then Lemma 4.4 follows.

For Y = P —(P—-R) = >, Ya59°@°, which is made up with iterated Poisson

brackets, we can estimate them as above, and obtain

1 —pn’
geve PleB, a4+ Bl < 2
IYasllo, 0, { ese s, |l + 8] >3

for € sufficiently small. If we decompose Y into Y and Y, with

Y =3 "Yos(0,1;6)q%¢, Y = ZYQB
a7ﬁ

then

1. —p+n
v Jere P, o] +18] <2
)% e
Yaslp, o) < { ese s, |a|+ 8] >3
1. —p+n
/ le e as, lof + (8] < 2
v <) 2 _
1Yagllpi 0 < { Eée*H("Iﬁ*”aﬁ), la + 8] >3

applying the basic facts 2( of — ;5) < ngp and py < £.
This completes one step of KAM iterations.

5 Proof of the KAM theorem

Let 79, s, po, €0, Y0, Ko, Oo, Ho, Ngy, Py be as given in Subsection 4.1. Forv =1,2,-- -,

define the following sequences:

5 5\V 1 1
% i i 16 -1
v :5;1_1 :584) y My :51%7 Yv :51%67 K, :2|1n6V71’K1/*1’ Pu:Ky 5
v+1 1 v—1 1
i _3
Ty =170 (1 ->2 Z) S = QT18p-1 = 27 (H €z‘> 50.
=2 i=0

Consider H, = N, + P, on D, = Dq,, (1,,5,), with

N, = e+ (@€, )+ (A2, 2) + D W(E)andn

[n|>K,
= ey(§) + (wu(§), ) + </~1,,(§)Z,,+1,Z,,+1> + Z Q0(§)qnan
\"|>Ku+1
P, = =Y " PL(0,.1:6)°7" + > PYs(§)q° 7’

a,B o,

where 2, = (¢n)nj<k,> Zv = (@n)n|<K,, and

~ A, O
=% o)
Ku<|n|§Ku+l
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whose eigenvalues are {} <k, ,, with {¢}}; <k, being eigenvalues of A, and uy = Q;
for K, < |j] < Ky41. Let

OV+1 = § € OV : v | o Yv k 7é 07 ‘7’L|, ’m‘ < Kl/-‘rl
+

5.1 Iteration Lemma

The preceding analysis may be summarized in the following

Lemma 5.1 There exists €9 sufficiently small such that the following holds for all v =
0,1,

(a) H, = N, + P, is real-analytic on D,,, C};, parametrized by & € O,, and
’wV+1 - WV’O,,+17 |(AV+1 - Au)nm|(9u+1 S 5V€_py max{|n|,\m\}‘
Moreover, P, has gauge invariance, and || Xp,|p, 0, < €v,

o g€ la| + 8] <2
PY << v Ny
1Pesllp,.0, < { e o]+ 8>3

» epe s, al+ 8] <2
1EY5]1p,.0, < v
@BlIPeOv = —punla=ns) o] 4 18] > 3

(b) There is a symplectic transformation ®, : D,11 — D, with

I

HD(I)V - Id||Du+1,Ou+1 <e&p

such that Hyy1 = H, o ®,.

Proof: Let ¢y = e!® max{cy, c2, c3,c4}. We need to verify the assumptions (C1) — (C4)
for all v =0,1,---. Noting that r, —r, 41 = 25% and p, K, = 1, it is sufficient for us to
check:

(D1) cosy < e,
1
(D2) coro_(ZTerH)2(”2)(2”1’“)K§ﬁ° < g, 30

)

forallv =0,1,---.
By the choice of sg, the condition (D1) clearly holds for » = 0. Suppose that it holds
for some v. Then it is easy to see that

1 1
CoSp+1 = 273 - oSy < 273ed g, < Eptl-

Hence (D1) holds for all v.
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As for (D2), let us take g¢ sufficiently small such that

_ 1
Cora(2r+b+1)2(27+b+1)(2K0| In 6()Dzi+20 < €0 30

then (D2) holds for v = 0. Since for v =0,1,---,

(v+1)v
v 5 AT 7
K1 = 2K, | Ine,| = 2771 [ | nes| = Ko(2|Ineg) ! (4) .
=0
1 _an\(3)
while €, %% = (¢, 30) . This means that the right side of (D2) grows with v much
faster than the left side. Thus, (D2) holds true. ]

5.2 Convergence

Define ¥¥ = &, 0PgoPjo0---0®P, 1, v =1,2,---. An induction argument shows that
Y. 'Dl,+1 — DO and

HyoW’ =H,=N,+P,, v=12---.

Let O, = NS2,0,. Using Lemma 4.3 and standard arguments (e.g., [30, 36]), it
concludes that H,, N,, P, and ¥" converge uniformly on Dd,o(%ro, 0) x O to, say, H,
Ny, Py and U™ respectively, in which case it is clear that

Noo = €00 + (Woo, I) + (Ao Zoos Zoo) -

5)1/

Since ¢, = z-:(()Z , we have, by Lemma 5.1, that XPOO‘DdO(lTO 0)x0. = 0.
04270, e

Since Hygo W” = H,, we have &% oW = U 0 ®}; | with &}, denoting the flow of the
Hamiltonian vector field Xg,. The uniform convergence of V¥ and Xpg, implies that one
can pass the limit in the above and conclude that

1
Pl o U™ =TV>ody | U™ Dd70(§r0,0) — D.

Hence,
Dy (T(T x {€})) = T2y (T x {¢}) = U=(T° x {¢}), VE€O..

This means that W>°(T® x {¢}) is an embedded invariant torus of the original perturbed
Hamiltonian system at &€ € O.. Moreover, the frequencies wq (€) associated with ¥ (T x
{&}) are slightly deformed from the unperturbed ones, w(§).

5.3 Measure estimates

At the v*? step of KAM iteration, we need to exclude the following resonant parameter
set

z:—Rzlu( U m)U( U Rzim)u( U Rﬁm)

nISNy41 np,m|sny41 nl,Mm|sny41
In|<K In],|m|<K, Inl,[m|<K
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for all k£ # 0, where

RY {geo,, k, wy>|<|Z’T},
v2 . . v 711
Ry = {fe(’)y.|<k,w,,>+un< K }
’k‘ 1/+1

Tv

RV .= O [k, w)) + i+ | < —2 L

knm {56 |< w>+un+“m|<|k’7Kﬁ+l}
Yv

RYA = O, |kwy) + ¥ — | < —Lo L

knm {§E |< w>+:un ium|<|k’7K;1+l}

It is clear that Op \ O: C U, >0 Ugz0 RE-
As eigenvalues of the Hermitian matrix A, it is well-known that L i<k Cl de-

pend on ¢ and there exist orthonormal eigenvectors ¢y, corresponding to fiy,, C&V depending
on & (see e.g. [13]). It follows that u¥ = (A, ¥k, %) and

Recalling that wp is a diffeomorphism of £, and supgce [9¢€2n| < 1, together with the
estimates in (4.22), we have

1 1
|0 ((ks wu) + iy, = )| = 10 ((F, wo) + Qn — Q)| — g [k] — £5 = O(|k])

for the set Ry, 4 . The cases for R¥!, R,m, Rknm can be handled in an entirely analogous
way. Thus for ﬁxed k #0,

ool g Ly, ol =

‘n|SKV+1 |n‘>|m|§Kll+1 |n|7|m|SKV+l

<

’k‘T-Fl'

Since 7 > b, we have that

1

|k \TH—CZ%N%:E?-
v>0

[0\ Oc| <

U U=

v>0 k#£0

<ed >

v>0 k#£0

A Appendix

A.1 The original form of Theorem 3
Given R > 0, Hp denotes the set of period-one holomorphic bounded functions f on
Sr ={z € C:|Imz| < R},
equipped with the sup-norm
Ifllr = sup |f(2)].

2SR
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Pr denotes the set of period-one meromorphic functions f on Sg such that there is a
constant ¢ > 0 with

]f(Z)—f(z—a)] Zc‘aha VCLGR, VZESR> (Al)

where | - |1 is defined as in (1.2). Then |f|g is defined as the biggest possible value of ¢
in (A.1). It is obvious the function V(x) = tanmz belongs to Pg for any R > 0, with
\V|r > 1.

For 0 > 0, R > 0 and & € R? satisfying the Diophantine condition, i.e., there exist
4 > 0, 7 > d such that

(n,&h > —=, Vnezd\ {0},

[n|™”

let Uf , denote the Banach #-algebra of kernels m = {m(z,n)} where for each

n€zd zeSR’
n € Z%, the map z — m(z,n) belongs to Hg(or Pg), and
oln|

Imlpe = sup > |m(z,n)le
ZGSRnGZd

is finite. (We need to exclude a subset of Sp with measure zero in the case that m(-,n) €
Pr and there is some poles in Sg.) The x-algebraic structure is defined by

(my -mo)(z,n) = Z mi(z,)ma(z — (l,&),n — 1),

lezd

m*(z,n) = m(z— (n,&),—n).
Then the norm is defined by
Iml ro = max {[|m|g g [Im"[|zq}-

For example, if g € Hgr(or g € Pr) then g can be considered as an element of L{I‘%U, by
putting:
g(z,n) == g(2)0n0.
Such a kernel is called diagonal. If e € Z%, u, is the kernel
Ue(2,m) = Ipe.
One can easily see that ug is an identity and
uiue = uoul = ug, Ve € Z%

The Laplace kernel is then given by

A= Zue.

e=+1

A canonical set of representations of L{g , in £2(z4) is given by

L (m)y](n) = D m(z — {n,&),1 = n)p(l),

lezd

where ¢ € (2(2%), z € Sg and m € Z/{%J. Actually, II,(m) can be seen as an infinite
matrix, with its matrix elements [II,(m)];, = m(z — (n,&),l —n).
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Theorem 4 (Theorem 1 of [2]) Given R > 0, 7 > 0, and & € R? satisfying the
Diophantine condition, i.c., for all n € Z¢\ {0}
gl

& > [

)

for some v >0 and T > d. If V € Pg, there is a positive constant €., depending on R, o,
3, 7 and |V|r only such that if m € U ,, [|m|ro < &c, there exists an invertible element

NS Z/{I%U and V € Pry2 with

w(V4+mu™t =V, (A.2)

max {[[u — Id||rj,02: [|u™" = Id||r/2,0/2} < cllml| o, (A.3)

V=V eHrp [V-=Vlgsa<Imlro, (A.4)
- 1

Viry2 2 5IVIg: (A.5)

If in addition m +V is self-adjoint, then u is unitary and V = V*.

Corollary 1 (Corollary 1 of [2]) Let m and V' be as in the previous theorem. Then
the operator H, = [],(m + V') has a complete set of eigenvectors which are exponentially
localized. The corresponding eigenvalues are the set

{V(z—(n,a)) : z — (n,&) is not a pole of V, n € z}.
Now, for d = 1, o = 4 and arbitrary R > 0, consider the Schrodinger operator on £2(Z)

(Lyq)n = (eAq)n + tan(na + 2)gn = €(qn-1 + qn+1) + tanw(na + z)q,, =€ X.

In the set-up above, it can be expressed as II,(eA+V'). Obviously, ||[eA||r,, < ce. Theorem
4 implies that if € is sufficiently small, then for every x € X C Sg, there is an orthogonal
transformation U, = I1,.(u) on ¢*(Z) such that

U L,U, = diag{V (z + n@) }nez,

where u € Z/{}%U, Ve Pry2 with g(z) := V(z) — tan 7z contained in Hp/e and ||g||r/2 < ce.
By Corollary 1, {V(z 4+ na)}nez C R is exactly the set of the eigenvalues of the operator
L,. By (A.3) in Theorem 4, the infinite matrix U, has off-diagonal decay, i.e., the matrix
elements (U, — Iz)my, satisfy

—2\m—n|'

(U = Iz)mn| = |u(z — na,m —n) — pmn| < cee

Setting several constants ¢ = 1 for convenience, we obtain the content of Theorem 3.
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A.2 Proof of Lemma 3.1
For |i|, ||, In|, |m| < k|In€|, we consider the function

0

iinm(T) = tanm(z +i&) — tan7(x + j&) + tan7(x + n@) — tan7(x + ma)

on R/Z. To get the lower bound in (3.19), it is sufficient to show that

N

|Vvi?j,n,m($)| > 2e
on some subset of R/Z, since sup,cp/z V(z) — tan | < e.

It is necessary to restrict the functions on the subset Xy = X[ N XY C R/Z, with the
necessity clear somewhat later, where

X, ={xeR/Z:

_ 1 1
T+ na — 2‘ > e, V|n| < k[lnel},

X! :={z €R/Z: |tan7(z +nd)| > e0, Vn| < x|lne|}.
Hence on Xy, for |n| < k|lne|,

1 -
€20 < |[tan7(z + na)| <

‘ < ce 1200, (A.6)

1 1 1
tan (2 - 61200>' = ‘tan612007r
if € is sufficiently small. Then Vzojnm(x) are all bounded piecewise smooth functions on
Xo. It is easy to see that there is at most ck|ln €| many connected components contained
in Ay and

mes(R/Z \ (X} N X)) < ck|Ine| - €200 < eTaoo

for e sufficiently small.
It is clear {i,n} = {j, m} implies that Vlojnm = 0, so we assume that {i,n} # {j,m}.
If, in addition, {é,n} N {j,m} # 0, then the intersection has a single element. Assume

that ¢ = j without loss of generality, then n # m and

. N :
i,j,n,m(w) = tan7(z + nd) — tan7(z + ma). (A7)

Thus, we have .
Vi @)] 2 70— M)y > i > e, (4.8)

The case {i,n} N{j,m} = 0 is much more complex, which can be decomposed into the
following four subcases:

(S1) {i,n}N{j,m} =0 with i # n and j # m;
(S2) {i,n}N{j,m} =0 with i =n and j # m;
(S3) {i,n}N{j,m} =0 with i #n and j = m;

(S4) {i,n}n{j,m} =0 with i =n and j = m.
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We only need to consider the subcases (S1) — (S3), since in the subcase (S4),

VY (@) = 2(tan 7 (z + nd) — tan(z + ma)),

which is the same as in (A.7). Corresponding to (S1) — (S3), let

tanm(x 4+ ia) tanmw(x 4+ j&) tanw(z +na) tanw(z + ma)
Bi(x) = tan? 7w(x +ia) tan’w(z +ja) tan’w(z +na) tan?mw(x + ma)
B tand nr(x + @) tan® (x4 ja) tand w(z + na) tand w(z + ma) |’

tant7(x +ia) tantw(z +ja) tantw(z +na) tantnw(x +ma)

and
tan7(x + &) tanw(z + j&) tanw(x + ma)
By(z) := | tan’7(x +ia) tan’n(x +ja) tan’n(z+ma) |,
tan® 7(z +i@) tan®nw(z +ja) tan®m(z + ma)

tan7(z +iq) tanw(z+na) tanw(z+ ma)
Bs(z) = | tan’7(z +ia) tan?w(z +na) tan’w(z+ma)
tan® w(z +ia) tan®w(z +na) tand7w(z 4+ ma)

Lemma A.1 Given |i|,|j|, |n|,|m| < k|Ine€|. Ife is sufficiently small, then for any x € Xp,
we have

e when (S2) holds, | det(Ba(z))| > €00 ;
o when (S3) holds, |det(Bs(x))| > €20
Proof: The determinant of By(x) can be written as
tan7(z + i@) - tan w(x + j@) - tan w(x + n@) - tan 7(x 4+ ma) - det(By (x)),
with Bj(z) the Vandermonde matrix

1 1 1 1
tanm(z +id) tanw(r+j&) tanw(z+na) tanw(x 4+ ma)
tan? w(z +i@) tan?m(z + ja@) tan?w(z +na) tan’®7w(z + ma)
tan 7(x +ia) tand7(z +ja) tand7w(z +na) tand w(r + ma)

Then, when (S1) holds, we can obtain that |det(B;(x))| > €130, by (A.6) and (A.8),

combining with

det By (z) = H (tanm(z + ni1@) — tanm(x 4 nad@)) .

ny,ng€fijn,m}
ni<ng

As for the subcases (S2) and (S3), there is no doubt that | det(By(z))|, | det(Bs(x))| >
62%0, which can be proved in the same way as above. [ |
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For s € {0,1,2,3}, let
.
W) (2) = (VO (@ +ia), VO (@ +ja), VO(z+na), VO(@+ma) er,

where V(z) := tanzz, V) is its s"—order derivative and V(®) means the function V
itself in particular. We can calculate that

VWD(z) = 7+ mtan®ma,
VO(z) = 2r’tanmz + 272 tan® T,
VO (z) = 27°+ 8x%tan® mx + 67° tan? 7.

Moreover, if € is sufficiently small, then for x € X, we have that

1 1 1

VO(z)| < ce‘ﬁ, ‘V(l)(x)’ < ce o0, ‘V(Q)(g;)‘ < ce 0, ‘V(3)($)‘ < cem 3.

Indeed, it can be checked that for s =0,1,2,---,

s+1

’V(S) (l’)‘ < ce 1200, (A.9)
where ¢ = ¢(s) grows exponentially in s. Let
u(0)<1‘) = a(O)(x)7 u(l)(x> = a(l)(x) - 7T(17 L1, 1)T7
uP(z) =P (z), u¥I(z)=a®()-2731,1,1,1)".

Thus the determinant of the 4 x 4 matrix (u(?(z), u™(z), u®(z), u®(z)) equals to
c-det(Bi(z)), where By (z) is defined as in Lemma A.1.

We need to arrive at some transversality conditions, which are elaborated in Corollary
2, by virtue of the following lemma .

Lemma A.2 (Proposition of appendix B in [3]) Let u(?,- - (=Y be L independent
vectors in RY with |[ul®||p < 1. Let v € RE be an arbitrary vector, then there exists
s€{0,---,L— 1}, such that

(0, u®)| > L7 ||v]|p det U,

where det U is the determinant of the matriz formed by the components of the vectors u'®),
and (-,-) is the usual scalar product.

For the proof see [3].

Corollary 2 Given |i|,|j|, |nl|,|m| < k|lne|, and {i,n} N {j,m} = 0. If € is sufficiently
small, then for any © € Xy, we have

e when (S1) holds, there exists s € {0,1,2,3} such that

1

Vi) (@] > cem; (A.10)

Z7]7n7m
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e when (S2) or (S3) holds, there exists s € {0,1,2} such that

VoS (g > CeTos . A1l
,7,n,m
Proof: Consider the vectors
more: s
a® (z) = llu( )(i)ﬁgl’ [u) @)l > 1 , s=0,1,2,3.
©@),  [u (@) <1
In view of (A.9),
3 1 1 110 L 1
|det(U(x))| > ¢ H max{ [a® @)1} | det(B1(z))| > c(e120)!" - €120 > cedo,
s=0 )

for x € Xy. Apply Lemma A.2 with v = (1,—1,1,—1), thus we get that there exists
s € {0,1,2,3} such that

Vi (@)] = 10, @ @)] = o, @)] 2 |0, a9 (@))] 2 - 472 |lv] 1 = cet.

’]nm

As for the subcases (S2) and (S3), we can tackle with them similarly, applying Lemma
A2 with v = (2,—1,—1) and v = (1, 1, —2) respectively, together with the corresponding
conclusion Lemma A.1. [ |

From now on, we set the constant ¢ = 1 in (A.10) and (A.11) for convenience. The
proof of Lemma 3.1 ends with the following lemma.

Lemma A.3 For e sufficiently small, there is a subset X, of Xy with
mes(Ap \ Xe) < €30
such that for any |il,|jl|, |n|, |m| < k|In€| and {i,n} # {j, m},
V0 (@) > 265, @€ X.. (A.12)
Proof: Fix |il, ||, |n|,Im| < k|Ine| and {i,n} # {j,m}. Let us demonstrate that
mes({z € Xy : [V, n(@)] < 261}) < €75,

We only deal with the subcase (S1), with the others done similarly. By Corollary 2, for

each = € X, we have
1

0(s) 1
0232{3 Vi,j,n,m(ﬂf)‘ > €60,
Let A := max sup Vz (sz( )’ In view of (A.g), Aﬁce_ﬁ'
0<s<4 e xy 2Js
We first consider the function V;Jnm on (a,b), one of the connected components of

Xp. Partition (a,b) in about 2¢~ 21 21 many intervals of length no more than %ei. Choose

one of such intervals, say I. Then either | | > 21 for all € I, so we are done

2jnm( )

with the interval I, or there is some zo € I such that [V2  (x0)| < 2¢7. In this case, for

2,5,m,m
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some 1 < s < 3,

yoe) (xo)‘ > €0 by Corollary 2. Let us say s = 3, which is considered

©,7,m,m
VO.(3) (HUO)‘ > eé. Since for x € I,

as the most complex case, so |V, inm

(@) = Vif o (@0)| <

1
()] - |z = ol < AlI| < e,

i,j;n,m i,§,m,m ver | b
btain that [V,2%) > Lo,
we obtain that |V, (2) 2 ¢

Now we analyze V. 02 " on I. If there is some x1 € I such that

1,J,m,m 1,J,m,m

V) )| < e,
then for every x € I with |z — 21| > 4¢75, there is some y € I such that

1
0@ (o ) )’ Nz — x| > §€$ 4eTs = 213,

1,7,1,1mM ,],n m

7]’(Lm ‘_

Hence there exists an interval Iy C I, which contains x;, with |I;| < 46% so that if

z €I\ I, then [V2? (2 )‘>eu.

1,7,m,m

We then consider V'Y on T \ I1, which has at most two connected components,

i,J,m,m
denoted by J; and J,. If there is some xo € J; such that |V, 0(1) (z 2)‘ < e%, then for each

%,J,m,m

x € Jy with |z — za| > 265, there is some y € J; such that
yo () —

Z7J7n7m

L

V22 @)l — x| > €1 - 267 = 268,

,jnm

,jnm ‘*

Therefore, we obtain an interval Iy C J; C I\ I; with |I] < 26%, so that if x € J; \ I,
then |20 (m)‘ > €5 Doing the same for Jo, we get an interval Is C Jo C I\ I, with

,7,n,m
V0 ()| > e

Z7J7n7m

|I5| < 2612, such that if 2 € I\ (I; U Iy U I3), then
It is clear that there is at most four connected components contained in I\ (1; UloUI3),
say Ji, Jb, J§ and Jj. If there is some z € J| such that (V2. (z])] < 2¢1, then for each

1,7,m,m

x € J| with |z — z}| > 4e12 | there is some y € J1 such that

‘H
el

|V = 4ex.

N

1
,Jnm( ) — ,gnm( DI = ,Jnm( )“|l‘—l’/1|266 - 4et

Therefore, we obtain an interval If C J; C I\ (I3 U Iy U I3), which contains z}, with
IT}] < 4e2, so that if x € J! \ I, then | VEimm(@)| > 2¢1. Doing the same for Jj, J4
and Jj, we get intervals I5, I35 and I, with I; C J;, C I\ (I; Uy UI3) and |I}| < dets,
k = 2,3,4, such that if z € Ui_; (JI, \ I1.), then

()] > 2€i.

| 2,7,1,1M

Hence, (A.12) holds on I after excluding a subset with measure less than Bets since € is

sufficiently small. On the whole set X, which is a finite union of no more than cx| In €| e
many intervals such as I, we need to exclude a subset with measure less than

111
ck|lne| - € 24 - €15 < €35,

Since the subscripts satisfy that |i],|j], |n|,|m| < k|In€|, the measure of the subset of
1
parameters we exclude is less than ck?*|Ine|* - €15 < €50, [
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