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Abstract

THESIS: ANDERSON LOCALIZATION

IN DISORDERED DYNAMICAL SYSTEMS

SPECIALIZATION: Mathematics

POSTGRADUATE: Zhiyan Zhao

MENTOR: Professor Jiangong You

Abstract

In this thesis, we try to explain and investigate Anderson localization, an intriguing

physical phenomenon, from the perspective of mathematics. The disordered systems

we consider are two quasi-crystal models, i.e.,

• one-dimensional nonlinear Maryland model:

iq̇n = ε(qn+1 + qn−1) + tan π(x+ nα̃)qn + ε|qn|2qn, n ∈ Z, (0.1)

where x ∈ R/Z, and α̃ ∈ R is some fixed Diophantine vector¶

• one-dimensional nonlinear quasi-periodic Schrödinger equation:

iq̇n = ε(qn+1 + qn−1) + V (x+ nα̃)qn + |qn|2qn, n ∈ Z, (0.2)

where V is a nonconstant real-analytic function on R/Z, and α̃ is some fixed

Diophantine number.

In the first chapter, we take the ergodic Schrödinger operator as the main object

of study, to explain localization in linear disorder systems. Some concepts in the

spectral theory of operators, e.g., exponential localization, dynamical localization, will

be given in this chapter. For three significant models, i.e., linear Anderson model, linear

Maryland model and one-dimensional linear quasi-periodic Schrödinger operator, we

shall state the corresponding conclusions respectively.
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Abstract

In the second chapter, we consider the one-dimensional nonlinear Maryland mod-

el. We shall prove that, for “most” compactly-supported small-amplitude initial data

(qn(0))n∈Z, if ε is sufficiently small, then for “most” x ∈ R/Z, the solution (qn(t))n∈Z

of Equation (0.1) satisfies: for any fixed s > 0, the diffusion norm∑
n∈Z

n2s|qn(t)|2

is uniformly bounded with respect to t.

In the third chapter, we consider the one-dimensional nonlinear quasi-periodic

Schrödinger equation. For “most” compactly-supported initial data (qn(0))n∈Z, if ε is

sufficiently small, then for a.e. x ∈ R/Z, the solution (qn(t))n∈Z of Equation (0.2)

satisfies: for any fixed s > 0,

sup
t

∑
n∈Z

n2s|qn(t)|2 <∞.

Key Words: disordered medium; Anderson localization; nonliear Schrödinger equation;

perturbation; KAM
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Abstract

THÈSE: LOCALISATION D’ANDERSON

DANS LES SYSTÈMES DYNAMIQUES DÉSORDEONNÉS

DISCIPLINE: Mathématiques

PRÉSENTÉE PAR: Zhiyan ZHAO

DIRIGÉE PAR: Professeur Jiangong YOU

Résumé

Dans cette thèse, on essaye d’expliquer et d’étudier, du point de vue mathématique,

la localisation d’Anderson, qui est un phénomène physique intéressant. Les systèmes

désordonnés qu’on considère sont deux modèle de quasi-cristal, c’est-à-dire

• le modèle de Maryland non linéaire unidimensionnel:

iq̇n = ε(qn+1 + qn−1) + tan π(x+ nα̃)qn + ε|qn|2qn, n ∈ Z, (0.3)

avec x ∈ R/Z et α̃ ∈ R un nombre diophantien fixé;

• l’équation de Schrödinger quasi-périodique non linéaire unidimensionnelle:

iq̇n = ε(qn+1 + qn−1) + V (x+ nα̃)qn + |qn|2qn, n ∈ Z, (0.4)

avec V une fonction analytique réelle non constante sur R/Z et α̃ ∈ R un nombre

diophantien fixé.

Dans le premier chapitre, on prend l’opérateur de Schrödinger ergodique comme

l’objet de recherche principal, et explique la localisation dans les systèmes désordonnés

linéaires. Quelques concepts dans la théorie spectrale de l’opérateur, par exemple, lo-

calisation exponentielle, localisation dynamique, seront donnés dans ce chapitre. Pour

trois modèles importants, c’est-à-dire le modèle d’Anderson linéaire, le modèle de Mary-

land linéaire et l’opérateur de Schrödinger quasi-périodique linéaire unidimensionnel,

on va énoncer les conclusions correspondantes respectivement.

iv



Abstract

Dans le deuxième chapitre, on considère le modèle de Maryland non linéaire uni-

dimensionnel. On va prouver que pour la plupart des données initiales (qn(0))n∈Z avec

le support compact et la petite amplitude, si ε est suffisamment petit, alors pour la

plupart x ∈ R/Z, la solution (qn(t))n∈Z d’Équation (0.3) satisfait à: pour tout s > 0

fixé, la norme de diffusion ∑
n∈Z

n2s|qn(t)|2

est uniformément bornée par rapport à t.

Dans le troisième chapitre, on considère l’équation de Schrödinger quasi-périodique

non linéaire unidimensionnelle. Pout la plupart des données initiales (qn(0))n∈Z avec

le support compact, si ε est suffisamment petit, alors pour presque tout x ∈ R/Z, la

solution (qn(t))n∈Z d’Equation (0.4) satisfait à: pour tout s > 0 fixé,

sup
t

∑
n∈Z

n2s|qn(t)|2 <∞.

Mots-clés: milieu désordonné; localisation d’Anderson; équation de Schrödinger non

linéaire; perturbation; KAM
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Introduction

§0.1 Physical background

Localization of particles and waves in disordered media is one of the most intriguing

phenomena in solid-state physics. This phenomenon was first analyzed by the American

physicist P.W.Anderson[3], a Nobel prize winner in Physics. In Anderson’s model,

the disorderedness of the medium is generated by the random potential. He studied

the transport of non-interacting electrons in such crystal lattice. If the amplitude of

disorder becomes higher than a critical value, the diffusion in the lattice of an initially

localized wavepacket is suppressed. After the work of Anderson, there are still several

physicists who got the Nobel prize in Physics because of their outstanding contribution

on the research of localization. In 2012, American physicist S.Haroche and American

physicist D.Wineland have won this prize for ground-breaking experimental methods

that enable measuring and manipulation of individual quantum systems.

In recent years, some media with relatively weak disorderedness, e.g., the quasi-

crystal, have been concerned by physicists. Normally, such media can be introduced

by a quasi-periodic potential. As an important model in Bose-Einstein condensate and

optics, Maryland model[5] and Aubry-André model[4](also called Harper model) are

typical examples. Anderson localization in such linear systems, especially in the one-

dimensional case, has been thoroughly studied[42], and rigorous mathematical results

have been established[32].

As a well-known model in mathematical physics, the almost Mathieu operator

Hx,λ,α̃ acting on `2(Z) is defined by

(Hx,λ,α̃ψ)n = (ψn+1 + ψn−1) + λ cos 2π(x+ nα̃)ψn, n ∈ Z,

where n is the primary lattice site index, α̃ is some ratio between the wavenumbers

of two lattices, x ∈ R/Z is an arbitrary phase, and ψn is a complex variable whose

modulus square gives the probability of finding a particle at the lattice site n. With α̃

a fixed Diophantine number, for a.e. x and λ large enough, Hx,λ,α̃ exhibits dynamical
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localization[23, 25], i.e., for any ψ ∈ `2(Z) with compact support and arbitrary d > 0,

sup
t
r(d)(t) := sup

t

∑
n∈Z

n2d|(eiHx,λ,α̃tψ)n|2 <∞.

This means, at any moment, there is not too much energy transfer.

In particular, there exists a transparent transition between diffusion and localiza-

tion for the almost Mathieu operator. From the perspective of spectral theory, it is

shown by Jitomirskaya[32] that, for a.e. x, Hx,λ,α̃ has

1. λ > 2: only pure point spectrum with exponentially decaying eigenfunctions;

2. λ = 2: purely singular continuous spectrum;

3. λ < 2: purely absolutely continuous spectrum.

There is a perfect agreement with this conclusion in some experiments(e.g., [30]). For

α̃ =

√
5− 1

2
, with an initial δ−function wavepacket, the asymptotic spreading of the

wavepacket width r(1)(t) can be parametrized as r(1)(t) ∼ tγ, and one finds three

different regimes

1. λ > 2: localized regime, γ = 0;

2. λ = 2: sub-diffusive, γ ∼ 0.5;

3. λ < 2: ballistic regime, γ = 1.

However, the situation is much less clear in the presence of interactions(nonlinearities).

It strongly influences the possibility to observe the localization induced by disordered-

ness. One can start from the Gross-Pitaevskii(GP) equation[28, 38] in Hartree-Fock

theory, and get a generalized Aubry-André model which includes an additional nonlin-

ear term that represents the mean-field interaction. The Hamiltonian is

H =
∑
n∈Z

[
(ψn+1ψ̄n + ψ̄n+1ψn) + λ cos 2π(nα̃ + x)|ψn|2 +

1

2
β|ψn|4

]
,

and the equation of motion is generated by iψ̇n = − ∂H
∂ψ̄n

, yielding the nonlinear

Schrödinger equation

iψ̇n + (ψn+1 + ψn−1) + λ cos 2π(nα̃ + x)ψn + β|ψn|2ψn = 0, n ∈ Z, (0.5)

2



that can be considered as the GP equation on a discretized lattice. Similar versions

of a discretized GP equation have been already used to investigate the dynamics of

condensates in different situations(see, for instance, [46]).

It is shown experimentally by Larcher-Dalfovo-Modugno[35] that, if the condensate

initially occupies a single lattice site, i.e., a δ−function ψn(0) = δn,0, the dynamics of

the interacting gas is dominated by self-trapping in a wide range of parameters, even

for weak interaction. Conversely, if the diffusion starts from a Gaussian wavepacket

of width σ, ψn(0) = ce−
n2

2σ2 , then self-trapping is significantly suppressed and the

destruction of localization by interaction is more easily observable. So, in the nonlinear

systems, the different forms of the initial state influences the formation of localization,

which is totally different from the linear case.

§0.2 Related works on mathematics

In the theory of mathematical physics, localization in disordered, nonlinear dy-

namical systems was initiated by Fröhlich-Spencer-Wayne[19](Similar work was also

done by Pöschel[39] and Vittot-Bellissard[47]), who constructed infinite-dimensional,

compact invariant tori for a large class of non-coupling systems

iq̇n + Vnqn +
∑
m∈Z

εmn(qm + q̄m)2qn = 0, n ∈ Z,

via the KAM techniques, where {Vn}n∈Z are i.i.d. random variables, εmn are sufficiently

small and vanish for |m−n| large enough. Solutions which lie on such tori are localized

for all times.

Besides the conclusion, they raised the following conjecture in that paper.

Conjecture.[19] Consider the equation

iq̇n + ε(qn+1 + qn−1) + Vnqn + δ|qn|2qn = 0, n ∈ Z, (0.6)

with {Vn}n∈Z i.i.d. random variables. If ε and δ are small enough, with the equation

in a large class, then for “most” initial conditions ( “Most”, e.g., with respect to

the uniform measure on finite-dimensional unit spheres.), q(0) = (qn(0))n∈Z, of finite

3



support, the solutions q(t) = (qn(t))n∈Z of (0.6) satisfy

lim
t→∞

t−1
∑
n∈Z

n2|qn(t)|2 = 0.

Recently, there are several breakthroughs on such problem. For a large class of

equation in (0.6), Bourgain-Wang[10] constructed a quasi-periodic solution when ε, δ

are sufficiently small. The precise statement is

Theorem 0.1 [10] Consider the nonlinear random Schrödinger equation(0.6). Fix

J = {n1, · · · , nb} ∈ Z, b > 1, and let ω = (Vn1 , · · · , Vnb) ∈ RJ . When ε = δ = 0, the

equation above has solutions

u0(y, t) =
b∑

j=1

ake
−iVnj tδnj(y), y ∈ Z,

with a = (a1, · · · , ab) satisfying that
∑b

j=1 |aj| is sufficiently small.

For 0 < ε � 1, there exists Xε ⊂ RZ \ RJ of positive probability such that for

0 < δ � 1, if we fix x ∈ Xε, there exists a Cantor set Gε,δ(x, a) ∈ RJ of positive

measure and a smooth function ωε,δ(x, a) defined on Gε,δ(x, a) such that if ω ∈ Gε,δ(x, a)

then

uε,δ,x(y, t) =
∑

(n,k)∈Zd+b
û(n, k)e−i〈k, ωε,δ〉tδj(y)

is a solution to Eq. (0.6), with

û(nj,−ej) = aj, k = 1, · · · , b,∑
(n,k)6∈S

ec(|n|+|k|)|û(n, k)| <
√
ε+ δ,

|ω − ωε,δ| < c(ε+ δ),

for some c > 0, where {ej}bj=1 are the basis vectors for Zb and S = {nj, −ej}bj=1 ⊂ Z1+b.

The sets Xε and Gε,δ(x, a) satisfy

ProbXε → 1, mesRJ \ Gε,δ(x, a)→ 0, as ε+ δ → 0.

Corollary 0.1 For 0 < ε, δ � 1, there exists Xε,δ ⊂ RZd of positive probability, satis-

fying

ProbXε → 1, as ε+ δ → 0,

4



such that for initial amplitudes a sufficiently small, there are quasi-periodic solutions

to (0.6).

Remark 0.1 The conclusion above has explained the conjecture of Fröhlich-Spencer-

Wayne from another perspective. But for the conjecture “one equation has multiple

well-localized solutions”, it has not given a direct description.

§0.3 Results of this thesis

This thesis aims to analyze the nonlinear equations which have the forms similar

to (0.5), in order to investigate localization in nonlinear disordered dynamical systems.

Inspired by the experimental conclusion of [35], and the conjecture of Fröhlich-Spencer-

Wayne, we give rigorous mathematical arguments for localization in two important

nonlinear quasi-crystal models.

(1) Consider the one-dimensional nonlinear Maryland model

iq̇n = ε(qn+1 + qn−1) + tan π(x+ nα̃)qn + |qn|2qn, n ∈ Z,

where α̃ ∈ Rd is some fixed Diophantine number and x ∈ R/Z. For “most”

compactly-supported small-amplitude initial data (qn(0))n∈Z, if ε is sufficiently s-

mall, then for “most” x ∈ R/Z, the solution (qn(t))n∈Z of the equation above

satisfies: for any fixed s > 0, the diffusion norm∑
n∈Z

n2s|qn(t)|2

is uniformly bounded with respect to t. See Theorem 2.1 for the precise statement.

(2) Consider one-dimensional nonlinear quasi-periodic Schrödinger equation:

iq̇n = ε(qn+1 + qn−1) + V (x+ nα̃)qn + |qn|2qn, n ∈ Z,

where α̃ is also a fixed Diophantine number, and V is a nonconstant real-analytic

function on R/Z. For “most” compactly-supported initial data (qn(0))n∈Z, if ε is

5



sufficiently small, then for a.e. x ∈ R/Z, the solution (qn(t))n∈Z of the equation

above satisfies: for any fixed s > 0,

sup
t

∑
n∈Z

n2s|qn(t)|2 <∞.

See Theorem 3.1 for the precise statement.

In the formulations and proofs of various assertions of this thesis, we shall en-

counter absolute constants depending on the Hamiltonian, the dimension and so on.

All such constants will be denoted by c, c1, c2, · · · , and sometimes even different con-

stants will be denoted by the same symbol.

6



1�Ù Localization of linear Schrödinger operators

Consider the linear Schrödinger equation

iq̇n = ε(∆q)n + Vnqn, n ∈ Zd, (1.1)

where d ≥ 1, ∆ denotes the discrete Laplacian, i.e.,

∆ij =

{
1, |i− j|`1 = 1

0, |i− j|`1 6= 1
, 1

{Vn}n∈Zd satisfies some disordered condition and independent of time t. The property

of its solution is completely determined by the linear operator H on `2(Zd):

(Hq)n = ε(∆q)n + Vnqn, n ∈ Zd,

so localization for Eq. (1.1) can be also interpreted as localization for the operator H.

§1.1 Localization for ergodic operators

Definition 1.1 Given a probability space (Ω,F ,P). We call a family of linear opera-

tors

Hθ : `2(Zd)→ `2(Zd), θ ∈ Ω

is Zd−ergodic, if there exists a family of ergodic measure-preserving transformations

{Ti}i∈Zd on (Ω,F ,P) satisfying

(1) Any Ti−invariant subset A of Ω satisfies P(A) = 0 or 1;

(2) HTiθ = UiHθU
∗
i , where the unitary operator Ui : `2(Zd) → `2(Zd) is defined by

(Uiq)n = qn−i.

We use σ(H)(σac(H), σsc(H), σpp(H)) to denote the spectrum(absolutely contin-

uous, singular continuous spectrum, pure point spectrum) of H. In the spectral theory

of ergodic operators, we have the following elementary conclusion.

1From now on, we use | · | to denote the `1−distance on Zd.

7



Theorem 1.1 (Pastur[36]) If Hθ is a family of Zd−ergodic self-adjoint operator, then

there exists a closed set Σ ⊂ R such that, with P−probability 1,

σ(Hθ) = Σ.

Moreover, there are closed subsets Σac, Σsc, Σpp ∈ R such that, with P−probability 1,

σac(Hθ) = Σac, σsc(Hθ) = Σsc, σpp(Hθ) = Σpp.

We can study localization from the perspective of spectral theory or dynamical

systems. Due to the different perspectives, we have different ways to define it. In this

paper, we focus on the following three localizations.

Definition 1.2 For a family of Zd−ergodic operator Hθ : `2(Zd) → `2(Zd), we call

that Hθ exhibits

(1) Spectral localization(SL)

if, with P−probability 1, Hθ has only pure point spectrum, i.e., Σ = Σpp and

Σac = Σsc = ∅.

(2) Exponential localization(EL)

if Hθ exhibits spectral localization and, with P−probability 1, its eigenfunctions are

exponentially decaying.

(3) Dynamical localization(DL)

if, with P−probability 1, for any compactly-supported ψ ∈ `2(Zd),

sup
t

∑
n∈Zd
|n|2s|(e−itHθψ)n|2 <∞, ∀s > 0.

The three localizations have the following implications:

(DL)⇒ (EL)⇒ (SL).

It is worth noting that, (EL) 6⇒ (DL)(Refer to [15] for the construction of counter

examples).

There is a well-known and important sufficient condition for dynamical localization

8



Definition 1.3 If the family of Zd−ergodic operator Hθ exhibits (SL), and, with P−probability

1, for its eigenvalue µn, n ∈ Zd, the corresponding eigenvector ψn = (ψnj )j∈Zd satisfies

|ψnj | ≤ cσe
σ|xn|e−r|j−xn|, ∀σ > 0,

for some r > 0 and |xn| ∼ |n|1/d, then we call that Hθ exhibits semi-uniform localized

eigenstates(SULE). Furthermore, if

|ψnj | ≤ cσe
−r|j−xn|, ∀σ > 0,

then we call that Hθ exhibits uniform localized eigenstates(ULE).

Obviously, (ULE)⇒(SULE).

Theorem 1.2 (Rio-Jitormirskaya-Last-Simon[15]) If the family of Zd−ergodic opera-

tor Hθ exhibits semi-uniform localized eigenstates, then Hθ exhibits dynamical localiza-

tion.

Moreover, there are still some related conditions for dynamical localization, suffi-

cient or necessary. See [45] for details.

§1.2 Linear Schrödinger operators

§1.2.1 Anderson model

Consider Anderson model H : `2(Zd)→ `2(Zd)§

(Hq)n = ε(∆q)n + Vnqn, n ∈ Zd, (1.2)

where ∆ is the discrete Laplacian, and {Vn}n∈Zd is a family of independently identically

distributed random variables, with the common distribution:

g = g̃(Vn)dVn, g̃ ∈ L∞.

We also assume suppg is a bounded set. The probability space is taken to be RZd with

measure ∏
n∈Zd

g(Vn) =
∏
n∈Zd

g̃(Vn)dVn, g̃ ∈ L∞.

9



It is easy to verify that H is a Zd−ergodic self-adjoint operator, where {Vn}n∈Zd is the

random variable in the probability space. For the spectrum of H, with probability 1,

we have(by [14, 37])

σ(H) = [−2εd, 2εd] + suppg.

Anderson model has been interested by mathematicians and physicists. About

localization of Anderson model, there are plenty of well-known works[1, 2, 17, 18, 24,

26, 27, 48].

Theorem 1.3 (Germinet–De Bièvre[24]) Consider Anderson model (1.2).

• When d = 1, H has dynamical localization.

• When d > 1, if ε is sufficiently small, then H has dynamical localization.

§1.2.2 Maryland model

In this subsection, we will describe localization in the linear Maryland model in

detail, i.e., consider the linear Schödinger operator L = L(x) on `2(Zd):

(Lq)n = ε(∆q)n + tan(x+ 〈n, α̃〉)qn, n ∈ Zd,

where α̃ ∈ Rd satisfies the Diophantine condition: there exist constants τ̃ > d, γ̃ > 0

such that

|〈n, α̃〉|1 ≥
γ̃

|n|τ̃
, ∀n ∈ Zd \ {0}, (1.3)

and x comes from the full measure subset of R/Z:

X =

{
x ∈ R/Z : x+ 〈n, α̃〉 6= 1

2
, ∀n ∈ Zd

}
.

This operator can be interpreted as an infinite dimensional matrix, with the matrix

entry

Lmn =


tanπ(x+ 〈n, α̃〉), m = n

ε, |m− n| = 1

0, otherwise

.

According to the property of tangent function and Diophantine vector, we know

| tanπ(x+ 〈m, α̃〉)− tanπ(x+ 〈n, α̃〉)| ≥ γ̃

|m− n|τ̃
, m− n ∈ Zd \ {0}.

Hence, the operator L simulates the medium without resonance. This is widely and

deeply applied in the KAM iteration.
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Theorem 1.4 Consider the linear Schrödinger operators on `2(Zd):

(Lq)n = ε(∆q)n + tan π(x+ 〈n, α̃〉)qn, n ∈ Zd, x ∈ X , (1.4)

where α̃ ∈ Rd satisfies Diophantine condition(1.3). There exists a positive constant

ε0 = ε0(α̃), such that if 0 < ε < ε0, then the following holds.

For some R > 0, there is a periodic-one meromophic function V̂ on {z ∈ C :

|Imz| < R}, satisfying

• The poles of V̂ are x = k +
1

2
, k ∈ Z,

• V̂ (x)− tanπx is real-analytic on R/Z, with sup
x∈R/Z

|V̂ (x)− tanπx| ≤ ε,

and for every x ∈ X , there is an orthogonal transform U : `2(Z)→ `2(Z) with

|(U − IZd)mn| ≤ cLεe
−2|m−n|, (1.5)

such that U∗LU = diag{V̂ (x+ 〈n, α̃〉)}n∈Zd.

This theorem (in its original form) is due to Bellissard-Lima-Scoppola[5]. The

proof will be given in N¹n.

Corollary 1.1 [5] Let 0 < ε < ε0 as in Theorem 1.4. For every x ∈ X , the operator

L = L(x) has a complete family of exponentially decaying eigenvectors, and the set of

eigenvalues is {V̂ (x+ 〈n, α̃〉)}n∈Zd.

The operator L has some other important property, we can find the statements

ans proofs in references[5, 12, 15, 43].

According to the decay property of eigenvectors of L given as in (1.5), we can see

that L exhibits uniformly localized eigenstates. Combining with Theorem 1.2, we get

Corollary 1.2 Let 0 < ε < ε0 as in Theorem 1.4. Then the linear Schrödinger operator

L exhibits dynamical localization.
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§1.2.3 Quasi-periodic Schrödinger operator

We consider the one-dimensional quasi-periodic Schrödinger operator T = T (x) :

`2(Z)→ `2(Z)§

(Tq)n = ε(qn+1 + qn−1) + V (x+ nα̃)qn, n ∈ Z, (1.6)

where α̃ ∈ R1 satisfies the Diophantine condition(1.3), and V is a nonconstant real-

analytic function on R/Z. As in [16], the potential function V is a Gevrey function,

i.e., there are C, L > 0 such that

sup
x∈R/Z

|∂mV (x)| ≤ CLmm!, m ≥ 0, (1.7)

and there are also ξ̃, s̃ > 0 satisfying the transversality condition

max
0≤m≤s̃

|∂mϕ (V (x+ ϕ)− V (x))| ≥ ξ̃ > 0, ∀x,∀ϕ, (1.8)

max
0≤m≤s̃

|∂mx (V (x+ ϕ)− V (x))| ≥ ξ̃|ϕ|1, ∀x,∀ϕ, (1.9)

Clearly, the case V (x) = cos 2πx is included.

By [16] we know that if ε is sufficiently small, T has only pure point spectrum.

Theorem 1.5 (Eliasson[16]) There exists ε0 = ε0(V, α̃) such that if 0 < ε < ε0, then

for a.e. x ∈ R/Z, the spectrum of T is purely pure point, with a complete set of

eigenvectors in `2(Z). Moreover, the measure of the set [inf V, supV ] \ σ(Tx) goes to 0

as ε→ 0.

About pure point spectrum and localization of quasi-periodic Schrödinger oper-

ators, there are still a lot of other works, e.g., [8, 11, 20, 31, 33, 44]. Since the idea

of proof of [16] plays an important role in considering the nonlinear problem, we will

describe it in detail.

Let us start with some notations for infinite-dimensional matrices. Given an

infinite-dimensional matrix D, with Dmn ∈ R the (m,n)th entry, for a subset Λ ⊂ Z,

we define Λ⊥ := Z \ Λ,

RΛ := {n ∈ RZ : ni = 0 if i 6∈ Λ}, DΛ :=

{
Dmn, m, n ∈ Λ

δmn, otherwise
.

12



Then DΛ : RΛ + RΛ⊥ → RΛ + RΛ⊥ , acts as RΛ ↪→ RZ D−→ RZ ⊥proj−→ RΛ on the first

component and as the identity on the second component. (When there is no risk for

confusion, we will use DΛ also to denote its first component.)

Let D0 = diag{V (x+ nα̃)}n∈Z and Z0 = ε∆ with ∆ the discrete Laplacian. With

ε0 = ε
1
4 , σ0 = 1 and any

M0 ≥ max

{
2s̃+4C

Ls̃+1((s̃+ 1)!)2

ξ̃
, 2τ̃ , 8

}
, N0 ≥ 1, ρ0 = N−1

0 ,

one can define the following sequences as in [16],

Mν+1 = M s̃M3
ν

ν , aν =
1

τ̃
M−3s̃M3

ν
ν , εν+1 = ε

1
2
ε
−aν/2
ν

ν ,

Nν+1 = ε−aνν , ρν+1 = εaνν , σν+1 =
1

3
ρν .

(1.10)

Afterwards, when we consider the nonlinear model, these sequences of parameters will

appear in the KAM iteration in 1nÙ.

Theorem 1.6 Let 0 < ε < ε0 as in Theorem 1.4. The following holds for one-

dimensional quasi-periodic Schrödinger operator T .

Fix any x ∈ R/Z. There exists a sequence of orthogonal matrices Uν, ν = 1, 2, · · · ,
with

|(Uν − IZ)mn| ≤ ε
1
2
0 e
− 3

2
σν |m−n|,

such that U∗ν (D0 + Z0)Uν = Dν + Zν , where Zν is a symmetric matrix satisfying

|(Zν)mn| ≤ ενe
−ρν |m−n|,

and Dν is a symmetric matrix which can be block-diagonalized via an orthogonal matrix

Qν with

(Qν)mn = 0 if |m− n| > Nν .

More precisely, there is a disjoint decomposition
⋃
j Λν

j = Z such that

D̃ν = Q∗νDνQν =
∏
j

D̃ν
Λνj

with ]Λν
j ≤Mν , diamΛν

j ≤MνNν , ∀j.2

2The disjoint decomposition defines an equivalence relation m ∼ n on the integers and, for each

n ∈ Z, we denote its equivalence class by Λν(n).
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Moreover, there exists a full-measure subset X̃ ⊂ R/Z such that if we fix x ∈ X̃ ,

then for each k ∈ Z, there is a ν0(k) such that

Λν+1(k) = Λν(k), ∀ν ≥ ν0(k).

In N¹o, we shall give an outline of the proof.

We can also consider higher-dimensional quasi-periodic Schrödinger operator H :

`2(Zd)→ `2(Zd), d > 1,

H = ε(∆q)n + V (x1 + n1α1, · · · , xd + ndαd)qn, x = (x1, · · · , xd) ∈ Rd/Zd,

where V is nonconstant real-analytic on Rd/Zd. Bourgain-Goldstein-Schlag[9] has

proven localization for the case d = 2, and Bourgain[7] generalized the conclusion

into the case of arbitrary dimension.

Theorem 1.7 [7] Fix any x ∈ Rd/Zd. For any δ > 0, there exists ε0 = ε0(V, δ) such

that if 0 < ε < ε0, then there is a subset Ω = Ω(ε, V ) ⊂ Rd/Zd satisfying

mes(Rd/Zd \ Ω) < δ,

such that for α = (α1, · · · , αd) ∈ Ω, H exhibits exponential localization and dynamical

localization. 3

3The definitions here of exponential localization and dynamical localization have been modified

into for one operator but not for an ergodic family.
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1�Ù Localization in one-dimensional nonlinear

Maryland model

Based on the conclusion of Bellissard-Lima-Scoppola[5], we consider the one-

dimensional nonlinear Maryland model

iq̇n = ε(qn+1 + qn−1) + tan(x+ nα̃)qn + ε|qn|2qn, n ∈ Z, (2.1)

in this chapter, where α̃ ∈ R satisfies Diophantine condition(1.3), and x belongs to the

full-measure subset of R/Z

X := {x ∈ R/Z : x+ nα̃ 6= 1

2
, ∀n ∈ Z}.

§2.1 Statement of the result

First of all, we make a suitable coordinate transformation for Eq. (2.1), and then

establish an abstract KAM theorem, which can be applied to the transformed system

to study its localization. Localization for (2.1) can be derived by property of conjugate.

It is worth mentioning that, after the transformation, the parameter for establishing

the KAM theorem only comes from the nonlinearity. Indeed, the feasibility of the

initial coordinate transformation is guaranteed by the special property of the tangent

function and Diophantine number.

Theorem 2.1 For J = {n1, · · · , nb} ⊂ Z, b > 1, and κ > 0, given an initial datum

qZ(0) = (qn(0))n∈Z supported in J with qZ(0) ∈ εκ2 · [0, 1]b. There is a sufficiently small

positive number ε∗ = ε∗(α̃, κ, J ), such that if 0 < ε < ε∗, one can find a subset Xε of

X with

mes(X \ Xε) < εϑ for some 0 < ϑ < 1

such that the following holds for fixed x ∈ Xε.
There exists a Cantor set Oε = Oε(x) ⊂ [0, 1]b with

|[0, 1]b \ Oε| → 0 as ε→ 0, 1

1Hereafter, we use the symbol |O| to denote the Lebesgue measure of O ⊂ Rb.
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such that if qZ(0) ∈ εκ2 · Oε, the solution qZ(t) = (qn(t))n∈Z of Eq. (2.1) satisfies

sup
t

∑
n∈Z

n2d|qn(t)|2 <∞, ∀d > 0.

Moreover, for every n ∈ Z, qn(t) is quasi-periodic with respect to t.

Remark 2.1 As stated in §0.1, the nonlinear term ε|qn|2qn in Eq. (2.1) has its physical

meaning, but its special form in the Hamiltonian, i.e., ε|qn|4, is not essential, as long as

it is finite-range or sufficiently short-range and of bounded degree, for example, ε|qn|4

can be replaced by

ε|qn|4 + ε|qn|2q̄nqn+1 + ε|qn|2qnq̄n+1

in the finite-range case and

ε|qn|2
∑
k

e−%|n−k||qk|4

in the short-range case.

§2.2 An abstract infinite-dimensional KAM theorem

§2.2.1 Function spaces and norms

Given Z1 ⊂ Z, and d, ρ > 0, let `1
d,ρ(Z1) be the space of summable complex-valued

sequences q = (qn)n∈Z1 , with the norm

‖q‖d,ρ :=
∑
n∈Z1

|qn|〈n〉deρ|n| <∞,

where 〈n〉 :=
√

1 + n2. For r, s > 0, let Dd,ρ(r, s) be the complex b-dimensional neigh-

borhood of Tb × {I = 0} × {q = 0} × {q̄ = 0} in Tb × Rb × `1
d,ρ(Z1)× `1

d,ρ(Z1), i.e.,

Dd,ρ(r, s) := {(θ, I, q, q̄) : |Imθ| = |Im(θ1, · · · , θb)| < r, |I| < s2, ‖q‖d,ρ = ‖q̄‖d,ρ < s},

where | · | denotes the `1-norm of complex vectors.

Given a real-analytic function F (θ, I, q, q̄; ξ) on D = Dd,ρ(r, s), C1
W (i.e., C1 in the

sense of Whitney) dependent on a parameter ξ ∈ O,2 a closed region in Rb. We expand

2In the rest of the paper, all dependencies on ξ are assumed of class C1
W , thus all derivatives with

respective to the parameter ξ ∈ O will be interpreted in this sense.
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F into the Taylor-Fourier series with respect to θ, I, q, q̄:

F (θ, I, q, q̄; ξ) =
∑
α,β

Fαβ(θ, I; ξ)qαq̄β,

where, for multi-indices α :=
∑

n∈Z1
αnen, β :=

∑
n∈Z1

βnen, αn, βn ∈ N, with finitely

many non-vanishing components,

Fαβ(θ, I; ξ) =
∑

k∈Zb, l∈Nb
Fklαβ(ξ)I lei〈k,θ〉, qαq̄β =

∏
(αn,βn)6=(0,0)

qαnn q̄βnn .

(Here en denotes the vector with the nth component being 1 and the other components

being zero.)

Definition 2.1 For each non-zero multi–index (α, β) = (αn, βn)n∈Z1, αn, βn ∈ N, with

finitely many non-vanishing components, we define

supp(α, β) := {n ∈ Z1 : (αn, βn) 6= (0, 0)},

n+
αβ := max{n ∈ supp(α, β)},

n−αβ := min{n ∈ supp(α, β)},

n∗αβ := max{|n+
αβ|, |n

−
αβ|},

and |α| :=
∑

n∈Z1
αn, |β| :=

∑
n∈Z1

βn.

In particular, for |α| = |β| = 0, define n+
αβ = n−αβ = n∗αβ = 0.

With |∂ξFklαβ| :=
∑b

i=1 |∂ξiFklαβ| and |Fklαβ|O := supξ∈O (|Fklαβ|+ |∂ξFklαβ|), let

‖Fαβ‖O :=
∑
k,l

|Fklαβ|O |I l|e|k||Imθ|, ‖F‖O :=
∑
k,l,α,β

|Fklαβ|O |I l|e|k||Imθ| |qα||q̄β|.

Define the weighted norm of F as

‖F‖D,O := sup
D
‖F‖O.3 (2.2)

For the Hamiltonian vector field XF = (∂IF,−∂θF, (−i∂qnF )n∈Z1 , (i∂q̄nF )n∈Z1) associ-

ated with F on D ×O, define its norm by

‖XF‖D,O := ‖∂IF‖D,O +
1

s2
‖∂θF‖D,O + sup

D

1

s

∑
n∈Z1

(‖∂qnF‖O + ‖∂q̄nF‖O) 〈n〉de|n|ρ.

3In the case of a vector-valued function F : D × O → Cb(b < +∞), the norm can be defined as

‖F‖D,O :=
∑b
i=1 ‖Fi‖D,O.
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Sometimes, for the sake of notational simplification, we shall not write the subscript

O in the norms defined above if it is obvious enough.

§2.2.2 Statement of the KAM Theorem

First, for the integrable Hamiltonian, C1
W parametrized by ξ ∈ O, with the fol-

lowing form

N = e(ξ) + 〈ω(ξ), I〉+
∑
n∈Z1

Ωn(ξ)qnq̄n, Z1 ⊂ Z,

the phase space is equipped with the symplectic structure dI ∧ dθ+ i
∑

n∈Z1
dqn ∧ dq̄n.

For every ξ ∈ O, the corresponding Hamilton equation of motion to N is

dθ

dt
= ω,

dI

dt
= 0,

dqn
dt

= −iΩnqn,
dq̄n
dt

= iΩnq̄n, n ∈ Z1.

It admits a family of special quasi-periodic solutions

(θ, 0, 0, 0)→ (θ + ωt, 0, 0, 0),

corresponding to invariant b−tori in the phase space.

Now we consider the following family of perturbed Hamiltonians

H = N + P = e(ξ) + 〈ω(ξ), I〉+
∑
n∈Z1

Ωn(ξ)qnq̄n + P (θ, I, q, q̄; ξ). (2.3)

on some D = Dd,ρ(r, s). We try to show the persistence of “most” of these b−tori

for H = N + P , provided that ‖XP‖D,O is sufficiently small, and the solutions of the

equation of motion on these tori are always well-localized.

Before stating the KAM theorem, we need to impose the following conditions on

the frequencies ω, Ωn and the perturbation P .

(A1) Nondegeneracy of tangential frequencies: The map ξ → ω(ξ) is a C1
W diffeomor-

phism between O and its image.

(A2) Regularity of normal frequencies: For each n ∈ Z1, Ωn is a C1
W function of ξ with

supξ∈O |∂ξΩn| � 1.

(A3) Regularity of the perturbation: The perturbation P is real-analytic in θ, I, q, q̄ and

C1
W smoothly parametrized by ξ ∈ O.
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(A4) Decay property of the perturbation: P can be decomposed as P̆ + Ṕ , where

P̆ = P̆ (θ, I, q, q̄; ξ) =
∑
α,β

P̆αβq
αq̄β =

∑
(k,l)6=0
α,β

PklαβI
lei〈k,θ〉qαq̄β,

Ṕ = Ṕ (q, q̄; ξ) =
∑
α,β

Ṕαβq
αq̄β =

∑
α,β

P00αβq
αq̄β,

with

‖P̆αβ‖D,O ≤

{
εe−ρn

∗
αβ , |α|+ |β| ≤ 2

e−ρn
∗
αβ , |α|+ |β| ≥ 3

, (2.4)

‖Ṕαβ‖D,O ≤

{
εe−ρn

∗
αβ , |α|+ |β| ≤ 2

e−ρ(n+
αβ−n

−
αβ), |α|+ |β| ≥ 3

. (2.5)

(A5) Gauge invariance of the perturbation: For P =
∑

k∈Zb, l∈Nb
α,β

PklαβI
lei〈k,θ〉qαq̄β, we have

Pklαβ ≡ 0 if
b∑

j=1

kj + |α| − |β| 6= 0.

Theorem 2.2 Assume that the Hamiltonian H in (2.3) satisfies (A1)− (A5). There

is a positive constant ε∗ = ε∗(ω,Ωn, ε, r, s, d, ρ) such that if ‖XP‖D,O < ε ≤ ε∗, then

there exists a Cantor set Oε ⊂ O with |O \ Oε| → 0 as ε→ 0 such that

(a) there exists a C1
W map ω̃ : Oε → Rb, such that |ω̃ − ω|Oε → 0 as ε→ 0;

(b) there exists a map Ψ : Tb × Oε → Dd,0(r/2, 0), real-analytic in θ ∈ Tb and C1
W

parametrized by ξ ∈ O, such that ‖Ψ−Ψ0‖Dd,0(r/4,0),Oε → 0 as ε→ 0, where Ψ0 is

the trivial embedding: Tb ×O → Tb × {0} × {0} × {0};

(c) for any θ ∈ Tb and ξ ∈ Oε, Ψ(θ + ω̃(ξ)t, ξ) = (θ + ω̃(ξ)t, I(t), q(t), q̄(t)) is a b-

frequency quasi-periodic solution of equations of motion associated with the Hamil-

tonian H;

(d) for each t, q(t) = (qn(t))n∈Z1 ∈ `1
d,0(Z1).

Remark 2.2 The statement (d) of the theorem above implies that

sup
t

∑
n∈Z

n2d|qn(t)|2 < c

(
sup
t

∑
n∈Z

〈n〉d|qn(t)|

)2

<∞,

which shows the conclusion of Theorem 2.1.
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§2.3 Hamiltonian and normal form

Back to Eq. (2.1), we fix x ∈ X . After the coordinate transformation qZ = Uq̃Z,

with U given in Theorem 1.4, there is no difference in the linear part, and the new

equation transformed from the nonlinear equation (2.1) corresponds to the following

Hamiltonian

H(q̃Z, ¯̃qZ) = Λ +G :=
∑
n∈Z

V̂n|q̃n|2 +
1

2
ε
∑

i,j,m,n∈Z

uijnmq̃i ¯̃qj q̃m ¯̃qn, (2.6)

where V̂n = V̂n(x) := V̂ (x + nα̃). The off-diagonal decay of U in (1.5) implies the

short-range estimates of coefficients uijnm, i.e.,

|uijmn| < ce−2(max{i,j,m,n}−min{i,j,m,n}). (2.7)

Indeed, we can calculate that

uijmn =
∑
l∈Z

UliŪljUlmŪln. (2.8)

Without loss of generality, assume that i ≤ j ≤ m ≤ n, then

|uijmn| ≤ c
∑
l∈Z

e−2(|i−l|+|j−l|+|m−l|+|n−l|)

≤ ce−2(n−i)
∑
l∈Z

e−2(|j−l|+|m−l|)

≤ ce−2(n−i).

We fix the tangential directions J = {n1, · · · , nb} ⊂ Z, and Z1 = Z \ J . When ε

is sufficiently small, we have |ni| ≤ κ
6
| ln ε| for i = 1, · · · , b.

Fix r, d > 0 and ρ = 1
4
, s ≤ ε

2
3
κ. Define D = Dd,ρ(r, s) as in Subsection §2.2.1.

Before introducing action-angle variables and parameters, we need to transform H into

a Hamiltonian with a nice normal form. Hereafter, we will write the variable qZ instead

of q̃Z in the Hamiltonian for convenience.

Proposition 2.1 For ε sufficiently small, there exists a subset Xε of X with

mes(X \ Xε) < εϑ for some 0 < ϑ < 1,
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such that for every x ∈ Xε, there is a symplectic transformation Ψ = Ψ(x), which

transforms H in (2.6) into

H ◦Ψ = N + P

:= e(ξ) + 〈ω(ξ), I〉+
∑
n∈Z1

Ωn(ξ)qnq̄n + P (θ, I, q, q̄; ξ), (2.9)

a real-analytic Hamiltonian on D, C1
W parametrized by ξ ∈ O := [ε

κ
12 , 1]b. Here,

• ω is a C1
W diffeomorphism between O and its image,

• for each n ∈ Z1, Ωn is a C1
W function of ξ with sup

ξ∈O
|∂ξΩn| ≤ ε.

Moreover, P has gauge invariance, and can be decomposed as P̆ + Ṕ with

P̆ = P̆ (θ, I, q, q̄; ξ) =
∑
α,β

P̆αβq
αq̄β =

∑
(k,l)6=0
α,β

PklαβI
lei〈k,θ〉qαq̄β,

Ṕ = Ṕ (q, q̄; ξ) =
∑
α,β

Ṕαβq
αq̄β =

∑
α,β

P00αβq
αq̄β,

satisfying

‖P̆αβ‖D,O ≤

{
ε
κ
4 e−

1
2
n∗αβ , |α|+ |β| ≤ 2

e−
1
2
n∗αβ , |α|+ |β| ≥ 3

, (2.10)

‖Ṕαβ‖D,O ≤

{
ε
κ
4 e−

1
2
n∗αβ , |α|+ |β| ≤ 2

e−
1
2

(n+
αβ−n

−
αβ), |α|+ |β| ≥ 3

. (2.11)

Proof. We decompose the proof into the following parts.

• Construction of symplectic changes of variables

According to the form of H = Λ +G, let

T (qZ, q̄Z) =
1

2
ε

∑
|i|,|j|,|m|,|n|≤κ| ln ε|

uijmnqiq̄jqmq̄n,

F (qZ, q̄Z) =
i

2
ε

∑
V̂i−V̂j+V̂m−V̂n 6=0

|i|,|j|,|m|,|n|≤κ| ln ε|

uijmn

V̂i − V̂j + V̂m − V̂n
qiq̄jqmq̄n,
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and Ψ1
F be the time-one map of the flow of associated Hamiltonian systems. For fixed

i, j,m, n ∈ Z with |i|, |j|, |m|, |n| ≤ κ| ln ε|, consider the function

Vi,j,m,n(x) := V̂i(x)− V̂j(x) + V̂m(x)− V̂n(x).

Since ε is small enough, by Lemma 2.1 below, there exists a subset Xε of X with

mes(X \ Xε) ≤ εϑ for some 0 < ϑ < 1,

such that if x ∈ Xε and {i,m} 6= {j, n}, then |Vi,j,m,n(x)| ≥ ε
1
4 . This guarantees that

there is a uniform lower bound for the denominators in coefficients of F .

In view of the homological equation

{Λ, F}+ T =
1

2
ε

∑
|i|,|j|≤κ| ln ε|

uiijj|qi|2|qj|2,

we know that the change of variables Ψ1
F sends H to

H ◦Ψ1
F =

∑
i∈Z

V̂i|qi|2 +
1

2
ε

∑
|i|,|j|≤κ| ln ε|

uiijj|qi|2|qj|2 + R̃, (2.12)

where

R̃ = G− T + {G,F}+
1

2!
{{Λ, F}, F}+

1

2!
{{G,F}, F}+ · · ·

+
1

n!
{· · · {Λ, F} · · · , F︸ ︷︷ ︸

n

}+
1

n!
{· · · {G,F} · · · , F︸ ︷︷ ︸

n

}+ · · · .

Expand R̃ as R̃ =
∑

α′,β′ R̃α′β′q
α′

Z q̄
β′

Z . Here (α′, β′) = (αn, βn)n∈Z, with finitely many

non-vanishing components, for which notations supp(α′, β′), n+
α′β′ , n

−
α′β′ , n

∗
α′β′ and |α′|,

|β′| can be defined as in Definition 2.1. By the construction of R̃, we have

R̃α′β′ = 0, |α′| 6= |β′|, (2.13)

R̃α′β′ = 0, |α′|+ |β′| < 4, (2.14)

R̃α′β′ = 0, |α′|+ |β′| = 4, n∗α′β′ ≤ κ| ln ε|. (2.15)

Moreover, by applying Lemma 2.2 below iteratively, 4

|R̃α′β′| ≤ εe
−2(n+

α′β′−n
−
α′β′ ).

4For convenience of expression, we assume that the constant in Theorem 1.4 cL = 1.
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• Introduction of action-angle variables

Introducing the action-angle variables and the amplitude parameters to the Hamil-

tonian (2.12),

qn =
√
In + ξne

iθn , q̄n =
√
In + ξne

−iθn , n ∈ J ,

where (I, θ) = (In1 , · · · , Inb , θn1 , · · · , θnb) are the standard action-angle variables in

the (qn, q̄n)n∈J -space around ξ, with ξ = (ξn1 , · · · , ξnb) ∈ εκ[ε
κ
12 , 1]b the amplitude

parameter, and (q, q̄) = (qn, q̄n)n∈Z1 . Then the Hamiltonian in (2.12) becomes

H ◦Ψ1
F =

∑
i∈J

V̂i(Ii + ξi) +
∑
i∈Z1

V̂i|qi|2 +
1

2
ε
∑
i∈J

uiiii(Ii + ξi)
2

+
1

2
ε
∑

i∈J ,j∈Z1
|j|≤κ| ln ε|

uiijj(Ii + ξi)|qj|2 +
1

2
ε
∑
i,j∈J
i 6=j

uiijj(Ii + ξi)(Ij + ξj)

+
1

2
ε

∑
i,j∈Z1

|i|,|j|≤κ| ln ε|

uiijj|qi|2|qj|2 + R̃

=
∑
i∈J

V̂iIi +
∑
i∈Z1

V̂i|qi|2 + ε
∑
i∈J

uiiiiξiIi +
1

2
ε
∑
i,j∈J
i 6=j

uiijj(ξiIj + ξjIi)

+
1

2
ε
∑

i∈J ,j∈Z1
|j|≤κ| ln ε|

uiijjξi|qj|2 +

∑
i∈J

V̂iξi +
1

2
ε
∑
i∈J

uiiiiξ
2
i +

1

2
ε
∑
i,j∈J
j 6=i

uiijjξiξj


+R,

where

R = R̃ +
1

2
ε
∑
i∈J

uiiiiI
2
i +

1

2
ε
∑
i,j∈J
i6=j

uiijjIiIj +
1

2
ε
∑

i∈J ,j∈Z1
|j|≤κ| ln ε|

uiijjIi|qj|2.

By the scaling in time

θ → θ, I → ε
4
3
κI, q → ε

2
3
κq, q̄ → ε

2
3
κq̄, ξ → εκξ, (2.16)

we finally arrive at the rescaled Hamiltonian

H ◦Ψ1
F = ε−(1+ 7

3
κ)(H ◦Ψ1

F )(θ, ε
4
3
κI, ε

2
3
κq, ε

2
3
κq̄; εκξ) = N + P,
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where N = e+ 〈ω, I〉+
∑

n∈Z1
Ωn|qn|2, with

e = ε−(1+ 4
3
κ)
∑
i∈J

V̂iξi +
1

2
ε−

κ
3

∑
i∈J

uiiiiξ
2
i +

1

2
ε−

κ
3

∑
i,j∈J
i 6=j

uiijjξiξj, (2.17)

ωi(ξ) = ε−(1+κ)V̂i + uiiiiξi +
1

2

∑
j∈J
j 6=i

uiijjξj, i ∈ J , (2.18)

Ωn(ξ) =

{
ε−(1+κ)V̂n + 1

2

∑
i∈J uiinnξi, |n| ≤ κ| ln ε|

ε−(1+κ)V̂n, |n| > κ| ln ε|
, n ∈ Z1 (2.19)

and P = ε−(1+ 7
3
κ)R(θ, ε

4
3
κI, ε

2
3
κq, ε

2
3
κq̄; εκξ).

• Properties of the new Hamiltonian N + P

As shown in (2.8), uiijj =
∑

l∈Z |Uil|2|Ujl|2, so, in view of (2.18), the b× b matrix
∂ω
∂ξ

satisfies that(
∂ω

∂ξ

)
ij

=

{ ∑
l∈Z |Uil|4, j = i

1
2

∑
l∈Z |Uil|2|Ujl|2, j 6= i

, i, j ∈ J .

By (1.5), we have

|Uii − 1| < ε, |Uil| ≤ εe−2|i−l|, l 6= i.

Hence,
∑

l∈Z |Uil|4 > c(1 − ε)4, while supi 6=j
∑

l∈Z |Uil|2|Ujl|2 ≤ cε2. The diagonal

dominance of ∂ω
∂ξ

, which is deduced from the smallness of ε, implies that ω is a C1
W

diffeomorphism between O and its image.

The formulation of Ωn given in (2.19) implies that ∂ξΩn = 0 for |n| > κ| ln ε|. As

for the case |n| ≤ κ| ln ε|, we have

|∂ξiΩn| =
1

2

∑
l∈Z

|(Ux)il|2|(Ux)nl|2 ≤ cε2, i ∈ J .

For n ∈ Z1, the formulation of Ωn given in (2.19) implies that ∂ξΩn = 0 for

|n| > κ| ln ε|. As for the case |n| ≤ κ| ln ε|, we have

|∂ξiΩn| =
1

2

∑
l∈Z

|Uil|2|Unl|2 ≤ cε2, i ∈ J .

By (2.13) and (2.14), each non-zero term of R̃ can be rewritten as

R̃α′β′q
α′

Z q̄
β′

Z = R̃α′β′q
αJ
J q̄

βJ
J qαq̄β, |α′|+ |β′| ≥ 4, |α′| = |β′|,
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where αJ = (αn)n∈J , βJ = (βn)n∈J , and qJ = (qn)n∈J , q̄J = (q̄n)n∈J , then the

introduction of action-angle variables brings us terms like

R̃α′β′

(∏
n∈J

(√
In + ξn

)αn+βn
ei(αn−βn)θn

)
qαq̄β,

which, after the scaling (2.16), becomes

ER̃α′β′

(∏
n∈J

(√
ε
κ
3 In + ξn

)αn+βn

ei(αn−βn)θn

)
qαq̄β, (2.20)

where E = ε−(1+ 7
3
κ)ε

κ
2

(|αJ |+|βJ |)+ 2
3
κ(|α|+|β|). As a term of P =

∑
k,α,β Pkαβ(I)ei〈k,θ〉qαq̄β,

this means,
b∑

j=1

kj =
∑
n∈J

(αn − βn).

Then
∑b

j=1 kj + |α| − |β| equals to its initial value
∑

n∈Z αn −
∑

n∈Z βn = |α′| − |β′|.
Thus, by (2.13),

Pkαβ ≡ 0 if
b∑

j=1

kj + |α| − |β| = |α′| − |β′| 6= 0.

The gauge invariance of P is deduced by expanding Pkαβ with respect to I.

We need to verify the decay property of P . Decompose P as P = P̆ + Ṕ , which

has been given in the proposition.

1) |αJ |+ |βJ | = 0

In this case, |α′| + |β′| = |α| + |β| ≥ 4 in view of (2.14), and the term in (2.20) is

ε−(1+ 7
3
κ)ε

2
3
κ(|α|+|β|)R̃α′β′q

αq̄β. This is a higher-order term of Ṕ , with its coefficient

smaller than

ε
κ
3
−1|R̃α′β′| ≤ ε

κ
3
−1 · εe−2(n+

α′β′−n
−
α′β′ ) ≤ ε

κ
3 e
−2(n+

α′β′−n
−
α′β′ ). (2.21)

2) |αJ |+ |βJ | ≥ 1

This means supp(α′, β′)∩ [−κ
6
| ln ε|, κ

6
| ln ε|] 6= ∅, i.e., there exists |n| ≤ κ

6
| ln ε| such

that (α′n, β
′
n) 6= (0, 0), then we have that

n∗α′β′ −
κ

6
| ln ε| ≤ n∗α′β′ − |n| ≤ n+

α′β′ − n
−
α′β′ .
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Hence,

|R̃α′β′ | ≤ εe
−2(n+

α′β′−n
−
α′β′ ) ≤ εe

κ
3
| ln ε|e

−2n∗
α′β′ = ε1−

κ
3 e
−2n∗

α′β′ .

By (2.14), we can consider Case 2) in the following two situations.

– If |α′|+ |β′| ≥ 6, then κ
2
(|αJ |+ |βJ |) + 2

3
κ(|α|+ |β|) ≥ 3κ and E ≤ ε

2
3
κ−1. This

means the coefficient is not more than

E|R̃α′β′ | ≤ ε
2
3
κ−1 · ε1−

κ
3 e
−2n∗

α′β′ ≤ ε
κ
3 e
−2n∗

α′β′ . (2.22)

– If |α′|+ |β′| = 4, then by (2.15), n∗α′β′ > κ| ln ε|, and hence

|R̃α′β′ | ≤ ε1−
κ
3 e−κ| ln ε|e

−n∗
α′β′ = ε1+ 2

3
κe
−n∗

α′β′ .

This means the coefficient in (2.20) is not more than

E|R̃α′β′ | ≤ ε−(1+ 7
3
κ)ε2κε1+ 2

3
κe
−n∗

α′β′ ≤ ε
κ
3 e
−n∗

α′β′ . (2.23)

Thus, Case 2), the coefficient of qαq̄β in (2.20) can be controlled as∥∥∥∥∥ER̃α′β′

(∏
n∈J

(√
ε
κ
3 In + ξn

)αn+βn

ei(αn−βn)θn

)∥∥∥∥∥
D,O

≤ ε
κ
4 e
−n∗

α′β′ .

In expanding
√
In + ξn around ξn, we need to keep ξn apart from 0 to avoid singu-

larity. This is why we choose ξ ∈ [ε
κ
12 , 1]b(after scaling).

There is no doubt that terms of P̆ are all generated in Case 2), so, applying the

basic fact supp(α, β) ⊂ supp(α′, β′),

‖P̆αβ‖D,O ≤ ε
κ
4 e
−n∗

α′β′ ≤ ε
κ
4 e−n

∗
αβ ,

which implies (2.10).

Terms of Ṕ come from both cases. When the term in (2.20) satisfies that αJ = βJ ,

by expanding
√
In + ξn around ξn we can obtain

ER̃α′β′

(∏
n∈J

(√
ξn

)αn+βn

)
qαq̄β,

which contributes one term to Ṕ due to cancelation of angle variables. As in Case

2), the corresponding coefficient is not more than ε
κ
4 e−n

∗
αβ , which can be replaced by

ε
κ
4 e−

1
2

(n+
αβ−n

−
αβ) as we need, since 1

2
(n+

αβ − n
−
αβ) ≤ n∗αβ. Together with (2.21), (2.11) is

proved. �
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Combing (2.21)− (2.23) together, we have

‖XP‖Dd,ρ(r,s),O ≤ ε := ε
κ
8 .

To this stage, we have that all the assumptions of Theorem 2.2 hold for (2.9), which

conjugates with (2.1). Thus, Theorem 2.1 follows from Theorem 2.2.

We have applied several conclusions directly in proving Proposition 2.1. Now we

give their precise statements. The first lemma shows that the function

Vi,j,m,n(x) = V̂ (x+ iα̃)− V̂ (x+ jα̃) + V̂ (x+mα̃)− V̂ (x+ nα̃)

on X is not identically zero, if |i|, |j|, |m|, |n| ≤ κ| ln ε| and {i,m} 6= {j, n}.

Lemma 2.1 For ε sufficiently small, there exists a subset Xε of X with

mes(X \ Xε) < εϑ for some 0 < ϑ < 1,

such that for any |i|, |j|, |m|, |n| ≤ κ| ln ε| and {i,m} 6= {j, n}, we have

|Vi,j,m,n(x)| ≥ ε
1
4 , ∀x ∈ Xε. (2.24)

The proof of Lemma 2.1 is very similar to Appendix A in [22], and the measure

estimate is an analogue with Lemma 5.3 in [33]. For the sake of completeness, we give

its proof in Appendix N¹Ê.

The next lemma implies that the property (2.7) about the coefficients of the Hamil-

tonian is preserved under the poisson bracket.

Lemma 2.2 Consider two real-analytic functions5

G(qZ, q̄Z) =
∑
α,β

Gαβq
α
Z q̄

β
Z, F (qZ, q̄Z) =

∑
α,β

n+
αβ
−n−

αβ
≤M

Fαβq
α
Z q̄

β
Z,

with

|Gαβ| ≤ cGe
−σ(n+

αβ−n
−
αβ), |Fαβ| ≤ cF e

−σ(n+
αβ−n

−
αβ),

5Here we use (α, β) instead of (α′, β′) to denote (αn, βn)n∈Z for convenience.
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for some positive cG, cF and σ. We have that

K(qZ, q̄Z) = i
∑
n∈Z

(∂qnF · ∂q̄nG− ∂q̄nF · ∂qnG) =
∑
α,β

Kαβq
α
Z q̄

β
Z

satisfies

|Kαβ| ≤ c ·M2cGcF e
−σ(n+

αβ−n
−
αβ).

Proof. A straightforward calculation yields that

Kαβ = i
∑
S

(
Gα̌+en,β̌

Fα̂,β̂+en
−Gα̌,β̌+en

Fα̂+en,β̂

)
, (2.25)

with the summation notation

S =

 n ∈ Z, (α̌, β̌) + (α̂, β̂) = (α, β),

n+

α̂,β̂+en
− n−

α̂,β̂+en
≤M or n+

α̂+en,β̂
− n−

α̂+en,β̂
≤M

 .

For Gα̌+en,β̌
Fα̂,β̂+en

in (2.25), note that

n+
αβ ≤ max{n+

α̌+en,β̌
, n+

α̂,β̂+en
}, n−αβ ≥ max{n−

α̌+en,β̌
, n−

α̂,β̂+en
},

then

n+
α̌+en,β̌

− n−
α̌+en,β̌

+ n+

α̂,β̂+en
− n−

α̂,β̂+en
≥ n+

αβ − n
−
αβ.

Hence

|Gα̌+en,β̌
Fα̂,β̂+en

| ≤ cGcF e
−σ(n+

α̌+en,β̌
−n−

α̌+en,β̌
)
e
−σ(n+

α̂,β̂+en
−n−

α̂,β̂+en
) ≤ cGcF e

−σ(n+
αβ−n

−
αβ).

Doing the same for Gα̌,β̌+en
Fα̂+en,β̂

in (2.25), and noting that Kαβ is a finite sum in

view of the definition of S, we have completed the proof of this lemma. �

§2.4 KAM iteration

The remaining sections of this chapter are devoted to the proof of Theorem 2.2.

In this section we present the KAM iteration scheme applied to (2.3). This is a suc-

cession of infinitely many symplectic transformations. We will show that, under these

symplectic transformations, the perturbation is made smaller at the cost of excluding

a small-measure set of parameters and some weight of exponent. It will be shown in

the next section that the sequence of the symplectic transformations converges and, to

finish the proof of Theorem 2.2, the total measure of the set of parameters that has

been excluded is small.
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§2.4.1 Normal form

In order to perform the KAM iteration scheme, we shall first write the Hamiltonian

(2.3) into a normal form that is more convenient for this purpose. For simplicity, we

only outline the derivation of the normal form. Detailed construction and estimation

is similar to those for the general KAM step which we will show later.

To begin the KAM iteration, we set r0 = r
2
, ε0 = ε

5
4 , and K0 = 2| ln ε|ρ−1,

ρ0 = K−1
0 . Let s0 be such that 0 < s0 < min{ε0, s}, and define D0 = Dd,ρ0(r0, s0).

We first consider the lower-order terms of P̆ and Ṕ . According to (2.4) and (2.5)

in the assumption (A4) and the definition of norm (2.2), we have that coefficients of

P̆ =
∑

(k,l)6=0
α,β

PklαβI
lei〈k,θ〉qαq̄β, Ṕ =

∑
α,β

P00αβq
αq̄β

satisfy that

|Pklαβ|O ≤ εe−ρn
∗
αβe−|k|r, ∀k ∈ Zb, 2|l|+ |α|+ |β| ≤ 2. (2.26)

Decompose P as P = R + (P −R), with

R :=
∑

n∗
αβ
≤K0

2|l|+|α|+|β|≤2

Pklαβe
i〈k,θ〉qαq̄β,

and then

P −R =
∑

k,l,n∗
αβ
>K0

1≤2|l|+|α|+|β|≤2

Pklαβe
i〈k,θ〉I lqαq̄β +

∑
k,l

2|l|+|α|+|β|≥3

Pklαβe
i〈k,θ〉I lqαq̄β.

It follows, from (2.26) and the definition of the vector field norm, that one can make

s0 small enough so that

‖XP−R‖D0,O ≤
1

2
ε0 =

1

2
ε

5
4 .

We can rewrite R as

R =
∑
k
|l|≤1

Pkl00e
i〈k,θ〉I l +

∑
k

|n|≤K0

(P k10
n qn + P k01

n q̄n)ei〈k,θ〉

+
∑
k

|m|,|n|≤K0

(P k20
mn qmqn + P k11

mn qmq̄n + P k02
mn q̄mq̄n)ei〈k,θ〉,
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where

P k10
n := Pk0en0, P k01

n := Pk00en ,

P k20
mn := Pkl(em+en)0, P k11

mn := Pklemen , P k02
mn := Pkl0(em+en).

The gauge invariance of P implies that for all m,n ∈ Z1,

P 010
n , P 001

n , P 020
mn , P

002
mn ≡ 0. (2.27)

To handle terms of R, we need to construct a symplectic transformation Φ∗ = Φ1
F∗

defined as the time-1 map of the Hamiltonian flow associated with a real-analytic

Hamiltonian F∗ of the form

F∗ =
∑
k 6=0
|l|≤1

Fkl00I
lei〈k,θ〉 +

∑
k 6=0
|n|≤K0

(F k10
n qn + F k01

n q̄n)ei〈k,θ〉

+
∑
k 6=0

|m|,|n|≤K0

(F k20
mn qmqn + F k11

mn qmq̄n + F k02
mn q̄mq̄n)ei〈k,θ〉,

such that all non–resonant terms

Pkl00I
lei〈k,θ〉, k 6= 0, |l| ≤ 1,

Pk0αβe
i〈k,θ〉qαq̄β, k 6= 0, n∗αβ ≤ K0, 1 ≤ |α|+ |β| ≤ 2,

will be eliminated, and terms

P0l00I
l, |l| ≤ 1; P 011

mn qmq̄n, |m|, |n| ≤ K0,

will be added to the normal form part of the new Hamiltonian. More precisely, we

shall construct Φ1
F∗ such that F∗ satisfies the homological equation

{N , F∗}+R =
∑
|l|≤1

P0l00I
l +

∑
|m|,|n|≤K0

P 011
mn qmq̄n.

One can show that it is solvable on the parameter set

O0 =


ξ ∈ O :

|〈k, ω〉| ≥ γ0

|k|τ ,

|〈k, ω〉+ Ωn| ≥ γ0

|k|τK2
0
,

|〈k, ω〉+ Ωm + Ωn| ≥ γ0

|k|τK4
0
,

|〈k, ω〉+ Ωm − Ωn| ≥ γ0

|k|τK4
0
,

k 6= 0, |m|, |n| ≤ K0


.
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By virtue of (2.27), which is guaranteed by gauge invariance of P , we need not consider

the lower bound of |Ωn| or |Ωm ± Ωn|.
The parameter set satisfies that |O \O0| = O(γ0). Indeed, by the assumptions on

ω and Ωn, we have

|∂ξ(〈k, ω〉+ Ωm ± Ωn)| ≥ c|k|.

Therefore, by excluding some parameter set with measure O(γ0), we have that

|〈k, ω〉+ Ωm ± Ωn| ≥
γ0

|k|τK4
0

.

The other conditions can be handled similarly.

With Φ∗ = Φ1
F∗ , the Hamiltonian (2.3) can be transformed into the following

system on D0 := Dd,ρ0(r0, s0):

H0 = H ◦ Φ∗ = N0 + P0,

with N0 and P0 given as

N0 = e0(ξ) + 〈ω0(ξ), I〉+ 〈A0(ξ)z0, z̄0〉+
∑
|n|>K0

Ωn(ξ)qnq̄n,

P0 = P̆0 + Ṕ0 =
∑
α,β

P̆ 0
αβ(θ, I, ξ)qαq̄β +

∑
α,β

Ṕ 0
αβ(ξ)qαq̄β,

where z0 := (qn)|n|≤K0 , z̄0 := (q̄n)|n|≤K0 , and

e0(ξ) = e(ξ) + P0000(ξ),

ω0(ξ) = ω(ξ) + P0l00(|l|=1)(ξ),

〈A0(ξ)z0, z̄0〉 =
∑
|n|≤K0

Ωn(ξ)qnq̄n +
∑

|m|,|n|≤K0

P 011
mn (ξ)qmq̄n.

Moreover, P0 satisfies ‖XP0‖D0,O0 ≤ ε
5
4 = ε0 and

‖P̆ 0
αβ‖D0,O0 ≤

{
ε0e
−ρ0n∗αβ , |α|+ |β| ≤ 2

e−ρ0n∗αβ , |α|+ |β| ≥ 3
,

‖Ṕ 0
αβ‖D0,O0 ≤

{
ε0e
−ρ0n∗αβ , |α|+ |β| ≤ 2

e−ρ0(n+
αβ−n

−
αβ), |α|+ |β| ≥ 3

.

We shall prove that the decay property is preserved during the KAM iteration in the

following subsection.
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Suppose that, we have arrived at the νth KAM step, and we consider the Hamilto-

nian Hν = Nν +Pν , which is real-analytic on Dν = Dd,ρν (rν , sν), and C1
W parametrized

by ξ ∈ Oν(Oν ⊂ O0 is a parameter set), with

Nν = eν(ξ) + 〈ων(ξ), I〉+ 〈Aν(ξ)zν , z̄ν〉 +
∑
|n|>Kν

Ωn(ξ)qnq̄n,

Pν = P̆ν + Ṕν =
∑
α,β

P̆ ν
αβ(θ, I, ξ)qαq̄β +

∑
α,β

Ṕ ν
αβ(ξ)qαq̄β,

where zν = (qn)|n|≤Kν , z̄ν = (q̄n)|n|≤Kν . Moreover, Pν satisfies that ‖XPν‖Dν ,Oν < εν

and

‖P̆ ν
αβ‖Dν ,Oν ≤

{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρνn
∗
αβ , |α|+ |β| ≥ 3

, (2.28)

‖Ṕ ν
αβ‖Dν ,Oν ≤

{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρν(n+
αβ−n

−
αβ), |α|+ |β| ≥ 3

. (2.29)

We shall construct a subset Oν+1 ⊂ Oν , and a symplectic transformation Φν : Dν+1 →
Dν , so that the Hamiltonian Hν+1 = Hν ◦ Φν = Nν+1 + Pν+1, C1

W parametrized by

ξ ∈ Oν+1, has similar properties with Hν , and

‖XPν+1‖Dν+1,Oν+1 ≤ ε
5
4
ν = εν+1.

From now on, to simplify notations, the subscripts (or superscripts) “ν” of quan-

tities at the νth step are neglected, and the corresponding quantities at the (ν + 1)th

step are labeled with “+”. In addition, all constants labeled with c, c0, c1, · · · are

positive and independent of the iteration step..

Let K+ = 2| ln ε|K. In the KAM step detailed below, terms with (qn, q̄n)K<|n|≤K+

will be added to the new normal components z+, z̄+. To facilitate the calculations when

solving a homological equation later on, we will also adopt the following expression of

the normal form N ,

N = e(ξ) + 〈ω(ξ), I〉+ 〈A(ξ)z, z̄〉+
∑

K<|n|≤K+

Ωn(ξ)qnq̄n +
∑
|n|>K+

Ωn(ξ)qnq̄n

= e(ξ) + 〈ω(ξ), I〉+ 〈Ã(ξ)z+, z̄+〉+
∑
|n|>K+

Ωn(ξ)qnq̄n,
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where z+ = (qn)|n|≤K+ , z̄+ = (q̄n)|n|≤K+ , and Ã is a Hermitian matrix with dim(Ã) ≤
2K+ + 1 given by

Ã =

(
A 0

0 Ωn

)
K<|n|≤K+

. (2.30)

§2.4.2 Truncation and homological equation

Expand P̆ and Ṕ into their Taylor-Fourier series,

P̆ =
∑

(k,l)6=0
α,β

Pklαβe
i〈k,θ〉I lqαq̄β, Ṕ =

∑
α,β

P00αβq
αq̄β.

By (2.28) and (2.29), and the definition of norm ‖ · ‖D,O,

|Pklαβ|O ≤ εe−ρn
∗
αβe−|k|r, ∀k ∈ Zb, 2|l|+ |α|+ |β| ≤ 2. (2.31)

Associated with terms in the normal form N , let R be the following truncation of P :

R(θ, I, z+, z̄+) =
∑

2|l|+|α|+|β|≤2
n∗
αβ
≤K+

Pklαβe
i〈k,θ〉I lqαq̄β = R0 +R1 +R2,

with

R0 =
∑
k
|l|≤1

Pkl00e
i〈k,θ〉I l,

R1 =
∑
k

|n|≤K+

(P k10
n qn + P k01

n q̄n)ei〈k,θ〉 =
∑
k

(〈Rk10, z+〉+ 〈Rk01, z̄+〉)ei〈k,θ〉

R2 =
∑
k

|m|,|n|≤K+

(P k20
mn qmqn + P k11

mn qmq̄n + P k02
mn q̄mq̄n)ei〈k,θ〉

=
∑
k

(〈Rk20z+, z+〉+ 〈Rk11z+, z̄+〉+ 〈Rk02z̄+, z̄+〉)ei〈k,θ〉.

where Rk10, Rk01, Rk20, Rk11, Rk02 are defined as

Rk10 :=
(
P k10
n

)
|n|≤K+

, Rk01 :=
(
P k01
n

)
|n|≤K+

,

Rk20 :=
(
P k20
mn

)
|m|,|n|≤K+

, Rk11 :=
(
P k11
mn

)
|m|,|n|≤K+

, Rk01 :=
(
P k01
mn

)
|m|,|n|≤K+

.

Since P̄ = P , it is clear that

P(−k)l00 = Pkl00, R(−k)10 = Rk01, R(−k)01 = Rk10,

R(−k)20 = Rk02, R(−k)11
>

= Rk11, R(−k)02 = Rk20.
(2.32)
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From our definition of norms, it follows that

‖XR‖D,O ≤ ‖XP‖D,O ≤ ε.

-ρ+ = K−1
+ , r+ = r

2
+ r0

4
±9η = ε

1
4 . Let ρ+ = K−1

+ , r+ = r
2

+ r0
4

and η = ε
1
4 . Since

P −R =
∑
k,l

2|l|+|α|+|β|≥3

Pklαβe
i〈k,θ〉I lqαq̄β +

∑
k,l, n∗

αβ
>K+

2|l|+|α|+|β|≤2

Pklαβe
i〈k,θ〉I lqαq̄β, (2.33)

combining with (2.31), there exists c1 > 0 such that

‖XP−R‖Dd,ρ+ (r++
r−r+

2
, ηs),O ≤ ε

∑
|n|>K+

e−ρ|n| + c1ηs ≤
1

4
ε

5
4 , (2.34)

provided that

(C1)µe−(ρ−ρ+)K+ ≤ 1
8
ε

1
4 and c1s ≤ 1

8
ε.

We are going to construct a Hamiltonian F , defined on a new domain D+ =

Dd,ρ+(r+, s+) such that, the time-1 map Φ = Φ1
F associated with the Hamiltonian

vector field XF , is a (symplectic) map from D+ to D which transforms H into H+, the

Hamiltonian in the next KAM cycle. Let F be of the form

F (θ, I, z+, z̄+) = F0 + F1 + F2,

with

F0 =
∑
k 6=0
|l|≤1

Fkl00e
i〈k,θ〉I l,

F1 =
∑
k 6=0
|n|≤K+

(F k10
n qn + F k01

n q̄n)ei〈k,θ〉 =:
∑
k 6=0

(〈F k10, z+〉+ 〈F k01, z̄+〉)ei〈k,θ〉,

F2 =
∑
k 6=0

|m|,|n|≤K+

(F k20
mn qmqn + F k11

mn qmq̄n + F k02
mn q̄mq̄n)ei〈k,θ〉

=:
∑
k 6=0

(〈F k20z+, z+〉+ 〈F k11z+, z̄+〉+ 〈F k02z̄+, z̄+〉)ei〈k,θ〉,

and satisfy the homological equation

{N , F}+R = e′ + 〈ω′, I〉+ 〈R011z+, z̄+〉. (2.35)
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where e′ = P0000 and ω′ = P0l00(|l| = 1). By simple comparison of coefficients, we can

see Equation (2.35) is equivalent to the following system

〈k, ω〉Fkl00 = iPkl00, (2.36)

(〈k, ω〉I − Ã)F k10 = iRk10, (2.37)

(〈k, ω〉I + Ã)F k01 = iRk01, (2.38)

(〈k, ω〉I − Ã)F k20 − F k20Ã = iRk20, (2.39)

(〈k, ω〉I − Ã)F k11 + F k11Ã = iRk11, (2.40)

(〈k, ω〉I + Ã)F k02 + F k02Ã = iRk02. (2.41)

for every k 6= 0 and |l| ≤ 1.

Since Ã is Hermitian, there is a unitary matrix Q such that

Q∗ÃQ = Λ := diag{µj}|j|≤K+ ,

where {µj}|j|≤K+ denote the eigenvalues of Ã. In addition, by (2.30), the eigenvalues

of A are all labeled with |j| ≤ K, and µj = Ωj for K < |j| ≤ K+. Due to the

block-diagonal structure of Ã, we have that

Qmn ≡ 0 if |m− n| > 2K + 1. (2.42)

Indeed, the diagonalization of Ã is just the diagonalization of A.

Define the new parameter set O+ ⊂ O as

O+ : =


ξ ∈ O :

|〈k, ω〉| > γ
|k|τ ,

|〈k, ω〉I + µn| > γ
|k|τK2

+
,

|〈k, ω〉I + µm + µn| > γ
|k|τK4

+
,

|〈k, ω〉I + µm − µn| > γ
|k|τK4

+
,

k 6= 0, |m|, |n| ≤ K+


.

The same as the construction of O0 in Subsection §2.4.1, we need not consider the

lower bound of |µn| or |µn ± µm|, in view of gauge invariance of P .

Obviously, (2.36) can be solved on O+. As for solvability of (2.37)− (2.41), let us

define the vectors R̃k10, R̃k01 and the matrices R̃k20, R̃k11, R̃k02 as

R̃k10 := Q∗Rk10, R̃k01 := Q∗Rk01,

R̃k20 := Q∗Rk20Q, R̃k11 := Q∗Rk11Q, R̃k02 := Q∗Rk02Q
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for k 6= 0. We consider the equations

(〈k, ω〉I − Λ)F̃ k10 = iR̃k10,

(〈k, ω〉I + Λ)F̃ k01 = iR̃k01,

(〈k, ω〉I − Λ)F̃ k20 − F̃ k20Λ = iR̃k20,

(〈k, ω〉I − Λ)F̃ k11 + F̃ k11Λ = iR̃k11,

(〈k, ω〉I + Λ)F̃ k02 + F̃ k02Λ = iR̃k02.

These equations are equivalent to

(〈k, ω〉I − µn)F̃ k10
n = iR̃k10

n ,

(〈k, ω〉I + µn)F̃ k01
n = iR̃k01

n ,

(〈k, ω〉I − µn − µm)F̃ k20
mn = iR̃k20

mn ,

(〈k, ω〉I − µn + µm)F̃ k11
mn = iR̃k11

mn ,

(〈k, ω〉I + µn + µm)F̃ k02
mn = iR̃k02

mn ,

for k 6= 0, |m|, |n| ≤ K+, which can be solved on O+. Then (2.37) − (2.41) are also

solved with

F k10 := QF̃ k10, F k01 := QF̃ k01,

F k20 := QF̃ k20Q∗, F k11 := QF̃ k11Q∗, F k02 := QF̃ k02Q∗
.

By (2.32), it is easy to show that

F(−k)l00 = Fkl00, F (−k)10 = F k01, F (−k)01 = F k10,

F (−k)20 = F k02, (F (−k)11)∗ = F k11, F (−k)02 = F k20.

Thus F̄ = F .

§2.4.3 Property of the coordinate transformation

Lemma 2.3 F has gauge invariance, and for ε sufficiently small, the coefficients of F

satisfy that

|Fkl00|O+ ≤ ε
5
6 |k|2τ+1e−|k|r, (2.43)

|F k10
n |O+ , |F k01

n |O+ ≤ ε
5
6 |k|2τ+1e−|k|re−ρ|n|, (2.44)

|F k20
mn |O+ , |F k11

mn |O+ , |F k02
mn |O+ ≤ ε

5
6 |k|2τ+1e−|k|re−ρmax{|m|,|n|}, (2.45)

∀ k 6= 0, |l| ≤ 1 and |m|, |n| ≤ K+.
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Proof. Let us first consider F k20
mn for instance, with other terms in (2.44) and (2.45)

analogous. By the construction above, we can present F k20
mn as

F k20
nm = i

∑
F

Qnn1Q
∗
n1n2

Rk20
n2n3

Qn3n4Q
∗
n4m

〈k, ω〉 − µn1 − µn4

, (2.46)

where the summation notation F denotes{
|n1|, |n2|, |n3|, |n4| ≤ K+,

|n1 − n|, |n2 − n1| ≤ 2K + 1, |n4 −m|, |n3 − n4| ≤ 2K + 1

}
,

by virtue of the structure of Q in (3.21). Then by (2.31),

sup
ξ∈O+

|F k20
mn (ξ)| ≤ c(γ−1|k|τK4

+)K4e(2K+1)ρεe−ρmax{|m|,|n|}e−|k|r.

Here we have applied the property of the orthogonal matrix Q, and used the factor

e(2K+1)ρ to recover the exponential decay.

To estimate |∂ξjF k20
mn |, we need to differentiate both sides of (2.39) with respect to

ξj, j = 1, 2, · · · , b. Then we obtain the equation about ∂ξjF
k20

(〈k, ω〉I − Ã)(∂ξjF
k20)− (∂ξjF

k20)Ã = Gk20
ξj
,

which can be solved by diagonalizing Ã via Q as above, where

Gk20
ξj

:= i∂ξjR
k20 + F k20(∂ξj Ã)− [∂ξj(〈k, ω〉I − Ã)]F k20.

This equation also can be solved by diagonalizing Ã via Q Just like (2.46), we get the

formulation

∂ξjF
k20
mn =

∑
F

Qnn1Q
∗
n1n2

(Gk20
ξj

)n2n3Qn3n4Q
∗
n4m

〈k, ω〉 − µn1 − µn4

.

By the decay property of Rk20 and the construction of Ã, we have that

sup
ξ∈O+

|(Gk20
ξj

)mn| ≤ c(γ−1|k|τ+1K4
+)K5e(4K+2)ρεe−ρmax{|m|,|n|}e−|k|r.

Thus there exists c2 > 0 such that

sup
ξ∈O+

(|F k20
mn |+ |∂ξF k20

mn |)

≤ c2(γ−2|k|2τ+1K8
+)K9e(6K+3)ρεe−ρmax{|m|,|n|}e−|k|r

≤ ε
5
6 |k|2τ+1e−ρmax{|m|,|n|}e−|k|r,
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From the definition of O+, it is easy to see that

|Fkl00|O+ ≤ |〈k, ω〉|−2|k||Pkl00|O+ ≤ γ−2|k|2τ+1e−|k|rε, k 6= 0, |l| ≤ 1.

Thus, (2.43)− (2.45) hold under the assumption

(C2)µc2γ
−2K8

+K
9e(6K+3)ρε

1
6 ≤ 1.

Suppose that
∑b

j=1 kj + 2 6= 0, which means Rk20 ≡ 0. By the formulation of

F k20
mn in (2.46), F k20 ≡ 0. Doing the same thing for F k11, F k02, F k10, F k01 as above, we

obtain the gauge invariance of F . �

We proceed to estimate the norm of XF and to study properties of Φ1
F , on domains

Di := Dd,ρ+(r+ + i
4
(r − r+), i

4
s), i = 1, 2, 3, 4.

Lemma 2.4 For ε sufficiently small, we have ‖XF‖D3,O+ ≤ ε
4
5 .

Proof. In view of (2.43)− (2.45), it follows that

1

s2
‖∂θF‖D3,O+ , ‖∂IF‖D3,O+ ≤ c(r − r+)−(2τ+b+1)ε

5
6 ,

and

sup
D3

1

s

∑
n∈Z1

(
‖∂qnF‖O+ + ‖∂q̄nF‖O+

)
〈n〉deρ+|n|

≤ sup
D3

c

s

∑
k 6=0
|n|≤K+

(
|F k10
n |O+ + |F k01

n |O+

)
e|k|(r−

1
4

(r−r+))〈n〉deρ+|n|

+ sup
D3

c

s

∑
k 6=0

|m|,|n|≤K+

(|F k20
mn |O+ + |F k11

mn |O+ + |F k02
mn |O+)|qm|e|k|(r−

1
4

(r−r+))〈n〉deρ+|n|

≤ c(r − r+)−(2τ+b+1)Kd
+e

ρ+K+ε
5
6 .

Putting together the estimates above, there exists a constant c3 such that

‖XF‖D3,O+ ≤ c3(r − r+)−(2τ+b+1)Kd
+e

ρ+K+ε
5
6 .

Moreover, if

(C3)µc3(r − r+)−(2τ+b+1)Kd
+e

ρ+K+ε
1
30 ≤ 1§

then Lemma 2.4 follows. �
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Now let Diη := Dd,ρ+(r+ + i
4
(r − r+), i

4
ηs), i = 1, 2, 3, 4.

Lemma 2.5 For ε sufficiently small, we have Φt
F : D2η → D3η, −1 ≤ t ≤ 1, and

moreover, ‖DΦt
F − Id‖D1η < 2ε

4
5 .

Proof. Let

‖DmF‖D,O+ = max

{∥∥∥∥ ∂|i|+|l|+|α|+|β|F

∂θi∂I l∂(z+)α∂(z̄+)β

∥∥∥∥
D,O+

, |i|+ |l|+ |α|+ |β| = m ≥ 2

}
.

Notice that F is a polynomial of order 1 in I and of order 2 in z+, z̄+. It thus follows

from Lemma 2.4 and Cauchy inequality that

‖DmF‖D2,O+ < ε
4
5 , ∀m ≥ 2.

Using the integral equation

Φt
F = id +

∫ t

0

XF ◦ Φs
F ds

and Lemma 2.4, one sees easily that Φt
F : D2η → D3η, −1 ≤ t ≤ 1 . Moreover, since

DΦt
F = Id+

∫ t

0

(DXF )DΦs
F ds = Id+

∫ t

0

J(D2F )DΦs
F ds,

where J denotes the standard symplectic matrix, it follows that

‖DΦt
F − Id‖D1η ≤ 2‖D2F‖D2η ≤ 2ε

4
5 .

�

§2.4.4 The new Hamiltonian

Let Φ = Φ1
F , s+ =

1

8
ηs , D+ = Dd,ρ+(r+, s+) and

N+ = e+ + 〈ω+, I〉+ 〈A+z+, z̄+〉+
∑
|n|>K+

Ωnqnq̄n,
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where e+ = e + e′, ω+ = ω + ω′, A+ = Ã + R011. Then Φ : D+ → D, and, by Taylor’s

second-order formula,

H+ := H ◦ Φ = (N +R) ◦ Φ + (P −R) ◦ Φ

= N + {N , F}+R +

∫ 1

0

(1− t){{N , F}, F} ◦ Φt
F dt

+

∫ 1

0

{R,F} ◦ Φt
F dt+ (P −R) ◦ Φ1

F

= N + {N , F}+R + P+

= N+ + P+ + {N , F}+R− e′ − 〈ω′, I〉 − 〈R011z+, z̄+〉

= N+ + P+,

where P+ =

∫ 1

0

{(1− t){N , F}+R,F} ◦ Φt
F dt+ (P −R) ◦ Φ1

F .

The new normal form N+ has properties similar to those of N . Since Ã∗ = Ã and

(R011)∗ = R011, we have A∗+ = A+, i.e., A+ is a Hermitian matrix. Then, from the

assumptions on P̆ and Ṕ , we further have that

|ω+ − ω|O+ ≤ ε, |(A+ − Ã)mn|O+ ≤ εe−ρmax{|m|,|n|}. (2.47)

Let R(t) = (1− t)(N+ −N ) + tR. Then P+ can be rewritten as

P+ =

∫ 1

0

(1− t){{N , F}, F} ◦ Φt
F dt +

∫ 1

0

{R,F} ◦ Φt
Fdt+ (P −R) ◦ Φ1

F

=

∫ 1

0

{R(t), F} ◦ Φt
F dt+ (P −R) ◦ Φ1

F .

Hence, XP+ =
∫ 1

0
(Φt

F )∗X{R(t),F} dt + (Φ1
F )∗X(P−R). dÚn2.5§

‖DΦt
F‖D1η ≤ 1 + ‖DΦt

F − I‖D1η ≤ 2, −1 ≤ t ≤ 1.

Furthermore, by Lemma A.3§

‖X{R(t),F}‖D2η ≤ cη−2ε
9
5 =

1

4
ε

5
4 .

Then, combining with (3.29), ‖XP+‖D+,O+ ≤ ε
5
4 = ε+.

Note that

P+ = P −R + {P, F}+
1

2!
{{N , F}, F}+

1

2!
{{P, F}, F}+ · · ·

+
1

n!
{· · · {N , F} · · · , F︸ ︷︷ ︸

n

}+
1

n!
{· · · {P, F} · · · , F︸ ︷︷ ︸

n

}+ · · · .
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The reality of P+ is verified easily because, for any two function F and G satisfying

F̄ = F and Ḡ = G respectively, their Poisson bracket {F,G} satisfies {F,G} =

{F ,G} = {F,G}.
It has been proved that the gauge invariance is preserved during the KAM iteration

by Lemma A.4, so we only need to examine the decay property of P+. More precisely,

if we decompose P+ as P+ = P̆+ + Ṕ+ with

P̆+ =
∑
α,β

P̆+
αβ(θ, I; ξ)qαq̄β, Ṕ+ =

∑
α,β

Ṕ+
αβ(ξ)qαq̄β,

we will show that

‖P̆+
αβ‖D+,O+ ≤

{
ε+e

−ρ+n∗αβ , |α|+ |β| ≤ 2

e−ρ+n∗αβ , |α|+ |β| ≥ 3
,

‖Ṕ+
αβ‖D+,O+ ≤

{
ε+e

−ρ+n∗αβ , |α|+ |β| ≤ 2

e−ρ+(n+
αβ−n

−
αβ), |α|+ |β| ≥ 3

.

For terms of P −R in (2.33), we have

‖P̆αβ‖D+,O+ ≤ e−ρn
∗
αβ , ‖Ṕαβ‖D+,O+ ≤ e−ρ(n+

αβ−n
−
αβ), |α|+ |β| ≥ 3.

If |α|+ |β| ≤ 2, then by (C1) and n∗αβ > K+,

‖P̆αβ‖D+,O+ , ‖Ṕαβ‖D+,O+ ≤ εe−ρn
∗
αβ ≤ εe−(ρ−ρ+)K+ · e−ρ+n∗αβ ≤ 1

2
ε+e

−ρ+n∗αβ .

Here we applied the estimate |I| ≤ s+ ≤ 1
8
ε+ to handle the case that |α|+ |β| ≤ 2 and

2|l|+ |α|+ |β| ≥ 3.

The decay property of remaining terms, which are made up of several Poisson

brackets, is covered by the following lemma.

Lemma 2.6 For ε sufficiently small, we have

‖{P, F}αβ‖D3η ,O+ ≤
1

4
ε

1
4

{
εe−ρn

∗
αβ , |α|+ |β| ≤ 2

e−ρn
∗
αβ , |α|+ |β| ≥ 3

.

Proof. A straightforward calculation yields that

{P, F}αβ = i
∑
|n|≤K+

(α̌,β̌)+(α̂,β̂)=(α,β)

(
Pα̌+en,β̌

Fα̂,β̂+en
− Pα̌,β̌+en

Fα̂+en,β̂

)
(2.48)

+
∑

(α̌,β̌)+(α̂,β̂)=(α,β)

{
Pα̌β̌, Fα̂β̂

}
. (2.49)
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In view of Lemma 2.3, we know that ‖Fαβ‖D3,O+ ≤ ε
4
5 e−ρn

∗
αβ .

(1) Terms in (2.48)

Let us first consider the term Pα̌+en,β̌
Fα̂,β̂+en

, which contains P̆α̌+en,β̌
Fα̂,β̂+en

and

Ṕα̌+en,β̌
Fα̂,β̂+en

. In view of the construction of F , we have that |α̂|+ |β̂ + en| = 1 or 2.

i) |α|+ |β| ≤ 2

In this case,

|α̌ + en|+ |β̌| = |α|+ |β|+ 1− (|α̂|+ |β̂|) ≤ 3.

• If |α̌ + en|+ |β̌| ≤ 2, then, noting that n∗αβ ≤ max{n∗
α̌+en,β̌

, n∗
α̂,β̂+en

}, we have

‖P̆α̌+en,β̌
Fα̂,β̂+en

‖D3,O+ , ‖Ṕα̌+en,β̌
Fα̂,β̂+en

‖D3,O+ ≤ εe
−ρn∗

α̌+en,β̌ · ε
4
5 e
−ρn∗

α̂,β̂+en

≤ ε
9
5 e−ρn

∗
αβ . (2.50)

• If |α̌ + en| + |β̌| = 3, then gauge invariance of P implies Ṕα̌+en,β̌
= 0. By the

construction of F , we can see that the only case, in which a higher-order term

of P is transformed into a lower-order term of {P, F}(indeed only {P̆ , F}), is

(α̂, β̂) = (0, 0), (α̌, β̌) = (α, β). By the definition of norm ‖XF‖D3,O and the decay

property of P ,

‖P̆α+en,β‖D3,O ≤ e−ρn
∗
α+en,β , ‖F0,en‖D3,O+ ≤ csε

4
5 e−ρ|n|.

Thus, noting that n∗αβ ≤ max{n∗α+en,β
, |n|}, we have

‖P̆α+en,βF0,en‖D3,O+ ≤ csε
4
5 e−ρn

∗
αβ ≤ cε

9
5 e−ρn

∗
αβ . (2.51)

ii) |α|+ |β| ≥ 3

In this case, |α̌ + en| + |β̌| ≥ 3. By the same argument as above, noting that

n∗αβ ≤ max{n∗
α̌+en,β̌

, n∗
α̂,β̂+en

}, or n∗αβ ≤ n+
α̌+en,β̌

− n−
α̌+en,β̌

+ n∗
α̂,β̂+en

, we have

‖P̆α̌+en,β̌
Fα̂,β̂+en

‖D3,O+ ≤ e
−ρn∗

α̌+en,β̌ · ε
4
5 e
−ρn∗

α̂,β̂+en ≤ ε
4
5 e−ρn

∗
αβ , (2.52)

‖Ṕα̌+en,β̌
Fα̂,β̂+en

‖D3,O+ ≤ e
−ρ(n+

α̌+en,β̌
−n−

α̌+en,β̌
) · ε

4
5 e
−ρn∗

α̂,β̂+en ≤ ε
4
5 e−ρn

∗
αβ . (2.53)

Doing the same for Pα̌,β̌+en
Fα̂+en,β̂

, we finish estimates for terms in (2.48).
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(2) Terms in (2.49)

By Lemma A.2 and the inequality n∗αβ ≤ max{n∗
α̌β̌
, n∗

α̂β̂
}, we have

‖{Pα̌β̌, Fα̂β̂}‖D3η ,O+ ≤ c(r − r+)−1η−2

{
ε

9
5 e−ρn

∗
αβ , |α|+ |β| ≤ 2

ε
4
5 e−ρn

∗
αβ , |α|+ |β| ≥ 3

. (2.54)

Combining (2.50)− (2.54), there exists c4 > 0 such that

‖{P, F}αβ‖D3η ,O+ ≤ c4(r − r+)−1η−2K2
+

{
ε

9
5 e−ρn

∗
αβ , |α|+ |β| ≤ 2

ε
4
5 e−ρn

∗
αβ , |α|+ |β| ≥ 3

.

provided that

(C4)µc4(r − r+)−1K2
+ε

1
20 ≤ 1

4
§

then Lemma 3.4 follows. �

For Y = P+ − (P − R) =
∑

α,β Yαβq
αq̄β, which is made up with iterated Poisson

brackets, we can estimate them as above, and obtain

‖Yαβ‖D+,O+ ≤

{
1
2
ε+e

−ρn∗αβ , |α|+ |β| ≤ 2

ε
1
5 e−ρn

∗
αβ , |α|+ |β| ≥ 3

for ε sufficiently small. If we decompose Y into Y̆ and Ý , with

Y̆ =
∑
α,β

Y̆αβ(θ, I; ξ)qαq̄β, Ý =
∑
α,β

Ýαβ(ξ)qαq̄β,

then, applying the basic facts 1
2
(n+

αβ − n
−
αβ) ≤ n∗αβ and ρ+ < ρ

2
,

‖Y̆αβ‖D+,O+ ≤

{
1
2
ε+e

−ρ+n∗αβ , |α|+ |β| ≤ 2

ε
1
5 e−ρ+n∗αβ , |α|+ |β| ≥ 3

,

‖Ýαβ‖D+,O+ ≤

{
1
2
ε+e

−ρ+n∗αβ , |α|+ |β| ≤ 2

ε
1
5 e−ρ+(n+

αβ−n
−
αβ), |α|+ |β| ≥ 3

.

This completes one step of KAM iterations.
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§2.5 Proof of Theorem 2.2

Let r0, s0, ρ0, ε0, γ0, K0, O0, H0, N0, P0 be as given in Subsection §2.4. For

ν = 1, 2, · · · , define the following sequences:

εν = ε
5
4
ν−1 = ε

( 5
4)
ν

0 , ην = ε
1
4
ν , γν = ε

1
16
ν , Kν = 2| ln εν−1|Kν−1, ρν = K−1

ν ,

rν = r0

(
1−

ν+1∑
i=2

2−i

)
, sν =

1

8
ην−1sν−1 = 2−3ν

(
ν−1∏
i=0

εi

) 1
4

s0.

Consider Hν = Nν + Pν on Dν = Dd,ρν (rν , sν), with

Nν = eν(ξ) + 〈ων(ξ), I〉+ 〈Aν(ξ)zν , z̄ν〉+
∑
|n|>Kν

Ωn(ξ)qnq̄n

= eν(ξ) + 〈ων(ξ), I〉+ 〈Ãν(ξ)zν+1, z̄ν+1〉+
∑

|n|>Kν+1

Ωn(ξ)qnq̄n,

Pν = P̆ν + Ṕν =
∑
α,β

P̆ ν
αβ(θ, I; ξ)qαq̄β +

∑
α,β

Ṕ ν
αβ(ξ)qαq̄β

where zν = (qn)|n|≤Kν , z̄ν = (q̄n)|n|≤Kν , and

Ãν =

(
Aν 0

0 Ωn

)
Kν<|n|≤Kν+1

.

whose eigenvalues are {µνj}|j|≤Kν+1 , with {µνj}|j|≤Kν being eigenvalues of Aν and µνj = Ωj

for Kν < |j| ≤ Kν+1. Let

Oν+1 =


ξ ∈ Oν :

|〈k, ων〉| > γν
|k|τ

|〈k, ων〉+ µνn| >
γν

|k|τK2
ν+1
,

|〈k, ων〉+ µνm + µνn| ≤
γν

|k|τK4
ν+1
,

|〈k, ων〉+ µνm − µνn| ≤
γν

|k|τK4
ν+1
,

k 6= 0, |m|, |n| ≤ Kν+1


.

§2.5.1 Iteration Lemma

The preceding analysis may be summarized in the following

Lemma 2.7 There exists ε0 sufficiently small such that the following holds for all

ν = 0, 1, · · · .
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(a) Hν = Nν + Pν is real-analytic on Dν, C1
W parametrized by ξ ∈ Oν, and

|ων+1 − ων |Oν+1 , |(Aν+1 − Ãν)mn|Oν+1 ≤ ενe
−ρν max{|m|,|n|}.

Moreover, Pν has gauge invariance, and ‖XPν‖Dν ,Oν ≤ εν,

‖P̆ ν
αβ‖Dν ,Oν ≤

{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρνn
∗
αβ , |α|+ |β| ≥ 3

,

‖Ṕ ν
αβ‖Dν ,Oν ≤

{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρν(n+
αβ−n

−
αβ), |α|+ |β| ≥ 3

.

(b) There is a symplectic transformation Φν : Dν+1 → Dν with

‖DΦν − Id‖Dν+1,Oν+1 ≤ ε
4
5
ν

such that Hν+1 = Hν ◦ Φν.

Proof. Let c0 = e10 max{c1, c2, c3, c4}. We need to verify the assumptions (C1)−(C4)

for all ν = 0, 1, · · · . Noting that rν − rν+1 = r0
2ν+2 and ρνKν = 1, it is sufficient for us

to check:

(D1)µc0sν ≤ εν ,

(D2)µc0r
−(2τ+b+1)
0 2(ν+2)(2τ+b+1)Kd+20

ν+1 ≤ ε
− 1

30
ν ,

for all ν = 0, 1, · · · .
By the choice of s0, the condition (D1) clearly holds for ν = 0. Suppose that it

holds for some ν. Then it is easy to see that

c0sν+1 = 2−3ε
1
4
ν · c0sν < 2−3ε

1
4
ν · εν < εν+1.

Hence (D1) holds for all ν.

As for (D2), let us take ε0 sufficiently small such that

c0r
−(2τ+b+1)
0 2(2τ+b+1)(2K0| ln ε0|)d+20 ≤ ε

− 1
30

0 ,

then (D2) holds for ν = 0. Since for ν = 0, 1, · · · ,

Kν+1 = 2Kν | ln εν | = 2ν+1K0

ν∏
i=0

| ln εi| = K0(2| ln ε0|)ν+1

(
5

4

) (ν+1)ν
2

,

while ε
− 1

30
ν =

(
ε
− 1

30
0

)( 5
4)
ν

. This means that the right side of (D2) grows with ν much

faster than the left side. Thus, (D2) holds true. �
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§2.5.2 Convergence

Define Ψν = Φ∗ ◦Φ0 ◦Φ1 ◦ · · · ◦Φν−1, ν = 1, 2, · · · . An induction argument shows

that Ψν : Dν+1 → D0 and

H0 ◦Ψν = Hν = Nν + Pν , ν = 1, 2, · · · .

Let Oε = ∩∞ν=0Oν . Using Lemma 2.5 and standard arguments (e.g., [34, 40]), it

concludes that Hν , Nν , Pν and Ψν converge uniformly on Dd,0(1
2
r0, 0)×Oε to, say, H∞,

N∞, P∞ and Ψ∞, respectively, in which case it is clear that

N∞ = e∞ + 〈ω∞, I〉+ 〈A∞z∞, z̄∞〉.

Since εν = ε
( 5

4
)ν

0 , we have, by Lemma A.1, that

XP∞|Dd,0( 1
2
r0,0)×Oε ≡ 0.

Since H0 ◦Ψν = Hν , we have

Φt
H0
◦Ψν = Ψν ◦ Φt

Hν ,

with Φt
H0

denoting the flow of the Hamiltonian vector field XH0 . The uniform conver-

gence of Ψν and XHν implies that one can pass the limit in the above and conclude

that, on Dd,0(1
2
r0, 0)×Oε,

Φt
H0
◦Ψ∞ = Ψ∞ ◦ Φt

H∞ .

Hence, for all ξ ∈ Oε,

Φt
H0

(Ψ∞(Tb × {ξ})) = Ψ∞Φt
N∞(Tb × {ξ}) = Ψ∞(Tb × {ξ}).

This means that Ψ∞(Tb×{ξ}) is an embedded invariant torus of the original perturbed

Hamiltonian system at ξ ∈ Oε. Moreover, the frequencies ω∞(ξ) associated with

Ψ∞(Tb × {ξ}) are slightly deformed from the unperturbed ones, ω(ξ).

§2.5.3 Measure estimates

At the νth step of KAM iteration, we need to exclude the following resonant

parameter set for k 6= 0,

Rν
k := Rν1

k

⋃ ⋃
|n|≤Kν+1

Rν2
kn

⋃ ⋃
|m|,|n|≤Kν+1

Rν3
kmn

⋃ ⋃
|m|,|n|≤Kν+1

Rν4
kmn

 ,
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where

Rν1
k :=

{
ξ ∈ Oν : |〈k, ων〉| <

γν
|k|τ

}
,

Rν2
kn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνn| <

γν
|k|τK2

ν+1

}
,

Rν3
kmn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνm − µνn| <

γν
|k|τK4

ν+1

}
,

Rν4
kmn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνm + µνn| <

γν
|k|τK4

ν+1

}
.

It is clear that O \ Oε ⊆
⋃
ν≥0

⋃
k 6=0Rν

k.

As eigenvalues of the Hermitian matrix Ãν , it is well-known that {µνn}|n|≤Kν+1 C
1
W

depend on ξ and there exist orthonormal eigenvectors ψνn corresponding to µνn, C1
W

depending on ξ (see e.g. [13]). It follows that µνn = 〈Ãνψνn, ψ̄νn〉 and

∂ξjµ
ν
n = 〈(∂ξj Ãν)ψνn, ψ̄νn〉, j = 1, · · · , b.

In view of the construction of Ãν , together with the estimates in (2.47), we have

|∂ξ(〈k, ων〉+ µνm − µνn)| ≥ |∂ξ(〈k, ω0〉+ Ωn − Ωm)| − ε
1
2
0 |k| − ε

1
2
0 = O(|k|)

for the setRν4
knm. The cases forRν1

k , Rν2
kn, Rν3

knm can be handled in an entirely analogous

way. Thus for fixed k 6= 0,∣∣∣∣∣∣Rν1
k

⋃ ⋃
|n|≤Kν+1

Rν2
kn

⋃ ⋃
|n|,|m|≤Kν+1

Rν3
knm

⋃ ⋃
|n|,|m|≤Kν+1

Rν4
knm

∣∣∣∣∣∣ ≤ cγν
|k|τ+1

.

Since τ ≥ b, we have that

|O \ Oε| ≤

∣∣∣∣∣⋃
ν≥0

⋃
k 6=0

Rν
k

∣∣∣∣∣ ≤ c
∑
ν≥0

∑
k 6=0

γν
|k|τ+1

= c
∑
ν≥0

γν ∼ γ0 = ε
1
16
0 .
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1nÙ Localization in one-dimensional nonlinear

Schrödinger equation

In this chapter, we consider the lattice Schrödinger equation

iq̇n = ε(qn+1 + qn−1) + V (nα̃ + x)qn + |qn|2qn, n ∈ Z, (3.1)

where α̃ ∈ R satisfies the Diophantine condition(1.3), and V is a nonconstant real-

analytic function on R/Z.

§3.1 Statement of the result

Based on the KAM mechanism of Eliasson[16] in Theorem 1.6, we construct an

abstract KAM theorem, and apply this theorem to prove well-localization of Equation

(3.1) for typical initial data. From the KAM perspective, the main technical challenges

in this work are the following:

i) Unlike the model in [19], we need to tackle with the second order perturbation in

the Hamiltonian;

ii) Different from the method in [10], our proof is developed from the traditional KAM

method;

iii) Compared with the work in the previous chapter, the main difficulty is that the

corresponding linear operator has dense point spectrum with infinitely many res-

onances.

Theorem 3.1 Given an integer b > 1, and any J = {n1, · · · , nb} ⊂ Z. Assume that

the support of the initial datum qZ(0) = (qn(0))n∈Z is J and qZ(0) ∈ [0, 1]b. There

exists a sufficiently small ε∗ = ε∗(V, α̃,J ), such that if 0 < ε < ε∗, then the following

holds for a.e. x ∈ R/Z.

There exists a Cantor set Oε = Oε(x) ⊂ [0, 1]b with |[0, 1]b \ Oε| → 0 as ε → 0

such that the solution q(t) = (qn(t))n∈Z of Equation (3.1), with initial datum q(0) ∈ Oε,
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satisfies, for any fixed d > 0,

sup
t

∑
n∈Z

n2d|qn(t)|2 <∞.

Moreover, for each n ∈ Z, qn(t) is quasi-periodic in time.

Remark 3.1 The quasi-periodic solutions we obtained are not necessarily small-amplitude,

since the nonlinearity |qn|2qn is integrable.

Remark 3.2 Smallness assumption on ε is necessary, otherwise the result is not true

even for the linear problem. This is different from the random potential case.

§3.2 An abstract infinite-dimensional KAM theorem and its

application

§3.2.1 Statement of the KAM theorem

We still use the notations and norms in subsection §2.2.1. we consider the per-

turbed Hamiltonian

H = N + P̆ + P

= e(x, ξ) + 〈ω(x, ξ), I〉+ 〈Ω(x, ξ)q, q̄〉+ P̆ (q, q̄;x) + P (θ, I, q, q̄;x, ξ). (3.2)

defined on the domain D = Dd,ρ(r, s). Our goal is to prove that, for a.e. x ∈ R/Z,

the Hamiltonian H admits invariant tori for “most” of the parameter ξ ∈ O = O(x),

provided that ‖XP̆+P‖D,O is sufficiently small. From now on, we shall not report x for

convenience if it is irrelevant.

We need to impose some conditions on ω, Ω, and the perturbations P̆ + P .

(A1) Nondegeneracy of tangential frequencies: The map ξ → ω is a C1
W diffeomorphism

between O and its image.

(A2) Regularity of Ω: Ω = T + A+W .
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– T is the symmetric matrix defined in (1.6), independent of ξ. More precisely,

T = diag{V (x+ nα̃)}n∈Z + ε∆,

with V and α̃ as in Equation (1.6).

– A is Hermitian, independent of ξ, satisfying

|Amn| ≤

{
c, |m|, |n| ≤ N̂

0, otherwise
(3.3)

for some positive N̂ .

– W is C1
W parametrized by ξ ∈ O, with

|Wmn|O ≤

{
pe−σmax{|m|, |n|}, |m|, |n| ≤ N

0, otherwise
(3.4)

for some positive p� 1, σ � ρ and sufficiently large N .

Moreover, there exists a subset J ⊂ Z such that

Ωmn ≡ 0 if m or n ∈ J . (3.5)

(A3) Short range of P̆ : P̆ (q, q̄) =
∑
|α|=|β|≥2 P̆αβq

αq̄β is real-analytic in q, q̄, and inde-

pendent of ξ, with

|P̆αβ| ≤ e−ρ(n+
αβ−n

−
αβ), |α| = |β| ≥ 2, (3.6)

∂qnP̆ = ∂q̄nP̆ ≡ 0, ∀n ∈ J . (3.7)

(A4) Decay property of P : P =
∑

α,β Pαβ(θ, I; ξ)qαq̄β is real-analytic in θ, I, q, q̄, C1
W

parametrized by ξ ∈ O, and

‖Pαβ‖D,O ≤

{
εe−ρn

∗
αβ , |α|+ |β| ≤ 2

e−ρn
∗
αβ , |α|+ |β| ≥ 3

, (3.8)

∂qnP = ∂q̄nP ≡ 0, ∀n ∈ J . (3.9)

(A5) Gauge invariance of P : For P =
∑

k∈Zb,l∈Nb
α,β

PklαβI
lei〈k,θ〉qαq̄β, we have

Pklαβ ≡ 0 if
b∑

j=1

kj + |α| − |β| 6= 0.
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Theorem 3.2 Consider the Hamiltonian H in (3.2), with (A1)−(A5) satisfied. There

is a positive constant

ε∗ = ε∗(ω, V, α̃, N̂ , p, σ,N, r, s, d, ρ)

such that if ‖XP̆+P‖D,O ≤ ε ≤ ε∗, then for a.e. x ∈ R/Z, there exists a Cantor set

Oε = Oε(x) ⊂ O(x) with |O \ Oε| → 0 as ε→ 0, such that the following holds.

(a) There exists a C1
W map ω̃ : Oε → Rb, such that |ω̃ − ω|Oε → 0 as ε→ 0.

(b) There exists a map Ψ : Tb × Oε → Dd,0(r/2, 0), real-analytic in θ ∈ Tb and C1
W

parametrized by ξ ∈ O, such that ‖Ψ−Ψ0‖Dd,0(r/2,0),Oε → 0 as ε→ 0, where Ψ0 is

the trivial embedding: Tb ×O → Tb × {0} × {0} × {0}.

(c) For any θ ∈ Tb and ξ ∈ Oε, Ψ(θ + ω̃(ξ)t, ξ) = (θ + ω̃(ξ)t, I(t), q(t), q̄(t)) is a b-

frequency quasi-periodic solution of equation of motion associated with the Hamil-

tonian H.

(d) For each t, q(t) = (qn(t))n∈Z ∈ `1
d,0(Z).

Remark 3.3 In case that H satisfies (A1) − (A5) at the first step, all assumptions

hold for the Hamiltonian at each KAM step (with suitable parameters).

§3.2.2 Application to Eq. (3.1)

The Hamiltonian associated with Eq. (3.1) is

H =
∑
n∈Z

V (x+ nα̃)qnq̄n + ε
∑
n∈Z

q̄n(qn+1 + qn−1) +
1

2

∑
n∈Z

|qn|4. (3.10)

Fix J = {n1, · · · , nb} ⊂ Z, and Z1 = Z \ J . Let ε = ε
1
4 , with ε sufficiently small such

that

|ni| ≤ | ln ε| =
1

4
| ln ε|, i = 1, · · · , b.

We introduce action-angle variables and amplitude parameters to the Hamiltonian

(3.10),

qn =
√
In + ξne

iθn , q̄n =
√
In + ξne

−iθn , n ∈ J ,

where (I, θ) = (In1 , · · · , Inb , θn1 , · · · , θnb) are the standard action-angle variables in

the (qn, q̄n)n∈J -space around ξ, with ξ = (ξn1 , · · · , ξnb) ∈ O = [ε
1
12 , 1] ⊂ [0, 1]b the
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amplitude parameter, and (q, q̄) = (qn, q̄n)n∈Z1 . Then the Hamiltonian (3.10) becomes

H = N (θ, I, q, q̄;x, ξ) + P̆ (q, q̄) + P (θ, I, q, q̄; ξ),

with

N (θ, I, q, q̄;x, ξ) :=
∑
n∈J

(V (x+ nα̃)ξn +
1

2
ξ2
n) +

∑
n∈J

(V (x+ nα̃) + ξn)In

+
∑
n∈Z1

V (x+ nα̃)|qn|2 + ε
∑
n∈Z1

n+1∈Z1,

(q̄nqn+1 + qnq̄n+1),

P̆ (q, q̄) :=
1

2

∑
n∈Z1

|qn|4,

P (θ, I, q, q̄; ξ) :=
1

2

∑
n∈J

I2
n + ε

∑
m∈J , n∈Z1
|m−n|=1

√
Im + ξm(e−iθmqn + eiθm q̄n)

+ ε
∑
m,n∈J
|m−n|=1

√
Im + ξm

√
In + ξn(e−i(θm−θn) + ei(θm−θn)).

After introducing the action-angle variables, we find that the structure of the

linear operator T in (3.10) has been destroyed. To overcome this disadvantage, we

need to add b variables q′n1
, · · · , q′nb and the corresponding conjugates q̄′n1

, · · · , q̄′nb into

this system. For convenience, omit the prime of the newly-added variables and still

use q to denote (qn)n∈Z, since there is no confusion. We then rewrite N as

N =
∑
n∈J

(V (x+ nα̃)ξn +
1

2
ξ2
n) +

∑
n∈J

(V (x+ nα̃) + ξn)In

+

[∑
n∈Z1

V (x+ nα̃)|qn|2 +
∑
n∈J

V (x+ nα̃)|qn|2
]

+ ε
∑
n∈Z

(q̄nqn+1 + qnq̄n+1)

−
∑
n∈J

V (x+ nα̃)|qn|2 − ε
∑

{n,n+1}∩J 6=∅

(q̄nqn+1 + qnq̄n+1)

= e(x, ξ) + 〈ω(x, ξ), I〉+ 〈T (x)q, q̄〉+ 〈A(x)q, q̄〉,
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with e(x, ξ) :=
∑
n∈J

V (x+ nα̃)ξn +
1

2

∑
n∈J

ξ2
n, and

ω(x, ξ) := (V (x+ n1α̃) + ξn1 , · · · , V (x+ nbα̃) + ξnb), (3.11)

Tmn(x) :=


V (x+mα̃), m = n

ε, m− n = ±1

0, otherwise

, (3.12)

Amn(x) :=


−V (x+mα̃), m = n, m ∈ J

−ε, m− n = ±1, m ∈ J
0, otherwise

. (3.13)

Now, on some domain Dd,ρ(r, s), the regularity of P̆ + P holds true:

Lemma 3.1 For ε > 0 sufficiently small and s =
1

8
ε

1
4 , if |I| < s2 and ‖q‖d,ρ < s, then

‖XP̆+P‖Dd,ρ(r,s),O ≤ ε
1
4 = ε.

We need to show that the Hamiltonian H = N + P̆ + P satisfies the assumptions

(A1)− (A5) of the KAM theorem, in which (A3) and (A5) are obviously satisfied.

(A1): Since {V (x + nα̃)}n∈Z is independent of ξ, we have that ∂ω
∂ξ
≡ IJ in view of

(3.11). Thus (A1) holds.

(A2): Here, W ≡ 0. Then, by (3.13), it is evident that (A2) holds with N̂ = 1
4
| ln ε|.

(A4): Note that terms of P merely correspond to the normal variables qn, q̄n, n 6∈ J ,

n − 1 or n + 1 ∈ J , with the coefficients no more than ε, and J ⊂ [−N̂ , N̂ ] =

[−1
4
| ln ε|, 1

4
| ln ε|]. Then, with ρ ≤ 1

6
N̂−1, (3.8) is verified since

cε1−
1
24 ≤ ε

1
4 e−ρN̂ .

Hence, Theorem 3.1 is a corollary of Theorem 3.2.

§3.3 KAM step

To start the KAM iteration for the Hamiltonian (3.2), let D0 = Dd,ρ0(r0, s0), O0,

H0, P0, ε0 = ε
1
4 , N0(including e0, ω0, W0, p0, σ0, N0), denote the initial quantities
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given in the assumptions (A1)− (A5) respectively, and require that ε smaller than the

ε0 given in Theorem 1.6.

Suppose we have arrived at the νth step of the KAM iteration, ν = 0, 1, 2, · · · ,
recalling that several sequences have been given in (1.10). We consider the Hamiltonian

on Dν := Dd,ρν (rν , sν) and Oν ,

Hν = Nν + P̆ + Pν

= eν + 〈ων , I〉+ 〈Ωνq, q̄〉+ P̆ + Pν , (3.14)

where Ων = T + A + Wν§and (A1) − (A5) are satisfied, including (3.3), (3.6), (3.7)

and

(Ων)mn ≡ 0, {m,n} ∩ J 6= ∅, (3.15)

|(Wν)mn|Oν ≤

{
pνe
−σν max{|m|, |n|}, |m|, |n| ≤ Nν

0, otherwise
, (3.16)

‖(Pν)αβ‖Dν ,Oν ≤

{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρνn
∗
αβ , |α|+ |β| ≥ 3

, (3.17)

∂qnPν = ∂q̄nPν ≡ 0, n ∈ J . (3.18)

Moreover, ‖XP̆+Pν
‖Dν ,Oν ≤ εν .

Choose some rν+1 such that 0 < rν+1 < rν , and let Jν :=
[

5
2
ε
−aν

2
ν

]
. For j =

0, 1, · · · , Jν , we define the quantities at each KAM sub-step as

ρ(j)
ν = (1− j

2Jν
)ρν , r(j)

ν = rν −
j(rν − rν+1)

Jν
, s(j)

ν = 2−3jε
j
5
ν sν ,

and D(j)
ν = Dd,ρν+1(r

(j)
ν , s

(j)
ν ), ε

(j)
ν = ε

j
5

+1
ν , j = 0, 1, · · · , Jν . Our goal is to construct a

set Oν+1 ⊂ Oν and a finite sequence of maps

Φ(j)
ν : D(j)

ν → D(j−1)
ν , j = 1, 2, · · · , Jν ,

so that the Hamiltonian transformed into the (ν + 1)th KAM cycle

Hν+1 = Hν ◦ Φ(1)
ν ◦ · · · ◦ Φ(Jν)

ν

= Nν+1 + P̆ + Pν+1

= eν+1 + 〈ων+1, I〉+ 〈Ων+1q, q̄〉+ P̆ + Pν+1
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satisfies all the above iterative assumptions (A1) − (A5) on Dν+1 = D(Jν)
ν and C1

W

parametrized by ξ ∈ Oν+1, with new suitable parameters. Moreover,

‖XP̆+Pν+1
‖Dν+1,Oν+1 ≤ ε(Jν)

ν ≤ ε
1
2
ε
−aν/2
ν

ν = εν+1.

§3.3.1 Construction of Oν+1

As described in Theorem 1.6, there exists an orthogonal matrix Uν with

|(Uν − IZ)mn| ≤ ε
1
2
0 e
− 3

2
σν |m−n|, (3.19)

such that U∗νTUν = Dν + Zν , where Zν is a symmetric matrix satisfying

|(Zν)mn| ≤ ενe
−ρν |m−n|, (3.20)

andDν is a symmetric matrix which can be block-diagonalized via an orthogonal matrix

Qν with

(Qν)mn = 0, |m− n| > Nν . (3.21)

More precisely,

D̃ν = Q∗νDνQν =
∏
j

D̃ν
Λνj
, ]Λν

j ≤Mν , diamΛν
j ≤MνNν , ∀j.

To describe U∗νΩνUν , we need furthermore to consider U∗νAUν and U∗νWνUν . In

view of (3.3), (3.16) and (3.19), there exists a constant c1 > 0 such that

| (U∗ν (A+Wν)Uν)mn |Oν ≤ c1 max{N̂2e3σνN̂ , pνσ
−2
ν } · e−σν ·max{|m|, |n|},

by a simple application of Lemma B.1. Define the truncation Âν as

(Âν)mn :=

{
(U∗ν (A+Wν)Uν)mn , |m|, |n| ≤ Nν

0, otherwise
. (3.22)

It follows that ∣∣∣(U∗ν (A+Wν)Uν − Âν
)
mn

∣∣∣
Oν
≤ ενe

−ρν max{|m|, |n|}, (3.23)

under the assumption

(C1)µc1 max{N̂2e
3
2
σνN̂ , pνσ

−2
ν } · e−(σν−ρν)Nν ≤ εν .
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Let Kν+1 := Nν+1− (Mν + 1)Nν with the sequences Mν , Nν , ν = 0, 1, · · · , defined

in (1.10) and

D̃ν
Λν :=

∏
Λνj⊂Λν

D̃ν
Λνj
, Ãν := Q∗νÂνQν , (3.24)

where Λν :=
⋃
{Λν

j : Λν
j ∩ [−(Kν+1 +Nν), Kν+1 +Nν ] 6= ∅} ⊂ [−Nν+1, Nν+1]. In view

of (3.21) and (3.22), we have

(Ãν)mn ≡ 0, max{|m|, |n|} > 2Nν .

Since both of D̃ν
Λν and Ãν are Hermitian, there is an orthogonal matrix Oν such

that

O∗ν(D̃
ν
Λν + Ãν)Oν = diag{µνj}j∈Λν ,

where {µνj}j∈Λν are eigenvalues of D̃ν
Λν + Ãν . Due to the block-diagonal structure of

D̃ν
Λν + Ãν , we also have

(Oν)mn ≡ 0, |m− n| > 2(Mν + 2)Nν . (3.25)

Indeed, D̃ν
Λν + Ãν can be expressed as

D̃ν
Λν + Ãν = (D̃ν

Λ′ν
+ Ãν) ·

∏
Λνj∩[−2Nν ,2Nν ]=∅

D̃ν
Λνj

where Λ′ν :=
⋃
{Λν

j : Λν
j ∩ [−2Nν , 2Nν ] 6= ∅, Λν

j ⊂ Λν}, with diamΛ′ν ≤ 2(Mν + 2)Nν .

The diagonalization of D̃ν
Λν + Ãν is just the diagonalization of blocks (D̃ν

Λ′ν
+ Ãν) and

D̃ν
Λνj

.

As for the eigenvalues of D̃ν
Λν + Ãν , it is well-known that {µνn}n∈Λν C

1
W -smoothly

depend on ξ and there exist orthonormal eigenvectors ψνn corresponding to µνn, C1
W -

smoothly depending on ξ (see e.g. [13]). In fact, µνn = 〈(D̃Λν + Ãν)ψ
ν
n, ψ̄

ν
n〉 and

∂ξjµ
ν
n = 〈(∂ξj(D̃Λν + Ãν))ψ

ν
n, ψ̄

ν
n〉, j = 1, · · · , b.

By the construction of Ãν , we have ∂ξj Ãν = Q∗ν(∂ξj Âν)Qν , with Âν the truncation of

U∗ν (A+Wν(ξ))Uν . Since Dν , A, Uν and Qν are all independent of ξ,

sup
ξ∈Oν
|∂ξµνn| ≤ c sup

ξ∈Oν
m,n

|∂ξ(Wν)mn| ≤ cpν . (3.26)
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We defined the new parameter set Oν+1 ⊂ Oν as

Oν+1 :=

ξ ∈ Oν :

|〈k, ων〉| > γν
|k|τ , k 6= 0,

|〈k, ων〉+ µνn| >
γν

|k|τN2
ν+1
, k 6= 0, n ∈ Λν ,

|〈k, ων〉+ µνm ± µνn| >
γν

|k|τN4
ν+1
, k 6= 0, m, n ∈ Λν .

 (3.27)

for some 0 < γν � 1, τ ≥ b. These inequalities are famous small-divisor conditions for

controlling the solutions of the linearized equations.

From now on, to simplify notations, the subscripts (or superscripts) “ν” of quan-

tities at the νth step are neglected, and the corresponding quantities at the (ν + 1)th

step are labeled with “+”. In addition, we still use the superscript (j) to distinguish

quantities at various sub-steps.

§3.3.2 Homological equation and its approximate solution

For P =
∑

k,l,α,β Pklαβ(ξ)I lei〈k,θ〉qαq̄β, according to (3.8) and the definition of norm

in subsection §2.2.1, we have

|Pklαβ|O ≤ εe−ρn
∗
αβe−|k|r, ∀k ∈ Zb, 2|l|+ |α|+ |β| ≤ 2. (3.28)

Decompose P = R + (P −R) with

R :=
∑
k

2|l|+|α|+|β|≤2

Pklαβe
i〈k,θ〉I lqαq̄β, P −R =

∑
k

2|l|+|α|+|β|≥3

Pklαβe
i〈k,θ〉I lqαq̄β.

It follows that ‖XR‖D,O ≤ ‖XP‖D,O ≤ ε. Recalling that P̆ (q, q̄) is a sum of high-order

terms, then for η := ε
1
5 , there exists a constant c2 > 0 such that

‖XP̆‖Dd,ρ(r, ηs),O, ‖XP−R‖Dd,ρ(r, ηs),O ≤ c2ηs ≤
1

8
ε

6
5 , (3.29)

provided that

(C2)µc2s ≤ 1
8
ε.

Let e′ := P0000 and ω′ :=

∫
∂P

∂I
dθ|q=q̄=0,I=0. With O+ defined as in (3.27), we

have

Proposition 3.1 There exist two real-analytic Hamiltonians

F =
∑
k 6=0

1≤2|l|+|α|+|β|≤2

Fklαβq
αq̄βI lei〈k,θ〉, P̀ =

∑
k

1≤|α|+|β|≤2

P̀k0αβq
αq̄βei〈k,θ〉,
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and a Hermitian matrix W ′, all of which are C1
W parametrized by ξ ∈ O+, such that

{N , F}+R = e′ + 〈ω′, I〉+ 〈W ′q, q̄〉+ P̀ . (3.30)

Moreover, both of F and P̀ have gauge invariance, and for ε sufficiently small,

|Fklαβ|O+ ≤ ε
4
5 |k|2τ+1e−|k|re−ρn

∗
αβ , (3.31)

|P̀k0αβ|O+ ≤ ε
7
5 |k|2τ+1e−|k|re−ρ

(1)n∗αβ , (3.32)

|W ′
mn|O+ ≤

{
εe−ρmax{|m|, |n|}, |m|, |n| ≤ N+, m, n 6∈ J

0, otherwise
, (3.33)

∂qnF = ∂q̄nF = ∂qnP̀ = ∂q̄nP̀ ≡ 0, n ∈ J . (3.34)

Proof of Proposition 3.1: We decompose the proof into the following parts.

• Truncation and approximate linearized equations

At first, we rewrite R as

R =
∑
k
|l|≤1

Pkl00e
i〈k,θ〉I l +

∑
k

(〈P k10, q〉+ 〈P k01, q̄〉)ei〈k,θ〉

+
∑
k

(〈P k20q, q〉+ 〈P k11q, q̄〉+ 〈P k02q̄, q̄〉)ei〈k,θ〉,

where P k10, P k01, P k20, P k11, P k02 respectively denote(
P k10
n

)
:= (Pk0en0) ,

(
P k01
n

)
:= (Pk00en) ,(

P k20
mn

)
:=
(
Pkl(em+en)0

)
,
(
P k11
mn

)
:= (Pklemen) ,

(
P k02
mn

)
:=
(
Pkl0(em+en)

)
.

The gauge invariance of P implies that P 010, P 001, P 020, P 002 ≡ 0.

We try to construct a Hamiltonian F , of the same form as R, such that

{N , F}+R = e′ + 〈ω′, I〉+ 〈P 011q, q̄〉. (3.35)

By a straightforward calculation and simple comparison of coefficients, Eq. (3.35) is

equivalent to the following equations for k 6= 0 and |l| ≤ 1,

〈k, ω〉Fkl00 = iPkl00, (3.36)

(〈k, ω〉IZ − Ω)F k10 = iP k10, (3.37)

(〈k, ω〉IZ + Ω)F k01 = iP k01, (3.38)

(〈k, ω〉IZ − Ω)F k20 − F k20Ω = iP k20, (3.39)

(〈k, ω〉IZ − Ω)F k11 + F k11Ω = iP k11, (3.40)

(〈k, ω〉IZ + Ω)F k02 + F k02Ω = iP k02. (3.41)
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In view of the definition of O+, we know that (3.36) is solved on O+, with

|Fkl00|O+ ≤ γ−2|k|2τ+1εe−|k|r. (3.42)

As for (3.37)− (3.41), consider equations

(〈k, ω〉IZ − (D + Â))F̂ k10 = iR̂k10, (3.43)

(〈k, ω〉IZ + (D + Â))F̂ k01 = iR̂k01, (3.44)

(〈k, ω〉IZ − (D + Â))F̂ k20 − F̂ k20(D + Â) = iR̂k20, (3.45)

(〈k, ω〉IZ − (D + Â))F̂ k11 + F̂ k11(D + Â) = iR̂k11, (3.46)

(〈k, ω〉IZ + (D + Â))F̂ k02 + F̂ k02(D + Â) = iR̂k02, (3.47)

instead, where D and Â are defined in the previous subsection, and for k 6= 0,

R̂kx
n =

{
(U∗P kx)n, |n| ≤ K+

0, otherwise
, x = “10”, “01”, (3.48)

R̂kx
mn =

{
(U∗P kxU)mn, |m|, |n| ≤ K+

0, otherwise
, x = “20”, “11”, “02”. (3.49)

By (3.19) and (3.28), combining with Lemma B.1, there exists c3 > 0 such that

|(U∗P kx)n|O ≤ c3(σ − ρ)−1εe−ρ|n|e−|k|r, (3.50)

|(U∗P kxU)mn|O ≤ c3(σ − ρ)−2εe−ρmax{|m|, |n|}e−|k|r. (3.51)

This means

|(U∗P kx − R̂kx)n|O ≤
1

4
ε

7
5 e−ρ

(1)|n|e−|k|r, (3.52)

|(U∗P kxU − R̂kx)mn|O ≤
1

4
ε

7
5 e−ρ

(1) max{|m|, |n|}e−|k|r, (3.53)

under the assumption that

(C3)µc3(σ − ρ)−4e−(ρ−ρ(1))K+ ≤ 1
4
ε

2
5 .

Equations (3.43)−(3.47) provide us with approximate solutions to (3.37)−(3.41), with

the error estimated later.

• Block-diagonalization and construction of F

59



Consider the equations

(〈k, ω〉IΛ − (D̃Λ + Ã))F̃ k10 = iR̃k10, (3.54)

(〈k, ω〉IΛ + (D̃Λ + Ã))F̃ k01 = iR̃k01, (3.55)

(〈k, ω〉IΛ − (D̃Λ + Ã))F̃ k20 − F̃ k20(D̃Λ + Ã) = iR̃k20, (3.56)

(〈k, ω〉IΛ − (D̃Λ + Ã))F̃ k11 + F̃ k11(D̃Λ + Ã) = iR̃k11, (3.57)

(〈k, ω〉IΛ + (D̃Λ + Ã))F̃ k02 + F̃ k02(D̃Λ + Ã) = iR̃k02, (3.58)

where D̃Λ, Ã are defined as in (3.24) via the orthogonal matrix Q, and

R̃kx :=

{
Q∗R̂kx, x = “10”, “01”

Q∗R̂kxQ, x = “20”, “11”, “02”
.

Note that Qmn = 0 if |m− n| > N , then by (3.48) and (3.49), we have

R̃kx
n ≡ 0, |n| > K+ +N, x = “10”, “01”,

R̃kx
mn ≡ 0, max{|m|, |n|} > K+ +N, x = “20”, “11”, “02”.

Thus, recalling that Λ :=
⋃
{Λj : Λj ∩ [−(K+ +N), K+ +N ] 6= ∅}, solutions of these

finite-dimensional equations satisfy

F̃ kx
n ≡ 0, n 6∈ Λ, x = “10”, “01”,

F̃ kx
mn ≡ 0, {m,n} ∩ Λ = ∅, x = “20”, “11”, “02”.

Then, in view of the facts(
〈k, ω〉IZ ± (D̃ + Ã)

)
F̃ kx =

(
〈k, ω〉IΛ ± (D̃Λ + Ã)

)
F̃ kx, x = “10”, “01”,(

〈k, ω〉IZ ± (D̃ + Ã)
)
F̃ kx =

(
〈k, ω〉IΛ ± (D̃Λ + Ã)

)
F̃ kx, x = “20”, “11”, “02”,

F̃ kx(D̃ + Ã) = F̃ kx(D̃Λ + Ã), x = “20”, “11”, “02”,

they are also solutions of(
〈k, ω〉IZ − (D̃ + Ã)

)
F̃ k10 = iR̃k10,(

〈k, ω〉IZ + (D̃ + Ã)
)
F̃ k01 = iR̃k01,(

〈k, ω〉IZ − (D̃ + Ã)
)
F̃ k20 − F̃ k20(D̃ + Ã) = iR̃k20,(

〈k, ω〉IZ − (D̃ + Ã)
)
F̃ k11 + F̃ k11(D̃ + Ã) = iR̃k11,(

〈k, ω〉IZ + (D̃ + Ã)
)
F̃ k02 + F̃ k02(D̃ + Ã) = iR̃k02,
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which are respectively equivalent to Equation (3.43) − (3.47) since D can be block-

diagonalized by the orthogonal matrix Q.

Now we focus on the following equations

(〈k, ω〉 − µn)F̌ k10
n = i(O∗R̃k10)n,

(〈k, ω〉+ µn)F̌ k01
n = i(O∗R̃k01)n,

(〈k, ω〉 − µm − µn)F̌ k20
mn = i(O∗R̃k20O)mn,

(〈k, ω〉 − µm + µn)F̌ k11
mn = i(O∗R̃k11O)mn,

(〈k, ω〉+ µm + µn)F̌ k02
mn = i(O∗R̃k02O)mn.

for k 6= 0 and m,n ∈ Λ, which is transformed from (3.54) − (3.58) by diagonalizing

D̃Λ + Ã via the orthogonal matrix O. Obviously, these equations can be solved in O+.

Hence, (3.43)− (3.47) are solved with

F̂ kx =

{
QOF̌ kx, x = “10”, “01”

QOF̌ kxO∗Q∗, x = “20”, “11”, “02”
.

Let

F kx :=

{
UF̂ kx, x = “10”, “01”

UF̂ kxU∗, x = “20”, “11”, “02”
,

then we obtain a Hamiltonian

F =
∑
k 6=0
|l|≤1

Fkl00e
i〈k,θ〉I l +

∑
k 6=0

(〈F k10, q〉+ 〈F k01, q̄〉)ei〈k,θ〉

+
∑
k 6=0

(〈F k20q, q〉+ 〈F k11q, q̄〉+ 〈F k02q̄, q̄〉)ei〈k,θ〉.

It is easy to see that F̄ = F , by noting

F(−k)l00 = Fkl00, F (−k)10 = F k01, F (−k)01 = F k10,

F (−k)20 = F k02, (F (−k)11)∗ = F k11, F (−k)02 = F k20.

• Estimates for coefficients of F

Apart from Fkl00 which has been estimate in (3.42), we still need to handle F k10
n ,

F k01
n , F k20

mn , F k11
mn , F k02

mn . Let us consider F k20
mn for instance, and the other terms can be

treated in an analogous way.
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By the construction above, one sees that

F k20
mn = i

∑
F0

Umn1Qn1n2On2n3O
∗
n3n4

Q∗n4n5
R̂k20
n5n6

Qn6n7On7n8O
∗
n8n9

Q∗n9n10
U∗n10n

〈k, ω〉 − µn3 − µn8

, (3.59)

where the summation notation F0 denotes{
n1 ∈ Z, |n2 − n1| ≤ N, |n3 − n2|, |n4 − n3| ≤ 2(M + 2)N, |n5 − n4| ≤ N,

n10 ∈ Z, |n9 − n10| ≤ N, |n8 − n9|, |n7 − n8| ≤ 2(M + 2)N, |n6 − n7| ≤ N

}

by virtue of the structure of Q and O, i.e, (3.21) and (3.25). Then, by (3.51) and

Lemma B.1,

sup
ξ∈O+

|F k20
mn (ξ)| ≤ c(γ−1|k|τN4

+)(σ − ρ)−4M4N8e(4M+10)Nρεe−|k|re−ρmax{|m|,|n|}.

Here we have applied the property of the orthogonal matrices Q and O, and used the

factor e(4M+10)Nρ to recover the exponential decay.

To estimate |∂ξjF k20
mn |, we need to differentiate both sides of (3.56) with respect to

ξj, j = 1, 2, · · · , b. Then we obtain the equation about ∂ξj F̃
k20:

(〈k, ω〉IΛ − (D̃Λ + Ã))(∂ξj F̃
k20)− (∂ξj F̃

k20)(D̃Λ + Ã) = R̆k20
ξj
,

which can also be solved by diagonalizing D̃Λ + Ã via O as above, where

R̆k20
ξj

:= i∂ξj R̃
k20 + F̃ k20(∂ξj Ã)− (∂ξj(〈k, ω〉I − Ã))F̃ k20.

We get the formulation

∂ξjF
k20
mn =

∑
F1

Umn1Qn1n2On2n3O
∗
n3n4

(R̆k20
ξj

)n4n5On5n6O
∗
n6n7

Q∗n7n8
U∗n8n

〈k, ω〉 − µn3 − µn6

,

with F1 denotes{
n1 ∈ Z, |n2 − n1| ≤ N, |n3 − n2|, |n4 − n3| ≤ 2(M + 2)N,

n8 ∈ Z, |n7 − n8| ≤ N, |n6 − n7|, |n5 − n6| ≤ 2(M + 2)N

}
.

By the decay property of R̂k20 and ∂ξj Â, we have that

sup
ξ∈O+

|(R̆k20
ξj

)mn| ≤ c(γ−1|k|τ+1N4
+)(σ − ρ)−4M4N8e(4M+11)Nρεe−|k|re−ρmax{|m|,|n|}.
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Thus there exists c4 > 0 such that

sup
ξ∈O+

(|F k20
mn |+ |∂ξF k20

mn |)

≤ c4(γ−2|k|2τ+1N8
+)(σ − ρ)−6M8N14e(8M+20)Nρεe−ρmax{|m|,|n|}e−|k|r

≤ ε
4
5 |k|2τ+1e−|k|re−ρmax{|m|,|n|},

under the assumption

(C4)µc4γ
−2(σ − ρ)−6N8

+M
8N14e(8M+20)Nρε

1
5 ≤ 1.

Suppose that
∑b

i=1 ki + 2 6= 0, which means P k20 ≡ 0. Then R̂k20 ≡ 0, since it is

a truncation of U∗P k20U . By the formulation of F k20
mn in (3.59), F k20 ≡ 0.

From (A5) we see

P k20 ≡ 0,
b∑
i=1

ki + 2 6= 0.

Since R̂k20 is a truncation of U∗P k20U , we have

R̂k20 ≡ 0,
b∑
i=1

ki + 2 6= 0.

By the formulation of F k20
mn in (3.59), F k20 ≡ 0.

Doing the same thing for F k11, F k02, F k10, F k01 as above, we obtain the gauge

invariance of F and the inequality (3.31).

• Estimates for coefficients of P̀

Let W ′ be the truncation of P 011, satisfying

W ′
mn =

{
P 011
mn , |m|, |n| ≤ N+

0, otherwise
,

and

P̀ = 〈P̀ 011q, q̄〉+
∑
k 6=0

(〈P̀ k10, q〉+ 〈P̀ k01, q̄〉+ 〈P̀ k20q, q〉+ 〈P̀ k11q, q̄〉+ 〈P̀ k02q̄, q̄〉)ei〈k,θ〉
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with

P̀ 011 := P 011 −W ′,

P̀ k10 := (P k10 − UR̂k10)− i(À+ Z̀)F k10,

P̀ k01 := (P k01 − UR̂k01) + i(À+ Z̀)F k01,

P̀ k20 := (P k20 − UR̂k20U∗)− i(À+ Z̀)F k20 − iF k20(À+ Z̀),

P̀ k11 := (P k11 − UR̂k11U∗)− i(À+ Z̀)F k11 + iF k11(À+ Z̀),

P̀ k02 := (P k02 − UR̂k02U∗) + i(À+ Z̀)F k02 + iF k02(À+ Z̀),

where À := (A+W )− UÂU∗, Z̀ := UZU∗. Then we obtain

{N , F}+R = e′ + 〈ω′, I〉+ 〈W ′q, q̄〉+ P̀ . (3.60)

By (3.17) and (3.18), we have (3.33) holds and

|P̀ 011
mn |O+

≤ εe−ρmax{|m|, |n|} ≤ ε
7
5 e−ρ

(1) max{|m|, |n|},

under the assumption

(C5)µe−(ρ−ρ(1))N+ ≤ ε
2
5 .

As for the case k 6= 0 in (3.32), we only estimate P̀ k20, with the others entirely

analogous. By (3.53) and (C3), combining with Lemma B.1, we have∣∣∣(P k20 − UR̂k20U∗
)
mn

∣∣∣
O

=
∣∣∣(U(U∗P k20U − R̂k20)U∗

)
mn

∣∣∣
O

≤ 1

4
ε

7
5 e−ρ

(1) max{|m|, |n|}e−|k|r. (3.61)

In view of (3.20) and (3.23),

|Àmn|O ≤ c(σ − ρ)−2εe−ρmax{|m|, |n|}, |Z̀mn| ≤ c(σ − ρ)−2εe−ρ|m−n|.

Then, by applying Lemma B.1 again, there exists c6 > 0 such that∣∣∣(F k20(À+ Z̀)
)
mn

∣∣∣
O+

,
∣∣∣((À+ Z̀)F k20

)
mn

∣∣∣
O+

≤ c6(σ − ρ)−2(ρ− ρ(1))−1ε
9
5 |k|2τ+1e−|k|re−ρ

(1) max{|m|, |n|}

≤ 1

4
ε

7
5 |k|2τ+1e−|k|re−ρ

(1) max{|m|, |n|}, (3.62)

provided that

(C6)µc6(σ − ρ)−2(ρ− ρ(1))−1ε
2
5 ≤ 1

4
.
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Thus, we can obtain the estimate for P̀ k20 by putting (3.61) and (3.62) together.

By the construction of P̀ , the gauge invariance is easily verified.

• Verification of (3.34)

In view of the construction of R and W ′ above, the objects in (3.60) that may

depend on the variables (qn, q̄n)n∈J are F and P̀ . Let

F́ =
∑
k 6=0

(∑
n∈J

(F k10
n qn + F k01

n q̄n)

)
ei〈k,θ〉

+
∑
k 6=0

 ∑
{m,n}∩J 6=∅

(F k20
mn qmqn + F k11

mn qmq̄n + F k02
mn q̄mq̄n)

 ei〈k,θ〉

=:
∑
k 6=0

(
〈F́ k10, q〉+ 〈F́ k01, q̄〉+ 〈F́ k20q, q〉+ 〈F́ k11q, q̄〉+ 〈F́ k02q̄, q̄〉

)
ei〈k,θ〉.

For m or n ∈ J , by (3.15), we have(
(〈k, ω〉IZ − Ω)F́ k20 − F́ k20Ω

)
mn

= 〈k, ω〉F́ k20
mn −

∑
l 6∈J

ΩmlF́
k20
ln −

∑
l 6∈J

F́ k20
ml Ωln

=


〈k, ω〉F k20

mn , m, n ∈ J
〈k, ω〉F k20

mn −
∑

l 6∈J ΩmlF
k20
ln , m 6∈ J , n ∈ J

〈k, ω〉F k20
mn −

∑
l 6∈J F

k20
ml Ωln, m ∈ J , n 6∈ J

=
(
(〈k, ω〉IZ − Ω)F k20 − F k20Ω

)
mn
.

This means, by comparing the coefficients in both side of Equation (3.60),(
(〈k, ω〉IZ − Ω)F́ k20 − F́ k20Ω

)
mn

= −iP̀ k20
mn , {m,n} ∩ J 6= ∅.

Similarly, (
(〈k, ω〉IZ − Ω)F́ k10

)
n

= −iP̀ k10
n , n ∈ J ,(

(〈k, ω〉IZ + Ω)F́ k01
)
n

= −iP̀ k01
n , n ∈ J ,(

(〈k, ω〉IZ − Ω)F́ k11 + F́ k11Ω
)
mn

= −iP̀ k11
mn , {m,n} ∩ J 6= ∅,(

(〈k, ω〉IZ + Ω)F́ k02 + F́ k02Ω
)
mn

= −iP̀ k02
mn , {m,n} ∩ J 6= ∅.
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Thus, {N , F́} equals to

∑
k 6=0

∑
n∈J

(P̀ k10
n qn + P̀ k01

n q̄n) +
∑

{m,n}∩J 6=∅

(P̀ k20
mn qmqn + P̀ k11

mn qmq̄n + P̀ k02
mn q̄mq̄n)

 ei〈k,θ〉.

Hence, if we substitute F with F−F́ , which is independent of the variables (qn, q̄n)n∈J ,

then the system will keep independent of the variables (qn, q̄n)n∈J . (3.34) is satisfied.�

§3.3.3 Verification of assumptions after one sub-step

We proceed to estimate the norm of XF , and to study properties of Φ1
F on smaller

domains Di := Dd,ρ+(r(1) + i
4
(r − r(1)), i

4
s), i = 1, 2, 3, 4.

Lemma 3.2 For ε sufficiently small, we have ‖XF‖D3,O+ ≤ ε
3
4 and ‖XP̀‖D3,O+ ≤ ε

5
4 .

Proof. In view of the decay property of F in Proposition 3.1, it follows that

1

s2
‖∂θF‖D3,O+ , ‖∂IF‖D3,O+ ≤ c(r − r(1))−(2τ+b+1)ε

4
5 ,

and

sup
D3

1

s

∑
n∈Z

(
‖∂qnF‖O+ + ‖∂q̄nF‖O+

)
〈n〉deρ+|n|

≤ sup
D3

c

s

∑
n∈Z

∑
k 6=0

(
|F k10
n |O+ + |F k01

n |O+

)
e|k|(r−

1
4

(r−r(1)))〈n〉deρ+|n|

+ sup
D3

c

s

∑
n∈Z

∑
k 6=0
m∈Z

(|F k20
mn |O+ + |F k11

mn |O+ + |F k02
mn |O+)|qm|e|k|(r−

1
4

(r−r(1)))〈n〉deρ+|n|

≤ c(r − r(1))−(2τ+b+1)(ρ− ρ+)−2ε
4
5 .

Putting together the estimates above, there is a constant c7 > 0 such that

‖XF‖D3,O+ ≤ c7(r − r(1))−(2τ+b+1)(ρ− ρ+)−2ε
4
5 .

In an entirely analogous way, we have

‖XP̀‖D3,O+ ≤ c7(r − r(1))−(2τ+b+1)(ρ(1) − ρ+)−2ε
7
5 .

Moreover, if

(C7)µc7(r − r(1))−(2τ+b+1)(ρ(1) − ρ+)−2ε
1
20 ≤ 1

3
,

then Lemma 3.2 follows. �
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Let Diη = Dd,ρ+(r(1) + i
4
(r − r(1)), i

4
ηs), i = 1, 2, 3, 4.

Lemma 3.3 For ε sufficiently small, we have Φt
F : D2η → D3η, −1 ≤ t ≤ 1 and

‖DΦt
F − I‖D1η < 2ε

3
4 .

Let F (1), e(1), ω(1), W (1), P̀ (1) be the corresponding quantities in (3.30) respectively,

which means that we are in the 1st sub-step. Define H(1) as

H(1) := H ◦ Φ1
F (1)

= (N + P̆ +R) ◦ Φ1
F (1) + (P −R) ◦ Φ1

F (1)

= N + P̆ + {N , F (1)}+R +

∫ 1

0

(1− t){{N , F (1)}, F (1)} ◦ Φt
F (1) dt

+

∫ 1

0

{P̆ +R,F (1)} ◦ Φt
F (1) dt+ (P −R) ◦ Φ1

F (1)

= N + P̆ + e(1) + 〈ω(1), I〉+ 〈W (1)q, q̄〉+ P (1),

where

P (1) := P̀ (1) +

∫ 1

0

{(1− t){N , F (1)}+ P̆ +R,F (1)} ◦ Φt
F (1) dt+ (P −R) ◦ Φ1

F (1) .

Let R(t) := (1−t)(e(1)+〈ω(1), I〉+〈W (1)q, q̄〉+P̀ (1))+tR, which satisfies ‖XR(t)‖D3 ≤ cε.

Then P (1) can be written as

P (1) = P̀ (1) +

∫ 1

0

{R(t) + P̆ , F (1)} ◦ Φt
F (1) dt+ (P −R) ◦ Φ1

F (1) .

Hence,

XP (1)−P̀ (1) =

∫ 1

0

(Φt
F (1))

∗X{R(t)+P̆ , F (1)} dt + (Φ1
F (1))

∗X(P−R).

By Lemma A.3,

‖X{R(t)+P̆ , F (1)}‖D2η ≤ cη−2ε
7
4 = ε

27
20 .

Then, combining with (3.29), recalling the conclusion of Lemma 3.2 and 3.3,

‖XP (1)‖D(1),O+
≤ 1

2
ε

6
5 + 2ε

5
4 + 2cε

27
20 ≤ ε

6
5 = ε(1).
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Now we need to show P (1) satisfies assumptions (A4) and (A5). Note that

P (1) = P̀ (1) + P −R + {P̆ , F (1)}+ {P, F (1)}

+
1

2!
{{N , F (1)}, F (1)}+

1

2!
{{P̆ , F (1)}, F (1)}+

1

2!
{{P, F (1)}, F (1)}+ · · ·

+
1

n!
{· · · {N , F (1)} · · · , F (1)︸ ︷︷ ︸

n

}+
1

n!
{· · · {P̆ , F (1)} · · · , F (1)︸ ︷︷ ︸

n

}

+
1

n!
{· · · {P, F (1)} · · · , F (1)︸ ︷︷ ︸

n

}+ · · · .

Since all of N , P̆ , P , F (1), P̀ (1) have gauge invariance, independent of variables

(qn, q̄n)n∈J , so does P (1) due to Lemma A.4 and A.5 in Appendix.

For P −R =
∑

2|l|+|α|+|β|≥3

Pklαβe
i〈k,θ〉I lqαq̄β, we have

‖Pαβ‖D(1) ≤

{
1
4
ε(2)e−ρn

∗
αβ , |α|+ |β| ≤ 2

e−ρn
∗
αβ , |α|+ |β| ≥ 3

.

Here we applied the estimate |I| ≤ s(1) ≤ 1
4
ε(1) to handle the case that |α| + |β| ≤ 2

and 2|l|+ |α|+ |β| ≥ 3.

The decay property of remaining terms, which are made up of several Poisson

brackets, is covered by the following lemmas.

Lemma 3.4 For ε sufficiently small, {P, F (1)} satisfies

‖{P, F (1)}αβ‖D3η ,O+ ≤

{
ε

5
4 e−ρ

(1)n∗αβ , |α|+ |β| ≤ 2

ε
1
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3
.

Proof. A straightforward calculation yields that

{P, F (1)}αβ = i
∑
n∈Z

(α̌,β̌)+(α̂,β̂)=(α,β)

(
Pα̌+en,β̌

F
(1)

α̂,β̂+en
− Pα̌,β̌+en

F
(1)

α̂+en,β̂

)
(3.63)

+
∑

(α̌,β̌)+(α̂,β̂)=(α,β)

{
Pα̌β̌, F

(1)

α̂β̂

}
. (3.64)

• Terms in (3.63)

Let us consider terms Pα̌+en,β̌
F

(1)

α̂,β̂+en
.
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i) |α|+ |β| ≤ 2

Since |α̂|+ |β̂ + en| = 1 or 2 in view of the construction of F (1), we have that

|α̌ + en|+ |β̌| = |α|+ |β|+ 1− (|α̂|+ |β̂|) ≤ 3. (3.65)

If |α̌ + en|+ |β̌| ≤ 2, then, noting that n∗αβ ≤ max{n∗
α̌+en,β̌

, n∗
α̂,β̂+en

},

‖Pα̌+en,β̌
F

(1)

α̂,β̂+en
‖D3,O+ ≤ εe

−ρn∗
α̌+en,β̌ · ε

3
4 e
−ρn∗

α̂,β̂+en ≤ ε
7
4 e−ρn

∗
αβ . (3.66)

If |α̌ + en| + |β̌| = 3, then, by (3.65), (α̂, β̂) = (0, 0), (α̌, β̌) = (α, β). By the

definition of norm ‖XP‖D,O and the construction of F (1),

‖Pα+en,β‖D3,O ≤ e−ρn
∗
α+en,β , ‖F (1)

0,en‖D3,O+ ≤ sε
3
4 e−ρ|n|.

Thus, noting that n∗αβ ≤ max{n∗α+en,β
, |n|},

‖Pα+en,βF
(1)
0,en‖D3,O+ ≤ sε

3
4 e−ρn

∗
αβ ≤ 1

4
ε

7
4 e−ρn

∗
αβ . (3.67)

ii) |α|+ |β| ≥ 3

By the same argument as above,

‖Pα̌+en,β̌
F

(1)

α̂,β̂+en
‖D3,O+ ≤ e

−ρn∗
α̌+en,β̌ · ε

3
4 e
−ρn∗

α̂,β̂+en ≤ ε
3
4 e−ρn

∗
αβ . (3.68)

Doing the same for Pα̌,β̌+en
F

(1)

α̂+en,β̂
, we finish estimates for terms in (3.63).

• Terms in (3.64)

By Lemma A.2 and the inequality n∗αβ ≤ max{n∗
α̌β̌
, n∗

α̂β̂
}, we have

‖{Pα̌β̌, F
(1)

α̂β̂
}‖D3η ≤ c(r − r(1))−1η−2

{
ε

7
4 e−ρn

∗
αβ , |α|+ |β| ≤ 2

ε
3
4 e−ρn

∗
αβ , |α|+ |β| ≥ 3

. (3.69)

Combining (3.66)− (3.69), there exists c8 > 0 such that

‖{P, F (1)}αβ‖D3η ≤ c8(r − r(1))−1η−2(ρ− ρ(1))−2

{
ε

7
4 e−ρ

(1)n∗αβ , |α|+ |β| ≤ 2

ε
3
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3
,

applying the fact that |α̂|+ |β̂| ≤ 2. Moreover, if

(C8)µc8(r − r(1))−1η−2(ρ− ρ(1))−2ε
1
2 ≤ 1

4
,

Lemma 3.4 is proved. �
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By (3.28), (3.32) and (3.33), it is evident that the coefficients of

{N , F (1)} = e(1) + 〈ω(1), I〉+ 〈W (1)q, q̄〉+ P̀ (1) −R

satisfies ‖{N , F (1)}αβ‖D3,O+ ≤ cεe−ρ
(1)n∗αβ . Then we have the following lemma, whose

proof is analogous to that of Lemma 3.4.

Lemma 3.5 For ε sufficiently small, {{N , F (1)}, F (1)} satisfies

‖{{N , F (1)}, F (1)}αβ‖D3η ,O+ ≤
1

4
ε

6
5 e−ρ

(1)n∗αβ .

Lemma 3.6 For ε sufficiently small, {P̆ , F (1)} satisfies

‖{P̆ , F (1)}αβ‖D3,O+ ≤ ε
1
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3.

Proof. It can be calculated that

{P̆ , F (1)}αβ = i
∑
n∈Z

(α̌,β̌)+(α̂,β̂)=(α,β)

(
P̆α̌+en,β̌

F
(1)

α̂,β̂+en
− P̆α̌,β̌+en

F
(1)

α̂+en,β̂

)
. (3.70)

For P̆α̌+en,β̌
F

(1)

α̂,β̂+en
in (3.70), since |α̂| + |β̂ + en| = 1 or 2 and |α̌ + en| + |β̌| ≥ 4 here,

it is obvious that |α|+ |β| = |α̌|+ |β̌|+ |α̂|+ |β̂| ≤ 3.

Note that n∗αβ ≤ max{n∗
α̌+en,β̌

n∗
α̂,β̂+en

}, and

n∗
α̌+en,β̌

= max{n+
α̌+en,β̌

, −n−
α̌+en,β̌

}, n∗
α̂,β̂+en

= max{n+

α̂,β̂+en
, −n−

α̂,β̂+en
}.

Then n+
α̌+en,β̌

− n−
α̌+en,β̌

+ n∗
α̂,β̂+en

≥ n∗αβ, and hence∥∥∥P̆α̌+en,β̌
F

(1)

α̂,β̂+en

∥∥∥
D3

≤ e
−ρ(n+

α̌+en,β̌
−n−

α̌+en,β̌
) · ε

3
4 e
−ρn∗

α̂,β̂+en ≤ ε
3
4 e−ρn

∗
αβ .

Doing the estimate for P̆α̌,β̌+en
F

(1)

α̂+en,β̂
in (3.70) similarly, we have that

‖{P̆ , F (1)}αβ‖D3 ≤ c8(ρ− ρ(1))−2ε
3
4 e−ρ

(1)n∗αβ ≤ ε
1
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3,

if (C8) holds. �

Summarize the analysis above, then the decay property for P (1) can be expressed

as

Proposition 3.2 For ε sufficiently small, P (1) =
∑

α,β P
(1)
αβ (θ, I; ξ)qαq̄β satisfies

‖P (1)
αβ ‖D(1),O+

≤

{
ε(1)e−ρ

(1)n∗αβ , |α|+ |β| ≤ 2

e−ρ
(1)n∗αβ , |α|+ |β| ≥ 3

.
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§3.3.4 A succession of symplectic transformations

With the verification of assumptions (A4) and (A5) completed, we finish one sub-

step of KAM iteration. Suppose that we have arrived at the jth sub-step, j = 1, · · · , J ,

with J =
[

5
2
ε
a
2

]
, then we encounter the Hamiltonian

H(j−1) = H ◦ Φ1
F (1) ◦ · · · ◦ Φ1

F (j−1)

= N + P̆ +

j−1∑
i=1

(
e(i) + 〈ω(i), I〉+ 〈W (i)q, q̄〉

)
+ P (j−1),

with the superscript “(0)” labeling quantities before the 1st sub-step in particular. Let

R(j−1) :=
∑
k

2|l|+|α|+|β|≤2

P
(j−1)
klαβ e

i〈k,θ〉I lqαq̄β. (3.71)

As demonstrated in Proposition 3.1, on O+, the following homological equation

{N , F (j)}+R(j−1) = e(j) + 〈ω(j), I〉+ 〈W (j)q, q̄〉+ P̀ (j), (3.72)

can be solved, with F (j), e(j), ω(j), W (j), P̀ (j) having properties similar to F (1), e(1),

ω(1), W (1), P̀ (1) respectively. Then we obtain

H(j) = H(j−1) ◦ Φ1
F (j) = N + P̆ +

j∑
i=1

(
e(i) + 〈ω(i), I〉+ 〈W (i)q, q̄〉

)
+ P (j).

The estimates for F (j) and the verification of assumptions for P (j) can be done similarly

as in subsection §3.3.3.

Proposition 3.3 Consider the Hamiltonian H in (3.14). There exist J symplectic

transformations Φ(j) = Φ1
F (j), j = 1, · · · , J , generated by the corresponding real-analytic

Hamiltonians F (j) respectively, such that

H(j) = H ◦ Φ(1) ◦ · · · ◦ Φ(j) = N + P̆ +Gj + P (j), j = 1, · · · , J,

is real-analytic on D(j) = Dd,ρ+(r(j), s(j)), with Gj =
∑j

i=1

(
e(i) + 〈ω(i), I〉+ 〈W (i)q, q̄〉

)
.

For i = 1, 2, 3, 4, η = ε
1
5 , let

D(j)
i = Dd,ρ+(r(j+1) +

i

4
(r(j) − r(j+1)),

i

4
s(j)),

D(j)
iη = Dd,ρ+(r(j+1) +

i

4
(r(j) − r(j+1)),

i

4
ηs(j)).
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(a) With R(j−1) defined in (3.71), F (j) satisfies the homological equation (3.72) on O+,

and

‖XF (j)‖D(j−1)
3 ,O+

≤ ε−
1
4 ε(j−1),

Φt
F (j) : D(j−1)

2η → D(j−1)
3η , −1 ≤ t ≤ 1,

‖DΦt
F (j) − I‖D(j−1)

1η
< 2ε−

1
4 ε(j−1),

‖F (j)
αβ ‖D(j−1)

3 ,O+
≤

{
ε−

1
4 ε(j−1)e−ρ

(j−1)n∗αβ , |α|+ |β| ≤ 2

0, |α|+ |β| ≥ 3
,

∂qnF
(j) = ∂q̄nF

(j) ≡ 0, ∀n ∈ J .

(b) Gj satisfies that ‖XGj‖D(j)
3 ,O+

≤ cε and for i = 1, 2, · · · , j,

|ω(i)|O+ ≤ ε(i−1),

|W (i)
mn|O+ ≤

{
ε(i−1)e−ρ

(i−1) max{|m|, |n|}, |m|, |n| ≤ N+, m, n 6∈ J
0, otherwise

.

(c) ‖XP̆+P (j)‖D(j),O+
≤ ε(j) and P (j) satisfies assumptions (A4), (A5), which include

‖P (j)
αβ ‖D(j),O+

≤

{
ε(j)e−ρ

(j)n∗αβ , |α|+ |β| ≤ 2

e−ρ
(j)n∗αβ , |α|+ |β| ≥ 3

∂qnP
(j) = ∂q̄nP

(j) ≡ 0, ∀n ∈ J .

Let s+ = s(J) = 2−3Jε
J
5 s, Φ = Φ(1) ◦ · · · ◦ Φ(J), and

N+ = e+ + 〈ω+, I〉+ 〈Tq, q̄〉+ 〈(A+W+)q, q̄〉,

with Ω+ = T + A+W+, and

e+ = e+
J∑
j=1

e(j), ω+ = ω +
J∑
j=1

ω(j), W+ = W +
J∑
j=1

W (j).

Then Φ : D+ → D. From the estimates of ω(j) and W (j), we have

|ω+ − ω|O+ ≤ cε, (3.73)

|(W+ −W )mn|O+ ≤

{
ε

1
2 e−

ρ
2

max{|m|, |n|}, |m|, |n| ≤ N+, m, n 6∈ J
0, otherwise

. (3.74)
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Since W ∗ = W and (W (i))∗ = W (i), W+ is still a Hermitian matrix. So (A1) and (A2)

hold with p+ = p+ ε
1
2 , σ+ := 1

3
ρ.

Let P+ = P (J). It can be verified that the assumptions (A4) and (A5) for P (J)

hold, which is an analogue to the process in subsection §3.3.3.

This completes one step of KAM iterations.

§3.4 Proof of Theorem 3.2

With ε0 = ε
1
4 , σ0 = 1, N̂ = | ln ε0|, andN0 = 6| ln ε0|, ρ0 = N−1

0 ,

M0 = max

{
2s̃+4C

Ls̃+1((s̃+ 1)!)2

ξ̃
, 2τ̃ , 8,

12(2τ + b+ 3)

τ̃

}
,

one can define the following sequences as in [16],

Mν+1 = M s̃M3
ν

ν , aν =
1

τ̃
M−3s̃M3

ν
ν , εν+1 = ε

1
2
ε
−aν/2
ν

ν ,

Nν+1 = ε−aνν , ρν+1 = εaνν , σν+1 =
1

3
ρν .

Given p0 = ε
1
2
0 , r0 = r, s0 = s, �½ÂS�the other sequences are defined as

pν+1 = pν + ε
1
2
ν , Kν+1 = Nν+1 − (Mν + 1)Nν , Jν =

[
5

2
ε
−aν

2
ν

]
,

rν = r0

(
1−

ν+1∑
i=2

2−i

)
, sν+1 = 2−3Jνε

Jν
5
ν sν , γν = ε

1
80
ν .

Let Dν and Oν be as defined in Section §3.3.

§3.4.1 Iteration lemma

The preceding analysis can be summarized as follows.

Lemma 3.7 There exists ε0 sufficiently small such that the following holds for all

ν = 0, 1, · · · .

(a) Hν = Nν + P̆ + Pν3Dνis real-analytic on Dν, and C1
W parametrized by ξ ∈ Oν,

where

Nν = eν + 〈ων , I〉+ 〈Ωνq, q̄〉

= eν + 〈ων , I〉+ 〈(T + A+Wν)q, q̄〉

Pν =
∑
α,β

(Pν)αβ(θ, I; ξ)qαq̄β,

73



satisfying

(Ων)mn ≡ 0, {m,n} ∩ J 6= ∅,

|(Wν)mn|Oν ≤

{
pνe
−σν max{|m|, |n|}, |m|, |n| ≤ Nν

0, otherwise
,

|ων+1 − ων |Oν+1 ≤ εν ,

|(Wν+1 −Wν)mn|Oν+1 ≤

{
ε

1
2
ν e−

ρν
2

max{|m|, |n|}, |m|, |n| ≤ Nν+1, m, n 6∈ J
0, otherwise

.

Moreover, Pν has gauge invariance and ‖XP̆+Pν
‖Dν ,Oν ≤ εν,

‖(Pν)αβ‖Dν ,Oν ≤

{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρνn
∗
αβ , |α|+ |β| ≥ 3

,

∂qnPν = ∂q̄nPν ≡ 0, ∀n ∈ J .

(b) For each ν, there is a symplectic transformation Φν : Dν+1 → Dν with

‖DΦν − Id‖Dν+1,Oν+1 ≤ ε
1
2
ν ,

such that Hν+1 = Hν ◦ Φν.

Proof. Let c0 := 8e20 max{c1, · · · , c8}. We need to verify the assumptions (C1)−(C8)

for ν = 0, 1, · · · . By noting that

Nν+1 = εaνν = ρ−1
ν+1, σν+1 =

1

3
ρν , r(j)

ν −r(j+1)
ν =

rν − rν+1

2Jν
, ρ(j)

ν −ρ(j+1)
ν =

ρν − ρν+1

2Jν
,

it is sufficient for us to check:

(D1) c0sν ≤ εν ,

(D2) c0

(
rν − rν+1

2Jν

)−(2τ+b+1)(
ρν − ρν+1

2Jν

)−2

≤ ε
− 1

20
ν ,

(D3) c0N
8
ν+1M

8
νN

20
ν e

8MνNνρν ≤ ε
− 7

40
ν ,

(D4) e−
ρνKν+1

2Jν ≤ ε
2
5
ν ,

for all ν = 0, 1, · · · .
By the choice of s0, the condition (D1) clearly holds for ν = 0. Suppose that it

holds for some ν, then it is easy to see that

c0sν+1 = 2−3Jνε
Jν
5
ν · c0sν < 2−3Jνε

Jν
5
ν · εν < εν+1.
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Hence (D1) holds for all ν.

Let us first take ε0 sufficiently small such that

ε
1
20
− 1

2
a0(2τ+b+3)

0 ≤ 1

c0

( r0

20

)2τ+b+1
(

1− εa0
0

5

)2

.

Here we have applied M0 ≥ 12
τ̃

(2τ + b+ 3) and a0 = M
−3s̃M3

0
0 such that 1

20
− 1

2
a0(2τ +

b+ 3) > 0. Then, recalling that rν − rν+1 = r0
22+νÚJν =

[
5
2
ε
−aν

2
ν

]
, ��

c0

(
r0 − r1

2J0

)−(2τ+b+1)(
ρ0 − ρ1

2J0

)−2

≤ ε
− 1

20
0 ,

i.e., (D2) holds for ν = 0. Since for ν ≥ 1 and for ε0 sufficiently small,

ε
1
40
− 1

2
aν(2τ+b+3)

ν � ε
( 6

5)
ν

0 � 1

2ν(2τ+b+1)c0

( r0

20

)2τ+b+1

, ε
1
40
ν �

(
ε
aν−1

ν−1 − εaνν
5

)2

,

we have

c0

(
rν − rν+1

2Jν

)−(2τ+b+1)(
ρν − ρν+1

2Jν

)−2

≤ ε
− 1

20
ν .

Thus, (D2) holds true.

In Section 6 of [16], the basic smallness assumption of εν , i.e., the inequality (D.3)

in Lemma D.1, has been verified, then all other assumptions are immediate, including

the inequality

ΓνN
2
ν e

6MνNνρν ≤ ε
− 1

8
ν ,

where Γν increases superexponentially in Mν . Since all of Mν , Nν , ρν and εν here

are defined in the same way as [16], we can apply this inequality. So (D3) has been

verified.

By the definition of ρν , aν and εν , we have

ρνε
− 1

2
aν

ν > ln
1

εν
.

Then we see that (D4) holds for ν = 0, 1, · · · . �

§3.4.2 Convergence

Now we fix x ∈ X̃ , with X̃ defined as in Proposition 1.6. This means that the

blocks mentioned in Proposition 1.6 are eventually stationary after some step, i.e., for

each n ∈ Z, there is a ν0(n) such that

Λν+1(n) = Λν(n), ∀ν ≥ ν0(n).
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In this case, the local decay rate for n may not shrink with ν necessarily(ρν is the

global upper bound of the rates for all n ∈ Z).

Define Ψν = Φ0 ◦Φ1 ◦ · · · ◦Φν−1, ν = 1, 2, · · · . An induction argument shows that

Ψν : Dν+1 → D0, and

H0 ◦Ψν = Hν = Nν + P̆ + Pν .

Let Oε0 = ∩∞ν=0Oν . As in standard arguments, thanks to Lemma 3.3, it concludes

that Hν , Nν , Pν , Ψν , eν , ων and Wν converge uniformly on Dd,0(1
2
r0, 0) ×Oε0 to, say,

H∞, N∞, P∞, Ψ∞, e∞, ω∞ and W∞ respectively, in which case it is clear that

N∞ = e∞ + 〈ω∞, I〉+ 〈(T + A+W∞)q, q̄〉,

with Ω∞ = T +A+W∞ satisfying (Ω∞)mn ≡ 0 if m or n ∈ J . Since ‖XPν‖Dν ,Oν ≤ εν

with εν → 0, it follows that ‖XP∞‖Dd,0( 1
2
r0,0),Oε0

= 0.

Since H0 ◦ Ψν = Hν , we have Φt
H0
◦ Ψν = Ψν ◦ Φt

Hν
, with Φt

H0
denoting the flow

of the Hamiltonian vector field XH0 . The uniform convergence of Ψν and XHν implies

that one can pass the limit in the above and conclude that

Φt
H0
◦Ψ∞ = Ψ∞ ◦ Φt

H∞ , Ψ∞ : Dd,0(
1

2
r0, 0)→ D0.

Hence,

Φt
H0

(Ψ∞(Tb × {ξ})) = Ψ∞Φt
N∞(Tb × {ξ}) = Ψ∞(Tb × {ξ}), ∀ξ ∈ Oε0 .

This means that Ψ∞(Tb×{ξ}) is an embedded invariant torus of the original perturbed

Hamiltonian system at ξ ∈ Oε0 . Moreover, the frequencies ω∞(ξ) associated with

Ψ∞(Tb × {ξ}) are slightly deformed from the unperturbed ones, ω(ξ).

§3.4.3 Measure estimate

At the νth step of KAM iteration, we need to exclude the following resonant

parameter set

Rν
k := Rν1

k

⋃( ⋃
n∈Λν

Rν2
kn

)⋃( ⋃
m,n∈Λν

Rν3
kmn

)⋃( ⋃
m,n∈Λν

Rν4
kmn

)
, k 6= 0
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for any fixed x ∈ X̃ , where

Rν1
k :=

{
ξ ∈ Oν : |〈k, ων〉| <

γν
|k|τ

}
,

Rν2
kn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνn| <

γν
|k|τN2

ν+1

}
,

Rν3
kmn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνm + µνn| <

γν
|k|τN4

ν+1

}
,

Rν4
kmn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνm − µνn| <

γν
|k|τN4

ν+1

}
,

with {µνj}j∈Λν eigenvalues of D̃ν
Λν + Ãν . It is clear that O \ Oε ⊆

⋃
ν≥0

⋃
k 6=0Rν

k.

Recalling that ω0 is a diffeomorphism of ξ, together with the estimates in (3.26),

(3.73) and (3.74), we have

|∂ξ(〈k, ων〉+ µνm − µνn)| ≥ |∂ξ〈k, ω0〉| − ε
1
4
0 |k| − p = O(|k|)

for the setRν4
kmn. The cases forRν1

k , Rν2
kn, Rν3

kmn can be handled in an entirely analogous

way. Thus∣∣∣∣∣Rν1
k

⋃( ⋃
n∈Λν

Rν2
kn

)⋃( ⋃
m,n∈Λν

Rν3
kmn

)⋃( ⋃
m,n∈Λν

Rν4
kmn

)∣∣∣∣∣ ≤ cγν
|k|τ+1

.

Since τ ≥ b, we have that

|O0 \ Oε| ≤

∣∣∣∣∣⋃
ν≥0

⋃
k 6=0

Rν
k

∣∣∣∣∣ ≤ c
∑
ν≥0

∑
k 6=0

γν
|k|τ+1

= c
∑
ν≥0

γν ∼ γ0 = ε
1
80
0 .
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N¹� Hamiltonian vector field and Poisson

bracket

For d, ρ, r, s > 0, let F , G be two real-analytic functions on D = Dd,ρ(r, s), both

of which C1
W depend on the parameter ξ ∈ O.

Lemma A.1 The norm ‖ · ‖D,O has the Banach algebraic property, i.e.,

‖FG‖D ≤ ‖F‖D‖G‖D.

Proof. Since (FG)klαβ =
∑

ǩ+k̂=k, ľ+l̂=l

α̌+α̂=α, β̌+β̂=β

Fǩľα̌β̌Gk̂l̂α̂β̂, we have that

‖FG‖D = sup
D

∑
k,l,α,β

|(FG)klαβ|O|qα||q̄β||I l|e|k||Imθ|

≤ sup
D

∑
k,l,α,β

∑
ǩ+k̂=k, ľ+l̂=l

α̌+α̂=α, β̌+β̂=β

|Fǩľα̌β̌Gk̂l̂α̂β̂|O|q
α||q̄β||I l|e(|ǩ|+|k̂|)|Imθ|

≤ ‖F‖D‖G‖D.

�

Lemma A.2 (Generalized Cauchy Inequalities)The various components of the

Hamiltonian vector field XF satisfy: for any 0 < r′ < r, 0 < ρ′ < ρ,

‖∂θF‖Dd,ρ(r′, s) ≤
c

r − r′
‖F‖D,

‖∂IF‖Dd,ρ(r, s
2

) ≤
c

s2
‖F‖D,

sup
Dd,ρ(r, s

2
)

∑
n∈Z1

(‖∂qnF‖O + ‖∂q̄nF‖O) 〈n〉de|n|ρ′ ≤ c

s(ρ− ρ′)
‖F‖D.

Proof. We only prove the third inequality, with others shown analogously. Given

ω ∈ `1
d,ρ(Z)\{0}, f(t) = F (·, ·, q+ tω, ·) is an analytic function on the the complex disc

{z ∈ C : |z| < s
‖ω‖d,ρ

}. Hence

|f ′(0)| =

∣∣∣∣∣∑
n∈Z

ωn · ∂qnF

∣∣∣∣∣ ≤ c

s
‖F‖D · ‖ω‖d,ρ,
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by the usual Cauchy inequality. As a linear operator on `1
d,ρ(Z), ∂qF satisfies

‖∂qF‖op := sup
ω 6=0

∣∣∑
n∈Z1

ωn · ∂qnF
∣∣

‖ω‖d,ρ
≤ c

s
‖F‖D.

Let ‖ω‖d,ρ = s
2
, then

|∂qnF | ≤ sup
‖ω‖d,ρ= s

2

|∂qnF | · |ωn|
‖ω‖d,ρ

≤ ‖∂qF‖op|ωn|
s
2

≤ c

s
‖F‖D〈n〉−de−|n|ρ.

Hence, for any 0 < ρ′ < ρ,∑
n∈Z

|∂qnF |〈n〉de|n|ρ
′ ≤

∑
n∈Z1

c

s
‖F‖De−|n|(ρ−ρ

′) ≤ c

s(ρ− ρ′)
‖F‖D.

With F̃ =
∑

k,l,α,β(∂ξFklαβ)I lei〈k,θ〉qαq̄β, it can be proved similarly that∑
n∈Z

|∂qnF̃ |e|n|ρ
′ ≤ c

s(ρ− ρ′)
‖F‖D.

Since in the process above, ξ ∈ O and (θ, I, q, q̄) ∈ Dd,ρ(r, s2) are arbitrarily chosen,

this inequality is proved. �

Lemma A.3 If ‖XF‖D < ε′, ‖XG‖D < ε′′, then

‖X{F,G}‖Dd,ρ(r−σ, ηs) < cσ−1η−2ε′ε′′,

for any 0 < σ < r and 0 < η � 1.

For the proof, refer to [21].

Lemma A.4 If both of F and G have gauge invariance, then {F,G} has gauge invari-

ance.

Proof. F and G can be written as

F =
∑
k,α,β

Fkαβ(I; ξ)ei〈k,θ〉qαq̄β, G =
∑
k,α,β

Gkαβ(I; ξ)ei〈k,θ〉qαq̄β,
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with Fkαβ = Gkαβ ≡ 0 if
∑b

j=1 ki + |α| − |β| 6= 0. By a simple calculation, we have

{F,G}kαβ = i
∑
ǩ+k̂=k
α̌+α̂=α

β̌+β̂=β

(
〈∂IFǩα̌β̌, k̂〉Gk̂α̂β̂ − 〈ǩ, ∂IGk̂α̂β̂〉Fǩα̌β̌

)
(A.1)

+i
∑
ǩ+k̂=k
α̌+α̂=α

β̌+β̂=β

∑
m∈Z

(
Fǩ(α̌+em)β̌Gk̂α̂(β̂+em) − Fǩα̌(β̌+em)Gk̂(α̂+em)β̂

)
. (A.2)

Assume
∑b

j=1 ki + |α| − |β| 6= 0. Then, in the summation above, it is impossible that

b∑
j=1

ǩj + |α̌| − |β̌| =
b∑

j=1

k̂j + |α̂| − |β̂| = 0,

or
b∑

j=1

ǩj + |α̌ + em| − |β̌| =
b∑

j=1

k̂j + |α̂| − |β̂ + em| = 0,

b∑
j=1

ǩj + |α̌| − |β̌ + em| =
b∑

j=1

k̂j + |α̂ + em| − |β̂| = 0.

This means, in (A.1) and (A.2), each term ≡ 0. Thus Lemma A.4 is obtained. �

Lemma A.5 If there exists n∗ ∈ Z such that

∂qn∗F = ∂q̄n∗F = ∂qn∗G = ∂q̄n∗G ≡ 0,

then ∂qn∗{F,G} = ∂q̄n∗{F,G} ≡ 0.

Proof. Since

∂qn∗{F,G} = ∂qn∗

(
〈∂IF, ∂θG〉 − 〈∂θF, ∂IG〉+ i

∑
m∈Z

(∂qmF · ∂q̄mG− ∂q̄mF · ∂qmG)

)
=

〈
∂I(∂qn∗F ), ∂θ(∂qn∗G)

〉
−
〈
∂θ(∂qn∗F ), ∂I(∂qn∗G)

〉
+i
∑
m∈Z

(
∂qm(∂qn∗F ) · ∂q̄m(∂qn∗G)− ∂q̄m(∂qn∗F ) · ∂qm(∂qn∗G)

)
≡ 0

and similarly, ∂q̄n∗{F,G} ≡ 0, Lemma A.5 is proven. �
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N¹� Decay property of matrices

Lemma B.1 Given two matrices G = (Gmn)m,n∈Z and F = (Fmn)m,n∈Z. Let K = GF .

(1) If |Gmn| ≤ cGe
−σG|m−n|, |Fmn| ≤ cF e

−σF |m−n| for some positive cG, cF , σG, σF > 0,

then we have

|Kmn| ≤ cKe
−σK |m−n|

for any 0 < σK < min{σG, σF} and cK = c · cGcF (min{σG, σF} − σK)−1.

(2) If |Gmn| ≤ cGe
−σG max{|m|, |n|}, |Fmn| ≤ cF e

−σF |m−n|, then

|Kmn| ≤ cKe
−σK max{|m|, |n|}.

(3) If |Gmn| ≤ cGe
−σG|m−n|, |Fmn| ≤ cF e

−σF max{|m|, |n|}, then

|Kmn| ≤ cKe
−σK max{|m|, |n|}.

(4) If |Gmn| ≤ cGe
−σG max{|m|, |n|}, |Fmn| ≤ cF e

−σF max{|m|, |n|}, then

|Kmn| ≤ cKe
−σK max{|m|, |n|}.

In particular, if σG 6= σF , then the conclusions above hold with σK = min{σG, σF} and

cK = c · cGcF |σG − σF |−1.

Proof. Since the matrix element ofK = GF can be formulated asKmn =
∑

l∈ZGmlFln,

we have that, in Case (1), for any 0 < σK < min{σG, σF},

|(GF )mn| ≤
∑
l∈Z

|Gml||Fln|

≤ cGcF
∑
l∈Z

e−σG|m−l|e−σF |l−n|

≤ cGcF e
−σK |m−n|

∑
l∈Z

e−(σG−σK)|m−l|e−(σF−σK)|l−n|

≤ c · cGcF (min{σG, σF} − σK)−1e−σK |m−n|.

Here we have applied the basic triangular inequality |m− l|+ |l − n| ≥ |m− n|.
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Moreover, if σG 6= σF , assume that 0 < σG < σF without loss of generality, then

|(GF )mn| ≤ cGcF
∑
l∈Z

e−σG|m−l|e−σF |l−n|

≤ cGcF e
−σG|m−n|

∑
l∈Z

e−(σF−σG)|l−n|

≤ c · cGcF (σF − σG)−1e−σG|m−n|.

As for Case (2)−(4), the corresponding conclusions can also be obtained by using

the trivial facts

|m−l|+max{|l|, |n|} ≥ max{|m|, |n|}, max{|m|, |l|}+max{|l|, |n|} ≥ max{|m|, |n|}.

Thus Lemma B.1 has been proved. �

Remark B.1 If we replace the matrix F satisfying |Fmn| ≤ cF e
−σF max{|m|, |n|} with a

vector f = (fn)n∈Z satisfying |fn| ≤ cfe
−σf |n| in Case (3) and (4), then for the vector

Gf , we can obtain also the conclusion that |(Gf)n| ≤ cKe
−σK |n|.
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N¹n Proof of Theorem 1.4

For R > 0, let AR denote the set of period 1 holomorphic bounded functions on

SR := {z ∈ C : |Imz| < R},

equiped with the sup-norm

‖f‖R := sup
z∈SR
|f(z)|.

Assume that V is a period 1 meromorphic function on SR, and there exists some C > 0

such that

|V (z)− V (z − a)| ≥ C|a|1, ∀a ∈ R, z ∈ SR. (C.1)

V (x) = tan πx is a typical example, with any C any value between 0 and π. Such

function has the following stability.

Lemma C.1 Given any g ∈ AR, satisfying ‖g‖R < %C. If 0 < % < R, then Ṽ := V +g

is a meromorphic function on SR−%, satisfying

|Ṽ (z)− Ṽ (z − a)| ≥
(
C − 1

%
‖g‖R

)
|a|1, ∀a ∈ R, z ∈ SR−%.

Moreover, z ∈ SR−% is the pole of Ṽ if and only if it is the pole of V .

Proof. Since g ∈ AR, using the Cauchy formula,∣∣∣∣dgdz (z∗)

∣∣∣∣ ≤ ∣∣∣∣∮
γ

1

2πi

g(z)

(z − z∗)2
dz

∣∣∣∣ , ∀z∗ ∈ SR−%,

where γ is any path contained in SR and enclosing z∗. Thus∣∣∣∣dgdz (z∗)

∣∣∣∣ ≤ |γ|
2π dist(z, γ)2

‖g‖R.

According to the fact that z∗ ∈ SR−%, we can choose γ as as the circle of radius %

around z∗. Then ∥∥∥∥dgdz
∥∥∥∥
R−%
≤ 1

%
‖g‖R.
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Thus, if ‖g‖R < %C, from the inequality

|g(z)− g(z − a)|
|a|1

≤
∥∥∥∥dgdz

∥∥∥∥
R−%

, ∀a ∈ R, z ∈ SR−%,

we can see

|Ṽ (z)− Ṽ (z − a)| ≥ |V (z)− V (z − a)| − |g(z)− g(z − a)| ≥
(
C − 1

%
‖g‖R

)
|a|1.

For the invariance of poles, it is evident. �

We are going to analyze the linear operator L on `2(Zd), by applying the KAM

iteration with the normal form

D(x) = diag{V (x+ 〈n, α̃〉)}n∈Zd ,

where α̃ ∈ Rd satisfies the Diophantine condition (1.3) and x ∈ R/Z such that x+ nα̃

is not the pole of V . Defined by (1.4), L is a sum of two infinite-dimensional matrix

L = D0 + Z0 = diag{tanπ(x+ 〈n, α̃〉)}n∈Zd + ε∆.

Consider the symmetric matrix Z = (Zmn)m,n∈Zd , with Zmn ∈ AR, real-analytic

on R/Z, and satisfying the shift condition(with respect to α̃), i.e.,

Zm+k,n+k(x) = Zmn(x+ 〈k, α̃〉), x ∈ R/Z, 1

and there exists ε > 0 such that

‖Zmn‖R ≤ εe−ρ|m−n|. (C.2)

Lemma C.2 There exists un anti-symmetric matricF = (Fmn)m,n∈Zd, with Fmn ∈ AR
real-analytic on R/Z, satisfying the shift condition, such that

[D,F ] + Z = diag{Znn}n∈Zd . (C.3)

Moreover,

‖Fmn‖R ≤ C−1γ−1|m− n|τ̃ · ‖Zmn‖R.
1It is easy to verify that this property is conserved under the product of matrix.
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Proof. By a straightforward calculation,

[D,F ]mn = (V (x+ 〈m, α̃〉)− V (x+ 〈n, α̃〉)Fmn.

So, define F as

Fmn =


Zmn

V (x+ 〈n, α̃〉)− V (x+ 〈m, α̃〉)
, m 6= n

0, m = n
,

then we get the equality (C.3). It is obvious that F is anti-symmetric and satisfies the

shift condition.

Since V satisfies the condition (C.1) and α̃ satisfies the Diophantine condition

(1.3), we have

|V (x+ 〈n, α̃〉)− V (x+ 〈m, α̃〉)| ≥ C|(m− n)α̃|1 ≥ Cγ̃|m− n|−τ̃ .

Hence,

‖Fmn‖R ≤ C−1γ̃−1|m− n|τ̃ · ‖Zmn‖R.

�

Corollary C.1 There exists an orthogonal matrix U with Umn ∈ AR real-analytic on

R/Z, satisfying the shift condition, such that

U∗(D + Z)U = D + diag{Znn}n∈Zd + Z+,

where Z+ is a symmetric matrix with (Z+)mn ∈ AR real-analytic on R/Z, satisfying

the shift condition. Moreover, for any 0 < ρ+ < ρ, if ε is sufficiently small,

‖(U − IZd)mn‖R ≤ cC−1γ̃−1(ρ− ρ+)−(τ̃+1)εe−ρ+|m−n|,

‖(Z+)mn‖R ≤ ε
3
2 e−ρ+|m−n|.

Proof. Let U = eF . For k ≥ 1, in view of

(F k)mn =
∑
lj∈Zd

j=1,··· ,k−1

Fml1Fl1l2 · · ·Flk−1n,
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if ε is sufficiently small,

‖(F k)mn‖R ≤ c(C−1γ̃−1(ρ− ρ+)−(τ̃+1)ε)ke−ρ+|m−n| ≤ ε
2k
3 e−ρ+|m−n|.

Expand e±F as a power series, we can see

‖(e±F − IZd)mn‖R ≤ ε
1
2 e−ρ+|m−n|.

Noting that

Z+ = e−F (D + Z)eF −D − diag{Znn}n∈Zd

=
∞∑
k=2

1

k!
[· · · [D,F ] · · · , F︸ ︷︷ ︸

k

] +
∞∑
k=1

1

k!
[· · · [Z, F ] · · · , F︸ ︷︷ ︸

k

],

we get

‖(Z+)mn‖R ≤ ε
3
2 e−ρ+|m−n|.

�

Let V+ = V + Z00. According to Lemma C.1, for any 0 < R+ < R, V+ is a

meromorphic function on SR+ , satisfying

|V+(z)− V+(z − a)| ≥
(
C − ε

R−R+

)
|a|1, ∀a ∈ R, z ∈ SR+ .

Moreover, z ∈ SR+ is the pole of V+ if and only if it is the pole of V .

Back to the analyse to the operator L, let V0(z) = tan πz, ε0 = e4ε, ρ0 = 4, and

choose any R0 > 0, 1 < C0 < π. For ν = 1, 2, · · · , define the sequences:

εν = ε
( 3

2)
ν

0 , ρν =
ρ0

2
+

ρ0

2ν+1
, Rν =

R0

2
+

R0

2ν+1
, Cν = C −

ν∑
j=0

εj
Rj −Rj+1

.

According to Lemma C.2 and Corollary C.1, we can get the following iteration lemma:

Proposition C.1 There exists ε0 = ε0(α̃), such that for the linear operator L, the

following holds if 0 < ε < ε0.

For ν = 1, 2, · · · , there exists a meromorphic function Vν on SRν , satisfying

|Vν(z)− Vν(z − a)| ≥ Cν |a|1, ∀a ∈ R, z ∈ SRν ,
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and an orthogonal matrix Uν, with (Uν)mn ∈ ARν real-analytic on R/Z, satisfying the

shift condition, and

‖(Uν − IZ)mn‖Rν ≤ cC−1
ν−1γ̃

−1(ρν−1 − ρν)−(τ̃+1)εν−1e
−ρν |m−n|,

such that

U∗ν · · ·U∗1LU1 · · ·Uν = diag{Vν(x+ 〈n, α̃〉)}n∈Zd + Zν , ∀x ∈ X .

Here Zν is symmetric, with (Zν)mn ∈ ARν real-analytic on R/Z, satisfying the shift

condition, and

‖(Zν)mn‖Rν ≤ ενe
−ρν |m−n|.

According the iteration lemma above, when ν → ∞, Vν → V̂ holds on SR
2
, and,

in the sense of ‖ · ‖R
2
,

U1 · · ·Uν → U, Zν → 0.

By a direct calculation,

‖(U − IZd)mn‖R
2
≤ cC−1γ̃−1εe−2|m−n|.

87



N¹o Outline of the proof of Proposition 1.6

For any smooth function f defined on I ⊂ R/Z, let |f |Cj := max
0≤k≤j

sup
x∈I

1

k!
|∂kxf(x)|.

The operator T in (1.6) can be viewed as a sum of two infinite-dimensional matri-

ces, i.e.,diag{V (x+nα̃)}n∈Z + ε∆ with ∆ denoting the discrete Laplacian. It is natural

to define an abstract normal form containing diag{V (x+ nα̃)}n∈Z.

Definition D.1 Given a symmetric matrix D, smoothly parametrized by x ∈ R/Z and

satisfying the shift condition

Dm+k,n+k(x) = Dmn(x+ kα̃), ∀k ∈ Z, (D.1)

where α̃ is a Diophantine number, i.e., for some γ̃ > 0 and τ̃ > 1,

|nα̃|1 ≥
γ̃

|n|τ̃
, n 6= 0.

We say that D is in normal form if the following conditions hold.

(a) Short-range.

|Dmn|Ck ≤

{
Ce−ρ|m−n|Lk, |m− n| ≤ N

0, |m− n| > N
, ∀k ≥ 0.

(b) Block diagonalization. Fix any x∗ ∈ R/Z. There exist an interval I centered in

x∗, a disjoint decomposition
⋃
j Λj = Z and a smooth orthogonal matrix Q on I

such that

(b1) ]Λj ≤M and diamΛj ≤MN for each j;

(b2) D̃ = Q∗DQ =
∏

j D̃Λj(x), ∀x ∈ I;

(b3) Qmn ≡ 0 if |m−n| > N . Moreover, for all m, Qmn 6≡ 0 for at most M different

n;

(b4) |Q|Ck ≤ Lk, ∀k ≥ 0.

(c) Eigenvalues. There is a piecewise smooth function E(x) such that for each j,

{E(x∗ + nα̃)}n∈Λj are the eigenvalues of D̃Λj(x∗),

and there are sets Ωj ⊃ Λj such that
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(c1) for each n, if inf l∈Λj |E(x∗ + lα̃)− E(x∗ + nα̃)| < κ, then

x∗ + nα̃ ∈ x∗ +mα̃ +
1

2
(I − x∗) for some m ∈ Ωj,

Q(x)(RΛ(n)) ⊂ RΩj+n−m, ∀x ∈ I;

(c2) the resultant

uΩj(ϕ, x) = Res
(
det(D(x+ ϕ)Ωj − tIΩj), det(D(x)Ωj − tIΩj)

)
1

satisfies

|uΩj |Ck < (4MC)2M2

Bk, ∀k ≤ s̃M2 + 1, 2

max
0≤k≤s̃M2

∣∣∣∣ 1

ν!Bk
∂kϕuΩj(ϕ, x)

∣∣∣∣ ≥ ϑ, ∀ϕ, ∀x ∈ R/Z;

(c3) ]Ωj ≤M and diamΩj ≤
(

1
λ

)τ̃+2
;

(c4) the intervals {nα̃ + I}dist(n,Ωj)<N are pairwise disjoint;

(c5) for each ϕ ∈ I, uΩj(ϕ, x) satisfies

|uΩj |Ck < (2MC)2M2

Bk, ∀k ≤ s̃M2 + 1, 3

max
0≤k≤s̃M2

∣∣∣∣ 1

ν!Bk
∂kxuΩj(ϕ, x)

∣∣∣∣ ≥ ϑ

 ∏
m,n∈Ωj

|ϕ+ (m− n)α̃|1

 , ∀x ∈ R/Z.

Remark D.1 Condition (a) implies an estimate of D in the operator norm on `2(Z):

‖D‖Ck ≤ C
eρ + 1

eρ − 1
Lk ≤ C

4

ρ
Lk, ∀k ≥ 0.

Consider the symmetric matrix Z(x), smoothly parametrized by x ∈ R/Z, satis-

fying the shift condition, and

|Zmn|Ck < εe−%|m−n|Lk, ∀k ≥ 0. (D.2)

1The resultant of two monic polynomials P and Q is defined as the product Res(P,Q) =
∏

P (x)=0
Q(y)=0

(x−

y).
2The norm is with respect to the variable ϕ.
3The norm is with respect to the variable x.
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Lemma D.1 (The inductive lemma of [16]) Let D be in normal form on an in-

terval I ⊂ R/Z with parameters C, L, ρ, M , N , κ, B, ϑ, λ, and let a < g < h be

numbers restricted by

1

τ̃M3s̃M3 ≤ a <
g

20s̃τ̃M4
<

h

100s̃2τ̃M8
, h ≤ 1

5s̃M2s̃M3 .

Assume, as simplification, that

1 ≤ B ≤ L, M ≥ 8, 1 < C < 2, ρ, κ, ϑ ≤ 1.

Let Z be a symmetric matrix, smoothly parametrized on R/Z, satisfying the shift con-

dition. Assume that

λ ≤ |I| ≤ ϑ/B,

|Zmn|Ck < εe−ρ|m−n|Lk, k ≥ 0.

If there is a constant Γ = Γ(γ̃, τ̃ , s̃,M), super-exponentially decaying in M , such

that

|ε| < Γ

[
ρτ̃κϑλτ̃

2

LN τ̃
e−Nρ

]ees̃M4

, (D.3)

then there is a smooth orthogonal matrix Ũ , satisfying the shift condition, such that

|(Ũ − I)mn|Ck < ε
1
2 e−ρ

′|m−n|L′k

and

Ũ∗(D + Z)Ũ = D′ + Z ′,

with Z ′ a symmetric matrix, smoothly parametrized on R/Z, satisfying the shift condi-

tion, and D′ in normal form on an interval I ′ ⊂ I, with parameters

C ′ = (1 + ε
1
2 )C, L′ = ε−hL, ρ′ = 1

2
ρ,

λ′ = 9−M
′
λ, M ′ = M s̃M3

, N ′ = ε−a,

κ′ = εh, B′ = L, ϑ′ = εgL,

and

2λ′ ≤ |I ′| ≤ εg,

|Z ′mn|Ck < ε
1
2
ε−a/2e−ρ

′|m−n|L′k.
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In addition,

|E(x∗ +mα̃)− E(x∗ + nα̃)| < M ′L

ρ
εg, ∀m ∈ Λ′(n),

Q′(x)(RΛ′(n)) ⊂
∑

m∈Λ′(n)

Q(x)(RΛ(m)), ∀x ∈ I ′,

D′ is in normal form with the same parameters also on x∗ +
1

2
(I ′ − x∗).

Finally, if M ≥ 2τ̃ then the closure of the sets

{x∗+mα̃ : |E(x∗+mα̃)−E(x∗+ (m+n)α̃)| < 2M ′L

ρ
εg}, ∀ 4(1/λ)τ̃+2 < |n| < M ′N ′,

{x∗ +mα̃ : |E(x∗ +mα̃)− E(x∗ + (m+ n)α̃)| < 2ε
1
8}, ∀M ′N ′ < |n| < 4(1/λ′)τ̃+2

are unions of, respectively, at most ε−
g

5s̃M2 and ε−M
4g many components, each compo-

nent being of length, respectively, at most ε
g

4s̃M2 and ε2M4g.

For the detail of proof, which contains the construction of new blocks Λ′i, i.e., the new

equivalence relation on Z, and the new orthogonal transformation Q′, see Section 5 of

Reference [16].

For Z0 = ε∆, we have

|(Z0)mn|Ck < ε0e
−ρ0|m−n|Lk0.

with ε0 = eε, ρ0 = 1 and L0 = L(see (1.7)). It has been proven by Eliasson in Section

6 of [16] that D0 = diag{V (x+ nα̃)}n∈Z is in normal form with C0 = C, L0 = L, any

M0 ≥ max

{
2s̃+4C

Ls̃+1((s̃+ 1)!)2

ξ̃
, 2τ̃ , 8

}
, N0 ≥ 1, ρ = N−1

0 ,

and other suitable parameters κ0, B0, λ0, ϑ0.

For ν = 0, 1, 2, · · · , let Mν+1 = M
s̃M3

ν
ν , and

aν =
1

τ̃

(
1

Mν

)3s̃M3
ν

, gν = 20s̃τ̃M4
νaν , hν =

1

5s̃

(
1

Mν

)2s̃M3
ν

.

The other sequences can be defined as

εν+1 = ε
1
2
ε
−aν/2
ν

ν , Cν+1 = (1 + ε
1/2
ν )Cν , Lν+1 = ε−hνν Lν ,

Nν+1 = ε−aνν , ρν+1 = εaνν , κν+1 = εhνν ,

Bν+1 = Lν , λν+1 = 9−Mνεgνν , ϑν+1 = εgνν Lν .
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The inequality (D.3), about parameters at the νth step, has been verified in Section 6

of [16], so we can apply Lemma D.1 iteratively. For each ν ≥ 0, there is an orthogonal

matrix Ũν satisfying the shift condition, such that

|(Ũν − IZ)mn|Ck < ε
1
2
ν e
− ρν

2
|m−n|Lkν+1

and

(Ũ0 · · · Ũν)∗(D0 + Z0)(Ũ0 · · · Ũν) = Dν+1 + Zν+1,

where Dν+1 is in normal form with parameters Cν+1, Lν+1, ρν+1, Mν+1, Nν+1, κν+1,

Bν+1, ϑν+1, λν+1, and

|(Zν+1)mn|Ck ≤ εν+1e
−ρν+1|m−n|Lkν+1.

Hence, in the operator norm ‖ · ‖Ck ,

Ũ0 · · · Ũν → U, Zν → 0, Dν → D∞.

Let Uν+1 = Ũ0 · · · Ũν , by a simple calculation, we have

|(Uν+1 − IZ)mn|Ck < ε
1
2
0 e
− ρν

2
|m−n|Lkν+1.

Clearly there is a uniform limit Eν(x)→ E∞(x) which describes the spectrum of

D∞(x)–it is the closure of the image of E∞. Consider now the closure Sν of the set of

all x such that

|E∞(x)− E∞(x+ nα̃)| < 3

2
Mν+1

Lν
ρν
εgνν for some 4(1/λν)

τ̃+2 < |n| < Mν+1Nν+1

or

|E∞(x)− E∞(x+ nα̃)| < 3

2
ε

1
8
ν for some Mν+1Nν+1 < |n| < 4(1/λν+1)τ̃+2.

According to the final statement of Lemma D.1, this set is of measure less than

cε
gν/20s̃M2

ν
ν . By Borel-Cantelli Lemma, we conclude that there is a full-measure sub-

set X̃ of R/Z such that for any x ∈ X̃ , each x + nα̃ will belong to only finitely many

Sν ’s. Choose x = x∗ of this sort, i.e., for all n ∈ Z there is a ν0(n) such that x∗+nα̃ 6∈ Sν
for ν ≥ ν0(n). Hence for such ν’s,

|Eν(x∗+nα̃)−Eν(x∗+nα̃+mα̃)| ≥ 2Mν+1
Lν
ρν
εgνν , ∀ 4(1/λν)

τ̃+2 < |m| < Mν+1Nν+1,
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|Eν(x∗ + nα̃)− Eν(x∗ + nα̃ +mα̃)| ≥ 2ε
1
8
ν , ∀Mν+1Nν+1 < |m| < 4(1/λν+1)τ̃+2.

This implies that Λν(n) ⊂ [n− 4(1/λν0(n))
τ̃+2, n + 4(1/λν0(n))

τ̃+2] for ν ≥ ν0(n). The

blocks Λν(n) therefore become eventually stationary:

Λν+1(n) = Λν(n), ∀ν ≥ ν0(n).
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N¹Ê Proof of Lemma 2.1

For |i|, |j|, |n|, |m| ≤ κ| ln ε|, we consider the function

V 0
i,j,n,m(x) := tan π(x+ iα̃)− tanπ(x+ jα̃) + tan π(x+ nα̃)− tanπ(x+mα̃)

on R/Z. To get the lower bound in (2.24), it is sufficient to show that

|V 0
i,j,n,m(x)| ≥ 2ε

1
4

on some subset of R/Z, since supx∈R/Z |V̂ (x)− tan πx| ≤ ε.

It is necessary to restrict the functions on the subset X0 = X ′0 ∩ X ′′0 ⊂ R/Z, with

the necessity clear somewhat later, where

X ′0 := {x ∈ R/Z :

∣∣∣∣x+ nα̃− 1

2

∣∣∣∣ ≥ ε
1

1200 , ∀|n| ≤ κ| ln ε|},

X ′′0 := {x ∈ R/Z : | tan π(x+ nα̃)| ≥ ε
1

1200 , ∀|n| ≤ κ| ln ε|}.

Hence on X0, for |n| ≤ κ| ln ε|,

ε
1

1200 ≤ | tanπ(x+ nα̃)| ≤
∣∣∣∣tanπ

(
1

2
− ε

1
1200

)∣∣∣∣ =
∣∣∣tan ε

1
1200π

∣∣∣−1

≤ cε−
1

1200 , (E.1)

if ε is sufficiently small. Then V 0
i,j,n,m(x) are all bounded piecewise smooth functions

on X0. It is easy to see that there is at most cκ| ln ε| many connected components

contained in X0 and

mes(R/Z \ (X ′0 ∩ X ′′0 )) ≤ cκ| ln ε| · ε
1

1200 < ε
1

1400

for ε sufficiently small.

It is clear {i, n} = {j,m} implies that V 0
i,j,n,m ≡ 0, so we assume that {i, n} 6=

{j,m}. If, in addition, {i, n} ∩ {j,m} 6= ∅, then the intersection has a single element.

Assume that i = j without loss of generality, then n 6= m and

V 0
i,j,n,m(x) = tan π(x+ nα̃)− tanπ(x+mα̃). (E.2)

Thus, we have

|V 0
i,j,n,m(x)| ≥ π|(n−m)α̃|1 ≥

πγ̃

(2κ)τ̃ | ln ε|τ̃
≥ ε

1
1200 . (E.3)

The case {i, n} ∩ {j,m} = ∅ is much more complex, which can be decomposed

into the following four subcases:
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(S1) {i, n} ∩ {j,m} = ∅ with i 6= n and j 6= m;

(S2) {i, n} ∩ {j,m} = ∅ with i = n and j 6= m;

(S3) {i, n} ∩ {j,m} = ∅ with i 6= n and j = m;

(S4) {i, n} ∩ {j,m} = ∅ with i = n and j = m.

We only need to consider the subcases (S1)− (S3), since in the subcase (S4),

V 0
i,j,n,m(x) = 2(tan π(x+ nα̃)− tanπ(x+mα̃)),

which is the same as in (E.2). Corresponding to (S1)− (S3), let

B1(x) :=


tanπ(x+ iα̃) tan π(x+ jα̃) tan π(x+ nα̃) tan π(x+mα̃)

tan2 π(x+ iα̃) tan2 π(x+ jα̃) tan2 π(x+ nα̃) tan2 π(x+mα̃)

tan3 π(x+ iα̃) tan3 π(x+ jα̃) tan3 π(x+ nα̃) tan3 π(x+mα̃)

tan4 π(x+ iα̃) tan4 π(x+ jα̃) tan4 π(x+ nα̃) tan4 π(x+mα̃)

 ,

and

B2(x) :=


tanπ(x+ iα̃) tan π(x+ jα̃) tan π(x+mα̃)

tan2 π(x+ iα̃) tan2 π(x+ jα̃) tan2 π(x+mα̃)

tan3 π(x+ iα̃) tan3 π(x+ jα̃) tan3 π(x+mα̃)

 ,

B3(x) :=


tan π(x+ iα̃) tan π(x+ nα̃) tan π(x+mα̃)

tan2 π(x+ iα̃) tan2 π(x+ nα̃) tan2 π(x+mα̃)

tan3 π(x+ iα̃) tan3 π(x+ nα̃) tan3 π(x+mα̃)

 .

Lemma E.1 Given |i|, |j|, |n|, |m| ≤ κ| ln ε|. If ε is sufficiently small, then for any

x ∈ X0, we have

• when (S1) holds, | det(B1(x))| ≥ ε
1

120 ;

• when (S2) holds, | det(B2(x))| ≥ ε
1

200 ;

• when (S3) holds, | det(B3(x))| ≥ ε
1

200 .

Proof. The determinant of B1(x) can be written as

tanπ(x+ iα̃) · tan π(x+ jα̃) · tanπ(x+ nα̃) · tanπ(x+mα̃) · det(B̃1(x)),
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with B̃1(x) the Vandermonde matrix
1 1 1 1

tanπ(x+ iα̃) tan π(x+ jα̃) tan π(x+ nα̃) tan π(x+mα̃)

tan2 π(x+ iα̃) tan2 π(x+ jα̃) tan2 π(x+ nα̃) tan2 π(x+mα̃)

tan3 π(x+ iα̃) tan3 π(x+ jα̃) tan3 π(x+ nα̃) tan3 π(x+mα̃)

 .

Then, when (S1) holds, we can obtain that | det(B1(x))| ≥ ε
1

120 , by (E.1) and (E.3),

combining with

det B̃1(x) =
∏

n1,n2∈{i,j,n,m}
n1<n2

(tan π(x+ n1α̃)− tanπ(x+ n2α̃)) .

As for the subcases (S2) and (S3), there is no doubt that | det(B2(x))|, | det(B3(x))| ≥
ε

1
200 , which can be proved in the same way as above. �

For s ∈ {0, 1, 2, 3}, let

ũ(s)(x) =
(
V (s)(x+ iα̃), V (s)(x+ jα̃), V (s)(x+ nα̃), V (s)(x+mα̃)

)> ∈ R4,

where V (x) := tanπx, V (s) is its sth−order derivative and V (0) means the function V

itself in particular. We can calculate that

V (1)(x) = π + π tan2 πx,

V (2)(x) = 2π2 tanπx+ 2π2 tan3 πx,

V (3)(x) = 2π3 + 8π3 tan2 πx+ 6π3 tan4 πx.

Moreover, if ε is sufficiently small, then for x ∈ X0, we have that

|V (0)(x)| ≤ cε−
1

1200 ,
∣∣V (1)(x)

∣∣ ≤ cε−
1

600 ,
∣∣V (2)(x)

∣∣ ≤ cε−
1

400 ,
∣∣V (3)(x)

∣∣ ≤ cε−
1

300 .

Indeed, it can be checked that for s = 0, 1, 2, · · · ,∣∣V (s)(x)
∣∣ ≤ cε−

s+1
1200 , (E.4)

where c = c(s) grows exponentially in s. Let

u(0)(x) = ũ(0)(x), u(1)(x) = ũ(1)(x)− π(1, 1, 1, 1)>,

u(2)(x) = ũ(2)(x), u(3)(x) = ũ(3)(x)− 2π3(1, 1, 1, 1)>.
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Thus the determinant of the 4 × 4 matrix (u(0)(x), u(1)(x), u(2)(x), u(3)(x)) equals to

c · det(B1(x)), where B1(x) is defined as in Lemma E.1.

We need to arrive at some transversality conditions, which are elaborated in Corol-

lary E.1, by virtue of the following lemma .

Lemma E.2 (Proposition of appendix B in [6]) Let u(0),· · · ,u(L−1) be L indepen-

dent vectors in RL with ‖u(s)‖`1 ≤ 1. Let v ∈ RL be an arbitrary vector, then there

exists s ∈ {0, · · · , L− 1}, such that

|〈v, u(s)〉| ≥ L−
3
2‖v‖`1 detU,

where detU is the determinant of the matrix formed by the components of the vectors

u(s), and 〈·, ·〉 is the usual scalar product.

For the proof see [6].

Corollary E.1 Given |i|, |j|, |n|, |m| ≤ κ| ln ε|, and {i, n} ∩ {j,m} = ∅. If ε is suffi-

ciently small, then for any x ∈ X0, we have

• when (S1) holds, there exists s ∈ {0, 1, 2, 3} such that∣∣∣V 0(s)
i,j,n,m(x)

∣∣∣ ≥ cε
1
60 ; (E.5)

• when (S2) or (S3) holds, there exists s ∈ {0, 1, 2} such that∣∣∣V 0(s)
i,j,n,m(x)

∣∣∣ ≥ cε
1

100 . (E.6)

Proof. Consider the vectors

ū(s)(x) =


u(s)(x)

‖u(s)(x)‖`1
, ‖u(s)(x)‖`1 > 1

u(s)(x), ‖u(s)(x)‖`1 ≤ 1
, s = 0, 1, 2, 3.

In view of (E.4),

| det(U(x))| > c

(
3∏
s=0

1

max{‖u(s)(x)‖`1 , 1}

)
| det(B1(x))| > c(ε

1
1200 )10 · ε

1
120 > cε

1
60 ,
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for x ∈ X0. Apply Lemma E.2 with v = (1,−1, 1,−1), thus we get that there exists

s ∈ {0, 1, 2, 3} such that∣∣∣V 0(s)
i,j,n,m(x)

∣∣∣ = |〈v, ũ(s)(x)〉| = |〈v, u(s)(x)〉| ≥ |〈v, ū(s)(x)〉| ≥ c · 4−
3
2 ε

1
60‖v‖`1 = cε

1
60 .

As for the subcases (S2) and (S3), we can tackle with them similarly, applying

Lemma E.2 with v = (2,−1,−1) and v = (1, 1,−2) respectively, together with the

corresponding conclusion Lemma E.1. �

From now on, we set the constant c = 1 in (E.5) and (E.6) for convenience. The

proof of Lemma 2.1 ends with the following lemma.

Lemma E.3 For ε sufficiently small, there is a subset Xε of X0 with

mes(X0 \ Xε) < ε
1
50

such that for any |i|, |j|, |n|, |m| ≤ κ| ln ε| and {i, n} 6= {j,m},

|V 0
i,j,n,m(x)| ≥ 2ε

1
4 , x ∈ Xε. (E.7)

Proof. Fix |i|, |j|, |n|, |m| ≤ κ| ln ε| and {i, n} 6= {j,m}. Let us demonstrate that

mes({x ∈ X0 : |V 0
i,j,n,m(x)| < 2ε

1
4}) < ε

1
45 .

We only deal with the subcase (S1), with the others done similarly. By Corollary E.1,

for each x ∈ X0, we have

max
0≤s≤3

∣∣∣V 0(s)
i,j,n,m(x)

∣∣∣ ≥ ε
1
60 .

Let A := max
0≤s≤4

sup
x∈X0

∣∣∣V 0(s)
i,j,n,m(x)

∣∣∣. In view of (E.4), A ≤ cε−
1

240 .

We first consider the function V 0
i,j,n,m on (a, b), one of the connected components of

X0. Partition (a, b) in about 2ε−
1
24 many intervals of length no more than 1

2
ε

1
24 . Choose

one of such intervals, say I. Then either |V 0
i,j,n,m(x)| ≥ 2ε

1
4 for all x ∈ I, so we are done

with the interval I, or there is some x0 ∈ I such that |V 0
i,j,n,m(x0)| < 2ε

1
4 . In this case,

for some 1 ≤ s ≤ 3,
∣∣∣V 0(s)
i,j,n,m(x0)

∣∣∣ ≥ ε
1
60 by Corollary E.1. Let us say s = 3, which is

considered as the most complex case, so
∣∣∣V 0(3)
i,j,n,m(x0)

∣∣∣ ≥ ε
1
60 . Since for x ∈ I,∣∣∣V 0(3)

i,j,n,m(x)− V 0(3)
i,j,n,m(x0)

∣∣∣ ≤ sup
y∈I

∣∣∣V 0(4)
i,j,n,m(y)

∣∣∣ · |x− x0| ≤ A|I| < 1

2
ε

1
60 ,
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we obtain that
∣∣∣V 0(3)
i,j,n,m(x)

∣∣∣ ≥ 1

2
ε

1
60 .

Now we analyze V
0(2)
i,j,n,m on I. If there is some x1 ∈ I such that

∣∣∣V 0(2)
i,j,n,m(x1)

∣∣∣ < ε
1
12 ,

then for every x ∈ I with |x− x1| > 4ε
1
15 , there is some y ∈ I such that∣∣∣V 0(2)

i,j,n,m(x)− V 0(2)
i,j,n,m(x1)

∣∣∣ =
∣∣∣V 0(3)
i,j,n,m(y)

∣∣∣ · |x− x1| ≥
1

2
ε

1
60 · 4ε

1
15 = 2ε

1
12 .

Hence there exists an interval I1 ⊂ I, which contains x1, with |I1| ≤ 4ε
1
15 , so that if

x ∈ I \ I1, then
∣∣∣V 0(2)
i,j,n,m(x)

∣∣∣ ≥ ε
1
12 .

We then consider V
0(1)
i,j,n,m on I \ I1, which has at most two connected components,

denoted by J1 and J2. If there is some x2 ∈ J1 such that
∣∣∣V 0(1)
i,j,n,m(x2)

∣∣∣ < ε
1
6 , then for

each x ∈ J1 with |x− x2| > 2ε
1
12 , there is some y ∈ J1 such that∣∣∣V 0(1)

i,j,n,m(x)− V 0(1)
i,j,n,m(x2)

∣∣∣ =
∣∣∣V 0(2)
i,j,n,m(y)

∣∣∣ · |x− x2| ≥ ε
1
12 · 2ε

1
12 = 2ε

1
6 .

Therefore, we obtain an interval I2 ⊂ J1 ⊂ I \ I1 with |I2| ≤ 2ε
1
12 , so that if x ∈ J1 \ I2,

then
∣∣∣V 0(1)
i,j,n,m(x)

∣∣∣ ≥ ε
1
6 . Doing the same for J2, we get an interval I3 ⊂ J2 ⊂ I \ I1, with

|I3| ≤ 2ε
1
12 , such that if x ∈ I \ (I1 ∪ I2 ∪ I3), then

∣∣∣V 0(1)
i,j,n,m(x)

∣∣∣ ≥ ε
1
6 .

It is clear that there is at most four connected components contained in I \ (I1 ∪
I2 ∪ I3), say J ′1, J ′2, J ′3 and J ′4. If there is some x′1 ∈ J ′1 such that

∣∣V 0
i,j,n,m(x′1)

∣∣ < 2ε
1
4 ,

then for each x ∈ J ′1 with |x− x′1| > 4ε
1
12 , there is some y ∈ J ′1 such that

|V 0
i,j,n,m(x)− V 0

i,j,n,m(x′1)| =
∣∣∣V 0(1)
i,j,n,m(y)

∣∣∣ · |x− x′1| ≥ ε
1
6 · 4ε

1
12 = 4ε

1
4 .

Therefore, we obtain an interval I ′1 ⊂ J ′1 ⊂ I \ (I1 ∪ I2 ∪ I3), which contains x′1, with

|I ′1| ≤ 4ε
1
12 , so that if x ∈ J ′1 \ I ′1, then |V 0

i,j,n,m(x)| ≥ 2ε
1
4 . Doing the same for J ′2, J ′3

and J ′4, we get intervals I ′2, I ′3 and I ′4, with I ′k ⊂ J ′k ⊂ I \ (I1 ∪ I2 ∪ I3) and |I ′k| ≤ 4ε
1
12 ,

k = 2, 3, 4, such that if x ∈
⋃4
k=1 (J ′k \ I ′k), then

|V 0
i,j,n,m(x)| ≥ 2ε

1
4 .

Hence, (E.7) holds on I after excluding a subset with measure less than 5ε
1
15 since ε

is sufficiently small. On the whole set X0, which is a finite union of no more than

cκ| ln ε| · ε− 1
24 many intervals such as I, we need to exclude a subset with measure less

than

cκ| ln ε| · ε−
1
24 · ε

1
15 < ε

1
45 .

Since the subscripts satisfy that |i|, |j|, |n|, |m| ≤ κ| ln ε|, the measure of the subset

of parameters we exclude is less than cκ4| ln ε|4 · ε 1
45 < ε

1
50 . �
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[41] Pöschel, J.: A KAM Theorem for some nonlinear partial differential equations. Ann.

Sc. Norm. Sup. Pisa Cl. Sci. 23, 119–148(1996).

[42] Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G.,

Modugno, M., Inguscio, M,: Anderson localization of a non-interacting Bose-Einstein

condensate. Nature 453, 895–898(2008).

[43] Simon, B.: Almost periodic Schrödinger operators: IV. the Maryland model. Annal.

Phys. 159, 157–183(1985).

[44] Sinai, Ya. G.: Anderson localization for the one-dimensional difference Schrödinger

operator with a quasi-periodic potential. J. Statist. Phys. 46, 861–909(1987).

[45] Tcheremchantsev, S.: How to prove dynamical localization. Commun. Math. Phys.

221, 27–56(2001).

[46] Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose-Einstein

condensates. Phys. Rev. Lett. 86, 2353–2356(2001).

[47] Vittot, M., Bellissard, J.: Invariant tori for an infinite lattice of coupled classical

rotators. CPT-Marseille(1985).

[48] von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding

model. Commun. Math. Phys. 124, 285–299(1989).

——————————————————

E-mail address: zyqiao1985@gmail.com

104


