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Abstract
In this paper, we construct linearly stable quasi-periodic breathers for the Hamil-
tonian systems in the form

i4n + UnGn + 5|qn|2qn +én(@ni1 +qu-1) =0, neZ

where {v,}nez is a family of time independent independent identically distributed
(i.i.d) random variables with common distribution g = dv,,, v, € [0,1] and |e,| <
ce~?"l with e, 0 > 0. We prove that for ¢, § sufficiently small, the equation admits a
family of small-amplitude and linear stable, time quasi-periodic solutions for most of
the parameters {vy, }nez.

1 Introduction and main result

During the past two decades or so, there have been many remarkable results in KAM
(Kolmogorov—Arnold-Moser) theory of Hamiltonian partial differential equations achieved
either by methods from the finite dimensional KAM theoryl[4, 13, 16, 17, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43], or by a Newtonian scheme developed
by Craig,Wayne and Bourgain [5, 6, 7, 8, 9, 10, 14], motivated by the construction of quasi-
periodic breathers(solutions that are quasi-periodic in time and exponentially localized in
space) in infinite dimensional Hamiltonian systems.
In this paper, we seek time quasi-periodic solutions to the non-linear random lattice
equation
iQn+UnQn+5IQn|QQn+5n(Qn+1 +qn-1) =0 (1.1)

on Z x [0, 00), where |e,| < ce~@l"l with e, 0 > 0, ¢, § are sufficiently small, and {v, }nez is
a family of time independent independent identically distributed (i.i.d) random variables
with common distribution g(v,) = dv,, v, € [0,1]. The probability space is taken to be
[0,1]% with measure

H g(vp) = H dvn, vy €[0,1]. (1.2)

nez nez
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V' = {vp }nez serves as parameters for the nonlinear equation (1.1).
In view of the previous papers, there are many results related to infinite dimensional
Hamiltonian systems. The linear random Schrodinger equation

0
iaq =(eA+V)g=:Hq (1.3)

on Z% x [0,00) has been studied for several decades, where A is the discrete Laplacian:

A = 17 |i_j‘£1:17
*J 0, otherwise,

and V' = {v;},czq, the potential, is a family of time independent i.i.d. bounded random
variables. It is well known from the works in [2, 3, 15, 18, 19, 20, 21, 22] etc. that (1.3)
has Anderson Localization(A.L.) after the physicist P.Anderson [1], i.e. if ¢(0) € £2(z%),
for any k > 0, one can find R such that

a2\ [~ R, R} < K. VL. (1.4)

Since the potential is time independent: V' (j,t) = V(j), properties of time evolution can
be deduced from the spectral properties of H. Let o(H) be the spectrum of H, which is
defined in (1.1), then

o(H) = [-2ed,2ed] +supp g, a.s.

(the probability can be defined in (1.2) or in more general forms see [12, 38]). If 0 <
e < 1 then almost surely the spectrum of H is (dense) pure point, o(H) = oy,,(H), with
exponentially localized eigenfunctions ¢;, j € Z9. Given ¢(0) € £2(2), we decompose g(0)
as q(0) = > jeznd ajdj. So
q(t) = Y ajpje ™",

jezd
where \; are the eigenvalues for the eigenfunctions ¢;. Thus ¢(t) is almost-periodic in
time and satisfies the upper bound in (1.4).

Craig and Wayne [14] retrieved the origination of the KAM method - Newtonian it-
eration method together with the Lyapunov-Schmidt decomposition which involves the
Green’s function analysis and the control of the inverse of infinite matrices with smal-
| eigenvalues. They succeeded in constructing periodic solutions of the one-dimensional
semi-linear wave equations with periodic boundary conditions. Bourgain [5, 6, 7, 8, 9]
further developed the Craig—Wayne’s method and proved the existence of quasi-periodic
solutions for Hamiltonian partial differential equations in higher dimensional spaces with
Dirichlet boundary conditions or periodic boundary conditions. In a similar way, Bour-
gain and Wang [10] constructed time quasi-periodic solutions to the nonlinear random
Schrédinger equation

0
ira=(EA+V)g+ 5lg|*q (p>0)

on Z% x [0, +00), which is considered as a perturbation of (1.3), with ¢, § sufficiently small.
We point out that the Craig-Wayne-Bourgain’s method allows one to avoid explicitly using
the Hamiltonian structure of the systems. We will not introduce their approaches in detail.
The reader is referred to Craig—Wayne [14], Bourgain [5, 6, 7, 8, 9], and Bourgain-Wang[10].



Comparing with Craig-Wayne-Bourgain’s approach, the KAM approach has its own
advantages. Besides obtaining the existent results it allows one to construct a local normal
form in a neighborhood of the obtained solutions, and this is useful for better understand-
ing of the dynamics. For example, one can obtain the linear stability and zero Lyapunov
exponents. The KAM method was successfully applied by Kuksin[31] and Wayne[39] (see
also [32, 34, 36, 37]) to, as typical examples, one-dimensional semi-linear Schrodinger
equations

ity — gy + mu = f(u),

and wave equations
Ut — Ugze + mu = f(u),

with Dirichlet boundary conditions. Geng—You [25, 26] proved that the higher dimension-
al nonlinear beam equations and nonlocal Schrodinger equations admit small-amplitude
linearly—stable quasi—periodic solutions. The breakthrough of constructing quasi-periodic
solutions for more interesting higher dimensional Schrédinger equation by modified KAM
method was made recently by Eliasson—Kuksin [17]. They proved that the higher di-
mensional nonlinear Schrodinger equations admit small-amplitude linearly—stable quasi-
periodic solutions. Very recently, quasi—periodic solutions of two dimensional cubic Schro—
dinger equation
iug — Au A+ |ul?u =0, z €T?, teR,

with periodic boundary conditions are obtained by Geng—Xu—You [23]. By carefully
choosing tangential sites {i1,---,iy} € Z2, the authors proved that the above nonlinear
Schrédinger equation admits a family of small-amplitude quasi-periodic solutions.
However, all the above mentioned KAM results fail in dealing with the cases of random
Hamiltonian systems as Craig-Wayne-Bourgain’s method. In this paper, we try to attack
the case of random lattice Hamiltonian PDEs. Concretely, we consider the equation (1.1)
as a model, note that {v, }nez is dense on the interval [0, 1], thus all the above mentioned
KAM results fail for this case. In this paper we give an abstract KAM theorem which
can be applied to (1.1). We use the theorem to construct the quasi-periodic solutions
and, different from the Craig-Wayne-Bourgain’s method, prove their linear stability for
the equation (1.1). To establish the KAM theorem, we have to impose further restric-
tions both on the unperturbed part and on the perturbation besides smallness. In the
existent infinite dimensional KAM theorems, e.g., Kuksin [31], Péschel [37], Wayne [39],
Eliasson-Kuksin [17], Geng—Viveros—Yi [29], Geng—Xu—You [23], some assumptions on the
regularity of the frequencies and the perturbation are required (See (A1) — (A5) in Sec-
tion 2). In addition, we also assume that the perturbation has a special form defined in
(A6) in Section(2), which is called gauge invariance. Our proof benefits a lot from such
speciality of the perturbation. With the speciality of the form of the perturbation, we can
prove that the normal form part of the Hamiltonian remains simple during the iteration.
Compared with the proof of the previous KAM theorems, an additional job done in this pa-
per is to prove that the perturbation always has the special form along the KAM iteration.

Now we are going to state our main result.

Let b > 1 be an integer and J = {ny,---,np} C Z, Z1 = Z\ J. We consider the case
with frequencies @ = (&1, - -+, @) parametrized by w = (wq, - -,wp), which is treated as
parameters in a closed region O in RY satisfying |O| > 0. (Hereafter, for simplicity, we



use the symbol | - | to denote the Lebesgue measure of a subset of R?). Given p > 0, let
E},(Z) to be the Banach space of summable complex valued sequences ¢ = {g, }nez, with
the norm

lgllp =" lgnlel™?” < oo,
nez

Our main result can be stated as follows.

Theorem 1 Consider the lattice equations
1¢n + Ungn + 5|Qn‘QQn +en(@nt1 + qn-1) =0, nez

where {vy, tnez is a family of i.i.d. random variables with common distribution g satisfying
(1.2), and and |e,| < ee=?™ with e, 0 > 0. Let b, ©, O, J and Z, be defined as above.
There exists a sufficiently small positive number &y such that the following holds for 0 <
£,0 < &.

There exists X. 5 C [0,1)%* with

prob(Xe 5) > e’

for some 0 < o < 1 such that if we fix {vy,}nez, € X5, there exists a family of Cantor
sets 0.5 C O for 0 < ¢,6] < 1 with |0\ O-5| — 0 as £,6 — 0 and C}, (i.e., C*
in the sense of Whitney) maps wes @ Og5 — RY , such that for every w € O, the
Hamiltonian associated with w admits a small amplitude, linearly stable, quasi-periodic
solution q(t) = {qn(t)} of b-frequency w. 5 = wes(w) that is slightly deformed from w.
Moreover, for each t, q(t) = {qn(t)} € £3(Z) for some p > 0.

The rest of this paper is organized as follows. In Section 2, we define the weighted
norms, the decay property and gauge invariance, and present the abstract KAM theorem,
which can be applied to the equation (1.1). In Section 3, we give the details for one step
of the KAM iteration. The proof of the theorem is completed in Section 4 and 5 by an
iteration lemma, giving a convergence result, and finally conducting the measure estimates
of the remaining parameters. Some technical lemmas are proved in Section 6, which is
regarded as an appendix of this paper.

2 An abstract KAM theorem

2.1 Function space norms

We start with some necessary notations. Fix b > 1 an integer. For given b vectors
in Z, say ni,---,np, we denote Z1 = Z \ {n1,---,np}. Let ¢ = (--+,qn, " )nez,, and its
complex conjugate § = (-, qn,* * *)nez,, With the norm

lgll, = > lgnle™? < oo
nezl

Given real numbers r, s > 0, we let D,(r, s) be the complex b-dimensional neighborhood
of T x {0} x {0} in T® x R® x £}(Z1), i.e.,

DP(Ta 5) = {(97Ia Q) : |Im9| = |IH1(01, o 'aeb)| <7, ‘I| < 827 HQHP < 5}7

4



where | - | is the sup-norm of complex vectors.

Let F(6,1,q,q) be a real analytic function on D,(r, s) which depends Cfy-smoothly
on a parameter w € O. In the rest of the paper, all dependencies on w are assumed of
class C&V, thus all derivatives with respective to the parameter w € O will be interpreted
in this sense. We expand F' into the Taylor-Fourier series with respect to 0,1, ¢, q:

F(0,1,q4,7 ZFa@q 7, (2.1)

where, for multi-indices o := (-, an, ), 8 := (+++,Bny ), an,Bn € N with finitely
many non-vanishing components,

Faﬁ = Z Fklaﬁ(w)fl€i<k’0>.

kezb lenb

The norm of the function F on D,(r,s) x O is given by

1D, rs)0 = sup > [[Fagll1g*117°), (2.2)
lallo<s 57

where [¢*] = Han;«éo |Gn |, ‘qﬁ‘ = H6n5£0 angny and

OFkiap
Oow

| Fagll =" [Fraglos® e, | Frqaslo := sup (‘kaﬁ! T ‘
k),l UJGO

).

In the case of a vector-valued function G : D,(r,s) x O — C" (with n < 00), we define its
norm as

||GHDP(T,S),O = Z ||Gi”Dp(7",s),O'
i=1
For the Hamiltonian vector field

Xp = (FI7 —Fy, (_inn)nGZu (inn)néll)

associated with a function F' on D,(r,s) x O, we define its norm by

”XFHDMT,S),@ = ||61FHDP(T,S),O ||69 ||Dp(rys)7o
1
~(> ||3anHD,,<T,S>,o€‘"|p+ > 106, Fllp, . 0€™?)-
nezl nezi

All vector fields are going to be estimated in this kind of norm as well, which will imply
the exponential decay of the vector field components in the index n € Z. Sometimes, for
the sake of notational simplification, we shall not write the subscript D,(r,s) or O if it is
obvious enough.

In what follows in the formulations and proofs of various assertions we shall encounter
absolute constants as well as ones depending on the function F', the dimension b, and
so on. All such constants will be denoted by ¢, ¢ ,c9, - -+, and sometimes even different
constants will be denoted by the same symbol.



Let F, G be two real analytic functions on D,(r, s) which depend Cfj,-smoothly on a
parameter £ € O, and let {-, -} denote the Poisson bracket of smooth functions, i.e.,

oF 0G oF 0G oF 0G  OF 0G
FG=(=—, =) (=, = ' —
(6= (55 )~ (G af>+1n§1 (G, 55 50.)
which is perhaps the most important quantity to be estimated in this norm defined for the

vector fields, as it is significant to Hamiltonian mechanics. Some basic estimates about
the vector field and the Poisson bracket are given in the appendix.

2.2 Decay property and gauge invariance

As before, we consider the real analytic function F', given in terms of their Fourier—
Taylor series expansion. We decompose F' into F', F' and F, where F' + F' is the projection
onto the components which are independent of the tangential variables (I, 6):

F= Y Foud®®, Fup=Foasw) (o] +]8<2),
|a|+]8]<2

F= Y Fud®®, Fap=Foasw) (o] +]8]>3).
|| +]8]>3

Then F is the result of the complementary projection, i.e.
F=Y Foapg®d®, Fap= Y Fuaplw)l'e®™.
o, (k,1)#0
For each multi-index («, 8) = (---, an, B, - +), N € Zy1, define the quantities
Ti=n"(a, f) = max{n € Z1 : (an, Bn) # 0},
" :=n (a,f) =min{n € Z; : (an, Bn) # 0},
n* = n*(a, B) = max{|n*], |n"},

S 3

and

supp(a, 3) = {TL € Z1: (an,Bn) # 0}
Remark. The above notations are closely related to the notations of support and diameter
for the monomials in [11]. The decay properties of functions on phase space in terms of
the index n is important to this study. We distinguish the decay behaviors of functions
Fag which are independent of the tangent variable (I,0) with |a| + |3] > 3, Fag with
la| 4 |8| < 2 and F,3 which do depend on (I, 6).

Definition 2.1 A real analytic function

F=F0,1,4,0) =Y Fapq®d’
a?ﬁ

on Dp(r, s) is said to satisfy the decay property if
[Fagll < ce™@,  |a|+8] > 1,
VEusll < ce™@, 1< ol +16] <2,
1Fugll < ce=@™™ =) Ja| + 18] > 3

with some ¢, o > 0.



It is important that this decay property can be preserved by the procedure of making
KAM iterations. It allow us to consider a finite dimensional small divisor problems at
each iteration step. This property is not preserved by products or sums of coefficients,
but it is preserved by the Poisson bracket.

Lemma 2.1 Consider two real analytic functions defined on D,(r, s)

GO.Lq,q) = Y G+ Y, Cud@+ Y Gopd,

a3 |al+|8l<2 |&|+|8]>3
F(G,I, q, (j) = Z déq&q + Z F&Bqdqﬂa
a8 |&]+|8]<2
n*<M n*<M

with
IG5l < cae™™, |al+ 18] > 1,
IG5l < cge™™, 1< |al+]8 <2,
IG5l < cae@™ 77, ol + 6] > 3,
1F50 < cpe™®™, &l + 6] > 1,
1F35ll < cre™™, 1<lal+]8 <2,

for some positive cg, cp and o, where

" = a* (&, B) = max{|a™|, ||},

then on Dy(r — 0, 3),
K ={G,F} =Y Kau3¢"¢’
a?ﬁ

satisfies
[Kapll < cxe™, |al+[B] = 1,

for some positive cx, where

n* = (@, 8) = max{la*], oI

and
+

7”L+(Oz,ﬁ) = maX{n : (O‘ann) 7& 0}7
n~ =n" (a,f) =min{n : (an, fn) # 0}.

n



Proof: A straightforward calculation yields that

{G,F}
> 0Ga5 955 gotaghth
e oI > 06
a,8,a,8
A*<M
. Z 8G5¢B OF qa—i-a—ﬁ-‘rﬁ
- 09 > 01
&,8,a,8
A*<M
+ i Z Zéﬁﬁﬁdéq“’e"q e
A<M 6,3
A~ <n<nt g3
+ i Z ZédﬁF&Bq eng qd(jﬂ en
n*<M a8
A~ <n<at g3
+ i Z Zééﬁﬁ'&ﬁq 6"(jﬁq"‘qﬁ en
n*<M 4,8
A= <n<at g3
+ i Z ZédﬁF&ﬁq eng qdqﬁ en
ﬁ*gM

where e,, is the multi-index whose n'®

(2.3)

(2.4)

(2.5)

(2.10)
(2.11)
(2.12)
(2.13)
(2.14)

(2.15)

(2.16)

component is 1 and other components are all 0. In



(2.3), (2.4), n* = max{n*,7n*}, then according to Lemma 6.2, on D,(r — o, 5), we have

<
(

9G,,
oI

B

)

OF,;
06

0G5 OFy;

00

Y

oI

)
;

<

4CGCFM _
—F—¢€

052

deqep M
—5 ¢
s

*

on

)

*

on-.

)

in (2.5), (2.6), (2.7), (2.8), (2.11), (2.12), (2.13), (2.14), n* = max{A*,i*}, then A* +n* >

n*, hence
I Z ZGdBFdBH < cgepMe ",

A<M &3
a=<n<at &5

> ZédﬁpdéH < cgepMe ",

A<M &3

a=<n<at &8

e —on*

I E Gplspl < caerMe ,
A*<M - ap
A~ <n<at &3

§ : § : o 2 —on™.

I GdﬂF&BH < cgepMe )
A<M 4B
am<n<at &6

in (2.9), (2.10), (2.15), (2.16), n* = max{A*,7*}, note h~ < T, and = < AT, then
nt — A~ +n* > n*, hence

>

ZGdBF&BH S chFMe_Qn s

a*<M 4.3

A~ <n<at &3
> ZéaﬁpdéH < cgepMe .

A*<M 4,8

A= <n<at 55
Thus Lemma 2.1 is shown to hold.

During the KAM steps, we often apply the following formula

1 1
Go\I/}T:G+{G,F}+5{{G,F},F}+---+E{---{G,F}---,F}—l—---.

n

Note that n* < (n™ —n~), then we have

Corollary 1 If G and F satisfy the assumption of Lemma 2.1, then on D,(r — o, 3),

G := G o VL, satisfies that

||C~¥d3 | < cée_ﬂm*, la + 18] > 1,

IG5l < cge™®, 1< ol +]8] <2,
b _e +_ -

G450l < cge™ 2™ ) ol + 18] > 3,



for some positive cz, where

nt = max{n: (an,Bn) # 0},
n~ = min{n: (an,Bn) # 0},

© = max{|n"|,|n"[}.

Besides the decay property, the gauge invariance, which concerns the relation between
k,a, B appearing in the Taylor-Fourier series, can be kept during the KAM iteration. The
precise definition of the gauge invariance is given below.

Let |a| := 3", a,, for any multi-index o = (- -+, @, - * *)nez,, n € N, with finitely many
non-vanishing components.

Definition 2.2 The function F(0,1,q,q) is called to have gauge invariance, if
Fklag(f):o, when kl—i-kg—l—---—i-kb—f—’a’—’,@‘ 7&0.
Let A denote the collection of the functions which has gauge invariance.

Lemma 2.2 IfG(0,1,q,q),F(0,1,q,q) € A, then K(0,1,q,q) ={G,F} € A.

Proof: Let
G =Y Grap(D)e™qq’,
k,a,B
F= Z koz,B q q
kcx,ﬁ

where the summations are taken over

{(k,a,p) : Zk + |a| — 8] = 0}, (2.17)
and
{(k,a,8): > kj+lal— 8] = 0} (2.18)
j=1

respectively. Since

. aGa I) - i _8 i(k & -3
G, ry = 10 (2esl) fop (16t gagseitho) igh

k&
Al A2 81 B
8F~& (1) )
_ IZ Z<k, kaf >Gko¢5(I)€1<k’9>qaqﬂ€1<k’0>qaqﬁ
Al A2
+i) ZGka[g(I)F’;dé(I)ei(kﬂ)ei(kﬂ)qa,emqﬁqdqﬁiem
mezy A3
— 1 Z ZGk’a,B F‘~ 3 )ei<k79>€i<k’9>qa@3_emq&_€mqﬁ
MEZ1 Ay
i(k+k,0) a+a-B+08
- ZK(k+IE)(a+a)(ﬁ+ﬁ~)(I)e< + >q +6 gB+B
As
+ ; K(k+l§)(a+&7em)(ﬁ+ﬁ;€m) ([)ei(k+k,9>qa+&—em qﬂ+13_em’
6

10



where e,, denotes the vector with the mth

being zero; A; denotes

component being 1 and the other components

b
S kj+lal — 18] = 0;
j=1

As denotes
S kj+lal - |8l =0;
j=1
As denotes
b
Y kit la—em| — (8] = -1,
j=1
and
b ~ ~
> kj+al =18 —em| = 1;
j=1
Ay denotes
b
D okj+lal—18—en| =1,
j=1
and
b ~ ~
S kj+la—en =18l = -1
j=1
Ay denotes
b
(kj + k;) +[a+al —[B+B]=0;
j=1
Ag denotes
b
So(kj+ k) +la+a—em| =8+ 8 —em|=0.
j=1
Thus Lemma 2.2 is obtained. [ ]

We also have

Corollary 2 If G(0,1,q,q),F(0,1,q,q) € A, then Go ¥l € A.

2.3 Statement of the abstract KAM theorem

The starting point will be a family of integrable Hamiltonians of the form

N=e+ (w,I)+ Z Qnqnn, (2.19)

nez,

where w € O is a parameter, {Q;, }nez, € R™ is a family of i.i.d. bounded random variables
with common distribution g(€2,) = d2,, equipped with the product measure

H 9() = H d{dp,

nezy nezy

11



and independent of w. The phase space is endowed with the symplectic structure dI A
do+1 Y dgn A dgn.

nezi
For each w € O, the Hamiltonian equations of motion for N, i.e.,

df I

w_ ., U dgn _ . dgn
a7 dt

0, di = _IanTU ﬁ = iann, nec Zl, (220)

admit special solutions (6, 0,0,0) — (6 4+ wt, 0,0, 0) that corresponds to an invariant torus
in the phase space.

Consider the new perturbed Hamiltonian

H:N+P:e+<wal>+ZQnQn(jn+P(9,IaQ7CY§w)' (2.21)

nezi

Our goal is to prove that, for most of {Q,}nez, € R* (in product measure sense), the
Hamiltonians H = N + P still admit invariant tori for most of the parameter w € O (in
Lebesgue measure sense), provided that || Xpl|, . , is sufficiently small.

To this end, we need to impose some conditions on {2, } ez, and the perturbation P.

(A1) Regularity of normal frequencies: For each n € Zj, £, is independent of the param-
eter w.

(A2) Gap condition of normal frequencies: There exist v > 0, 7 > b such that for
n,m € Zi, n #m, and 0 < |m|, |n| < Ky Nln%,

Q= Q| > — . (2.22)

Remark. We shall use Xg to denote the subset of R?! such that if {Q,}nez, € Xo then
(A2) holds.

(A3) Melnikov’s nondegeneracy: There exist v > 0, 7 > b such that for any k # 0, and
0<]|

ml,[n| < Ko,
o)l 2 (2.23)
|(k,w) + Q| > % (2.24)
[, @) + Qo + Q| > “ZF, (2.25)
|(kyw) + Q — Q] > |]Z’T. (2.26)

(A4) Regularity of the perturbation: The perturbation P is real analytic in I, 6, ¢, ¢
and Whitney smoothly parametrized by w € O; in addition || Xp||p,(s),0 < €0 for some
sufficiently small &g.

12



(A5) Decay property of the perturbation: If we write that P = P+ P+ P, where

pP= F’(e, I,q,q;w) = Z pagqacj = Z Pklaﬁqacjﬁei<k’9>fl, (2.27)
B )0
P=Plqguw)= Y Pupi®@= Y Pooapd®d, (2.28)
| +]8]<2 el +]B]<2
P=Pggw)= Y Pupd®@= 3 Poaps’, (2.29)
|o]+] 8>3 loo|+181>3

then the coefficients satisfy

| Pagll < ce™@, ol + (8] > 1, (2.30)
1Pasll < ce™@, 1< |al+8] <2, (2.31)
1Pagll < ce™ ™" =770 o] + 8] >3 (2.32)

for some positive constant ¢ and g, where

(A6) Gauge invariance of the perturbation: We expand the perturbation P into the Taylor-
Fourier series with respect to 6, I, q, q:

P= 3 Puasw)I'e®qg,

kezb lend
a,B

then the coefficients Pyap(w) = 0 if 22'21 kj + o] —|B] # 0.
Our abstract KAM theorem states as follows.

Theorem 2 Assume that the unperturbed Hamiltonian N in (2.19) satisfies (A1) — (A3),
and P satisfies (A4) — (A6). Let v > 0 small enough, there is a positive constant ey =
e0(0O, Ko,,7,5) ~ 4 and X., C RZ with

prob(X,) > e~ 7"

with some 0 < o < 1 such that if | Xp||p,rs),0 < €0 and {Qn}nez, € Xy is fized, then the
following holds.
There exist a Cantor set O, C O with |O\ O, = O(y) and maps

\IJ:’H‘bx(’)V—>Dp(T,3), @:OW—HRI’,

which are real-analytic in 6 and Cy,-smooth in w with [ —=Wo[ py(z 00,0, = 0 and [&(w) —
w| — 0 as v — 0, where Wy is the trivial embedding: T° x O — T® x {0,0}, such that
each w € O, and 0 € T correspond to a linear stable, b-frequency quasi-periodic solution
U0, w) = (0 + &t, qu(t),qn(t)) of equations of motion associated with the Hamiltonian
(2.21).
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2.4 Proof of Theorem 1

In Theorem 1, the Hamiltonian function associated with the lattice equation is

H=A+G (2.33)
with
A= Z Unqnn,
nez
and

1
6= 23 laalt + X cutilann + 40)

nez nez

where {vp,}nez € [0,1)% is a family of i.i.d. random variables with common distribution
g satisfying (1.2), and and |e,| < e~ 2" with €,0 > 0. The symplectic structure is

Moreover, the perturbation G in (2.33) has the following regularity property.

Lemma 2.3 For any fivzed 0 < p < o, the gradient Gy 1is real analytic as a map in a
neighborhood of the origin in Z},(Z) into E;(Z) with

1Gallp < cmax{e, o}|gll,-

Proof: Since G = %(5 > ez lgn|* + > ez Enln(qnt1 + gn—1), we have that

oG _
IGall, =Y |5 e™? <63 langule™” + 3 enlgnial + lan-1))el™?” < cmax{e, 5}[qll,»
neZ n neZ neEZ
where
8 g2anle™e < cdllqll?,
neZ

and

S enllgnr1] + lgn-1])e™? < ceqll,.

nez
Then the regularity of Gy is proved. [ |

Next, fix J = {n1,---,mp}, and Z; = Z \ J. We introduce action-angle variables and
parameters to the Hamiltonian function (2.33). Fix £ = (§n,, -+, &p,) With 0 < &, < ¢,
i=1,---,band ([,0) = (In,, -, In,,Ony,- -, 0p,) be the standard action-angle variables
in the (¢n, Gn)nes-space around £. Then

ni = 1/ Im + §n1619n17 s lny = 4/ Inb + gnbeienb’
in = Inl + g’nleiienl [ )(jnb = \/ Inb + énbeiienbu

denote the remaining normal coordinates by (g, ¢), and the Hamiltonian (2.33) becomes

H=e+ (w,I)+ Z Qlgn> + P(0,1,q,G;w),

nezi
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where

e = Z (Ungn + %553)7

neJg
w == (U’nl +£n17"'7vnb +§nb)7
Q, = v, nEZ,
1 _ _
P = 55 Z "Zn|4 + Z Endndn+1 + Z E€ndndn—1 (2‘34)
nezi ng¢J n¢J
n+1¢J n—1¢J7
+ Z EnV I, + fne_iGRQn—l—l + Z EnV I, + gne_iQHQn—l (235)
nj—fgj nr—LEQJJ
+ Z Eny/ In—l—l + £n+1€i9n+1(jn + Z Eny/ L1+ gn—leien_IQn (236)
n¢J n¢J
n+ledg n—1eJ
+ Y enVTn + &/ Ing1 + Enre O 0nen) (2.37)
Al
: 1
+ Y enVIntayIn +buae O o6 S I (2.38)
"t e
= Y Pupd®@+ D Papd®@+ Y. Pape®d’.
a,f |l +]B]<2 laf+|8]>3

Now we show that this Hamiltonian satisfies the assumptions (A1) —(A6) of the KAM
theorem.
Verification of (A1): Since {vp}nez is a family of i.i.d. random variables, for each n € Z,,

Q,, = vy, is independent of w = (vp, +&nyy -+ Vny + &y )-
Verification of (A2): First, we order the integers such that n € Z; and |n| < Ky as
J1<J2 <--- <Jn,

where N < 2Ky + 1 denotes the number of such integers. Then we choose any value
vj, € [0,1] for Q;,. With Q;, = v;, fixed, we have that

Y 2y
mes < v, v, — Qs | < — - }< - —.
{oi o =0l < 25 b <

Excluding the set of such values for vj,, we can choose any value left for €2;,. Now we
proceed inductively. With €Q; = v;,---,Q; = vj, 1 <i < N —1 fixed, we choose

Qj,., = vj,, such that v;,,, does not belong to the set

gl

<G IR
7

{Uj¢+1 : ‘Uji+1 - Qj|
whose measure is less than ¢y. Thus (2.22) holds for any n # m and |n|, |m| < Ky = cln %
The product measure of the set of remaining values for the variables {vy, } <k, is not less
than

N—=

(1 - CV)CKO > e’ 3

15



if v is small enough.

Verification of (A3): We check (2.26), which is the most complicated case. For any k # 0
and |n|,|m| < K fixed,
O((k,w) + Ly, — Q)
ow

Therefore, by excluding some parameter set with measure O(7), we have that

1
> —|k
=

gl
LIk

‘<k7a» +'(Ln _'Sln|;2

We can show that (2.23)—(2.25) hold similarly, so (A3) is verified.

Verification of (A4): By Lemma 2.3, together with Lemma 6.2 and Lemma 6.3, we obtain
that

Lemma 2.4 For any ¢ > 0 sufficiently small and s < ¢, if |I| < s* and ||q||, < s, then

1XPp,rs)0 <€

Verification of (A5): We focus on the expression of P. The (I,#)-dependent terms of P
are (2.35) — (2.38), whose coefficients corresponding to ¢, @n(0r Gni1, Gntis Gn—1s Gn—1)
are not more than ce,, < ce~9"l. This means (2.30) holds. Since

P= 3 culutnii+ D Enndn-1,

n+1¢J n—1¢7J

and !
P= 5(5 Z ]qn|4,

nezl

(2.31) and (2.32) is obviously verified.

Verification of (A6): It is obvious that the initial perturbation 1 3>, c; 0|gn|*+3 7 anqn(qnﬂ—i—
Gn—1) has gauge invariance. After introducing the action-angle variables, any term eltk:0)

originates from [[ (an.s.)20 ¢ @™, and we have that
neJ

b
ki=> an—Y_ P

1 neJ neJg

<

Then 22:1 k;+ |a| — || remains zero if its initial value Y, c; o — >, ez Bn is zero. Thus
(A6) is verified.
Thus Theorem 1 can be viewed as a corollary of Theorem 2.

16



3 KAM step

In this section we present the KAM iteration scheme applied to (2.33). This is a
succession of infinitely many steps whose purpose is to eliminate lower-order 6-dependent
terms in P. At each KAM step the perturbation is made smaller at the cost of excluding
a small-measure set of parameters. It will be shown that the KAM iterations converge
and that, in the end, the total measure of the set of parameters that has been excluded is
small.

At the v*™® step of the KAM iteration, we consider a Hamiltonian vector field with

HV = NV+PV
= e+ <ajl/(w)7j> + Z QZ(w)qnq_n+PV<97[aQ7(jaw)7

nezi

where N, is an ”integrable normal form”, P, € A with decay property is defined in
D, (ry,s,) x O,.
Assume that at the v step, v > 1, the frequencies have the following properties. The
tangential frequencies
Oy(w) =w+wy(w), weO,, (3.1)

where @&, (w) is a C}y, function of w with C}},-norm bounded by eq. {Q%(w)}nez, satisfies

v 0 +w), In|<nt,
nlw) = { 0, ] > L. (3:2)

with {Q0},,cz, € X, being the initial normal frequencies and Q% (w)’s are C}y functions of
w with Cfj;-norm bounded by &o.
We then construct a map

®,: Dy (Tog1:5041) X Opy1 = Dy (10, 5,) x Oy

so that the vector field Xy, 09, defined on D, (7,41, 5,41) satisfies

”XPV+1 ||D/)V+1(TV+1,SV+1)7OV+1 = ||XHVO'1>D — XNV+1 ||DPV+1 (rv+1,50+1),0041 < 55, k>1

with some new normal form N1, which has properties similar to that of N,. Moreover,
the new perturbation P,;; still has the gauge invariance and the corresponding decay
property. Here, the quantities r, and p, satisfies that, %r < py < Tyg1.

To simplify notations, in what follows, the quantities without subscripts refer to quan-
tities at the v step, while the quantities with subscripts 4+ denote the corresponding
quantities at the (v + 1) step. We now let 0 < r, < r and define

1 1 _ _
s = 8€8, ep =cy 2(r—ry) Ces.

oy

(3.3)

Here and later, the letter ¢ denotes suitable (possibly different) constants that do not
depend on the iteration steps.
Let us then consider the Hamiltonian

H=N+P=e+(@I)+ Y w)gndn+ P, 1,q,3w) (3-4)

nezi
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defined in Dy (r,s) x O. We assume that for each k # 0, @ and {Qy(w)}, <}, 1 satisfies

90w) = )| 2 s A, (35)
[k, @)| > ﬁ (3.6)
|k, @) + Qn(w)] > ﬁ (3.7)
[5,) + D) + )| 2 (3.8)
[, ) + () = Q@) = 4 ,j‘ (3.9)

with v > 0, 7 > b, while {Qn}\n\>1n 1 is independent of w. As for P, we have that

HXPHDP(T,S),O <e, (310)

and P =} 1,3 Pklagllei<k’9>qo‘cjﬁ has the gauge invariance. Moreover, if we write that
P:P—i—P—i—P, where

p = ?(H,I,q,(j;w) = Zpaﬁqagﬁ = Z Pkla,gqa(jﬁei<k79>ll,
a7/3

(k,z)g&o

P=Plqqgw) = Y  Pupd®@®= > Pooasa“d,
la|+|B]<2 la|+|81<2

P=P(qqgw)= Y  Pupd®d® = Y Pooasa“d’,
la]+]8]>3 lo|+]8]>3

then P has decay property, i.e.

|Pagll < ce=@", ol + 8] > 1,
1Pagll < ce™@, 1< o+ 6] <2,
| Pagll < ce=2" 7)o + 18] > 3,

where

t=nT(a,B) =max{n € Z: (an, Bn) # 0},
“(a, f) =min{n € Z : (an, Bn) # 0},

" =n"(a, ) = max{[n"|,|n"[}.

We now describe how to construct a set Oy C O and a change of variables @ :
Dy xO4p =D, (r4,54) x Of = D,(r,s) x O such that the transformed Hamiltonian
H, = Ny + Py := H o ® satisfies all the above iterative assumptions with new parameters
Sty €4y T4, V4 and with wy € Oy

18



3.1 Solving the linearized equations
FExpand P into the Fourier-Taylor series

P= Y Prase ™9 I'qg
k’l7a7ﬂ

where k € Z°,1 € N’ and the multi-indices o and § run over the set of all infinite dimen-
sional vectors o = (-« -,y Jnezy » B= (-, Bn, " Inezy, On, B € N with finitely many
nonzero components of positive integers.

Let R be the truncation of P given by

R0,1,q,5) = R+R

= > Y Puasd®@+ Y. Pooapqd’- (3.11)
n*gln% (k‘J)#O n*glné
2011+ al+]8]<2 lal+18]<2
Hence
P-R= ) > Puapd®d + Y > Puap®d’ + P.
S N 2)l|+|a+8]>3 (k,1)£0

20l|+]a+B]<2

Since P € A, we can rewrite R and R as

R = Z Prooe 01! 4 Z (PH0q, + Pz
(k,1)£0 k#0
<1 [n|<In ¢ 1
+ Z (PkQOQan + an Gnlm) + Z PkllQana
k#£0 k
Inf,lm|<In 1 nl,Jm|<In £
R = > P anGm + Poooo,

n],|m|<In L

where Pk10 Priop with a = ey, 3 = 0, here e,, denotes the vector with the n*" component
being 1 and the other components being zero; Pk01 Priop with o = 0,8 = ep; Pk20
Ppop with o = e, + €y, 8 = 05 P,’fll Ppiop with o = ey, 8 = ep; Pk’o2 Pyjop with
a=0,5= e, + en. Due to the assumption (A4), P € A implies that

b
Puoo =0, if > kj #0
j=1
b
PMO=0, if > ki+1#0
b
PHL =0, if Y kj—1#0
Jj=1

b
PR =0, if > kj+2#0
j=1
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b

PRl =0, if Y ki #0
7=1
b

PR2—0, if Y kj—2#0
7j=1

Rewrite H as H = N + R+ (P — R). By the choice of sy in (3.3) and the definition
of the norms, it follows immediately that

1XrlD,rs),0 < 1 XPlD,rs)0 <& (3.12)

Moreover, we take s; < s such that in a domain D,(r, s4),
1 XP—r)llD,(rss) < cE4- (3.13)

In the following, we will look for an F in the class A, defined in a domain D, =
D,, (r4,s4), such that the time one map @} of the Hamiltonian vector field X defines
a map from Dy to D and transforms H into H,. More precisely, by second order Taylor
formula, we have

HodL = (N4 R)o®L+ (P—R)odh
= N+{N,F}+R

1 1
+/ (l—t){{N,F},F}oqb}dt—i—/ (R,F} o ®lpdt + (P — R) ok
0 0

= Ny+Pr+{N,F}+R—Pyoo— (W, I) = > PNlgndn, (3.14)
|n|§lné
where 5P
w' = deq:q*:o,lzoa

Ny = N + Pyogo + <w',I> + Z Pr?7111Qan

|n\§ln%

1 1
P+:/ (1—t){{N,F},F}o<I>}dt+/ {R,F} o ®%.dt + (P — R) o ®}.
0 0

We shall find a function ' € A of the form

F(0,1,q,9) = F+F (3.15)
Z Fkla/n’qaqﬁ + Z FOOa,Bqan
k#0 n*<In i
n*<in 3 lal 16|22
2[l+al+]B8]<2 a#8

satisfying the equation

{N,F}+ R~ Poooo — (W, 1) — > Po'angn =0. (3.16)

|n|§lné

20



Similarly, we rewrite F and F as

F = Z Fklooei<k,9>1l + Z (Frlflo% + F’r];;Olqn)
k#0 k0
[1]<1 In|<In 1
+ D (Fegngm + F anm + Foy Gndm),
k0
Inf,lm|<n £
F = Z E qndm + Poooo-
Inf,lm|<In £
n#Em

Lemma 3.1 Equation (3.16) is equivalent to the following system

1
5

(k,@)Frioo = 1iPgoo, k#0, || <1,
1
(k@) = Q) Fy"" = iR k#0, [nf <In-,

1
((k,@) + Q) = 1P k#0, |n[<In-,
g

1
(k@) — Qp — Q) FF0 = iP¥% k20, |n|,jm|<In -

nm

1
(k) — O+ Qu)FSE = iPAL K £0, [l m| <,

nm?

nm?

1
k@) 4+ Qp + Q)2 = iPF2 L0, |n|,|m| <Iln-,
nm c

where Q@ = (-, Dy, )nez, -

Proof: Inserting F' defined in (3.15), into (3.16) one sees that (3.16) is equivalent to
the following system of equations

{(N,F}+R = (W.,I), (3.17)

{N, F} + R = Pyooo + Z Prgilqn(jn (318)

|n|<In L
€

We note that
(N.FY=1 > (U — Q) dnlm.

In|,|m|<In L

It follows that FO!! are determined by the linear algebraic system

nm
. _ 1
i(Qm = Q) P G + Py = 0, [l m| <In =, #m.
Similarly, from

{N)F} =i Z <k7w>FklOOei<k79>IZ

k#0
[1]<1
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+1 Z [((k, @) — Qn)F/;lOQn + ((k,w) + Qn)FrISMQn]

k0
In]<In £
+1 Z [((k, @) — Qp — Qm)Frlffr?Qan + ((k, @) — Qp + Qm)FrlfrlnIQan
k+£0

Inl,lm|<mn
+((ky @) + Qn + Q) FEO2G,,Gim)

it follows that FF0 FrOL pk20 - pkll and FR02 are determined by the following linear
algebraic systems

i(k, @) Frioo + Prioo = 0, k#0, || <1,
i((k,@) — Q) FFO L pFO — o k+£0, |n|<In é
(e, @) + Q) FE 4 PROL — 0 k20, || <In é
(k@) — Qp — Q) FER + P¥20 = 0, k#0, |n|,|m| Sln%,
(k@) — O+ Qu)ESL + PEL = 0, k#0, |nllm| <n =,
(k@) + O+ Qu)FRZ 4 PE2 = 0, k#0, |nllm| <ln .
Thus Lemma 3.1 is obtained. [ |
Remark. P € A implies F' € A.
3.2 Estimation on the coordinate transformation
We proceed to estimate Xp and ®1. We start with the following
Lemma 3.2 Let Dj = D,, (ry + 4(r —71), 4s), 0 <i < 4. If e < (372(r — r1))%, then
IXFllps0 < ey 2. (3.19)
Proof: By the definition of O, Lemma 3.1, and , we have that

_ _ 1
[Fomlo < 1(Qn = Q)" Pl < ey 2 ln —m ™ PYilo,  |nl,[m| < In o nFEm

and
|Fraolo < [(k, @) Pagolo < ey k[P Pagolo, k#0, I <1,
FiO% < o PR o, k#£0, fnl<int,
IFEY o < ey 2k PR k£ 0, \n\glné,
IFEOl, < oy 2E[2HY PED|o, k£, \n\,|m|§ln%,
IFhto < oy kPP PR o, k#0, \n\,\m|§ln%,
|Fivdlo < ey R PER 0,k #0, \n\,\mlélné
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It follows that

72||F9HD3,O
< Z !Fkloo\osml'\k\e‘k‘ F(r=ry))
k#£0
<1
+ 32 (Flolan] + |FL olan)ble =307
k#£0
In|<in 1
+ Y UFEolgallgn] + 1FEY 0]gnl|Gn] + | FE2|0]al1gn|) |kl =107+
k#0
Inf,Im|<In %
< ey P(r—ry) " Xg
< ey 2(r—ry) .
Similarly,
IE | Dsso = > |Fraoole!~ 1) < oy T2 — ) e
k+#£0
l]=1
From
1Fpllpso = 1| Y, Fane®™aulp,o+1 > File™ g, 0
k#£0 k#£0
|m\§ln% |m\§lng
+ Y EFOE b, o
k0
< Z |Fk11] Kl (r=3 (r=r1)) Tm| + Z Fk20 elkl(r (r_”))\qm\
k#0 k#0
\m\<1nl \m|§lng
+Z|Fk10| el kl(r—5 (r— T+))7
k0
and
1Fgllpso = | > FEle®gulp0+ll Y. Finte® g, p,0
k#0 k#0
Im|<In L |m|<In 1
+)1 Y EROE R, 0
k=0
< Z |Fk11| 6|l€|('r (r—ry)) ’q |_|_ Z Fk02 |k| 4(r—r+))|qm‘
k0 k+£0
‘m‘<1“l \m|§lng
+Z |Fk01|oe|k| 30— ),
k=0
we have that
IXgllpso = IFillpso + 2||F9||D3,o+ . (> 1, || ps.0e™P+ + 3 1E, | ps.0e™P)

nezi nezy
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IN A

Since

and

we have that

ey =) O Xx

ey Hr—ry)”

1E50 |l ps.0

1,1 Ds.0

1 Xgllps.0

IN

IN

IN

C

IN

E.
I Y. Famanllpso
n#Em
n[,[m|<In L
v Y In=mPTH P olgnl,

n#m

|n|,|m|<n L

| Z FS@%QMHDS,O

n#m

In|,|m|<In 1

< ey Y In=mPTHPY olaml,
n#m
Inf,lm|<n 1
]_ z. 7’
E(Z 1Ey | ps.0€™7 + > || Eg, | pg,0e™%)
n n

5 1 27+1
e (2) Xl

1\ 27+1
ey 2 (ln ) €.

€

Under the assumption that ¢ < (%72(7" - r+)c)%,

1

27+1 1
max{(ln ) J(r—rp)T <e 0.
€

Then the conclusion of the lemma follows from the estimates above.

In the next lemma, we give some estimates for ®%. The formula (3.20) will be used
to prove our coordinate transformation is well defined. Inequality (3.21) will be used to
check the convergence of the iteration.

Lemma 3.3 Let n = 5%,Din =D, (ry +L(r—ry),ins),0<i <4 Ife< (%72(7"—

r+)c)%, we then have

Moreover,

Proof: Let

|D"Flpo = m{H

Plil+l+al+8]

5 F
00011 9¢20q

®% : Dyy — D3, —1<t<1,

9

| D@ — Id| p,, < ey 2eTo.

D,O

24
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Notice that F' is a polynomial of degree 1 in I and degree 2 in ¢, §. From Lemma 3.2
and the Cauchy inequality, it follows that

ID™F|[p,0 < ey, (3.22)

for any m > 2.
To get the estimates for ®%., we start from the integral equation,

¢
P :id—l—/o Xr o ®%ds
so that ®% : Dy, — D3,, —1 <t <1, which follows directly from (3.22). Since

t t
DO}~ 1d+ [ (DXp)D¥jds =10+ | J(D*F)D®} ds,

where J denotes the standard symplectic matrix ( ? _OI ), it follows that
DO, — Id|| < 2||D2F|| < ey~ 2eTo. 3.23
F
Consequently Lemma 3.3 follows. [

3.3 Estimation for the new normal form

The map ®1. defined above transforms H into H; = N, + P (see (3.14) and (3.16)).
Here the new normal form N is

Ny = N+ Pyoo+ (W, 1)+ > Pl lgnin
n

= e+t <(D+a I) + Z Q:QnCYm (3'24)
n
where
er = e+ Poyooo,
Wy = @+ Pooo(|l| =1),
o _ | QutPML n<ml
no Qp, n| >1In <.

Note that the new normal frequencies ;7 do not change for |n| > In %, thus they remain
the initial random variables.
Now we show that Ny has properties similar to those of N. By the regularity of P,
we have that
oy —@lo <e, |PMp<e. (3.25)

It follows that

T
n —mlT

7+

+_ Ot
€ — Qo] 2 —25>m>

1
n#mv |n|a|m| §lng,
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0,5 Poon}| 2 [(k. @) = [{k, Pooo)| 2 = elbl 2 [, K #0,

and similarly

1
|(k, @ + Powo) + | > I%T k£0, Il <=

1
[k, & + Poioo) + O + Q| > |Z|+ k#0, [n]|m| <In-

1
k,@ + Pooo +Qr—Qf > 'Y—&-, k # 0, n|,m| <lIn -
n el 2 e :

provided that e|k|™™! < e(y — v4). This means that in the succeeding KAM step, s-
mall divisor conditions are automatically satisfied for |n|,|m| < Inl and |k| < K, where
eK™H < ey — ).

As for the condition associated with |[k| > K or Inl < |n|,|m| < In i, which is
necessary for the next KAM step, we shall verify them by measure-estimating in Section
6. Note that the bounds in (3.25) will be used for the measure estimates.

3.4 Estimation for the new perturbation

Since
P, = /01(1 —t){{N,F},F} o ®%.dt + /Ol{R, F}o®hdt + (P — R) o )
_ /Ol{R(t), F}o®hdi + (P — R) o ®k,
where R(t) = (1 —t)(N+ — N) 4+ tR. Hence

Xp, = /Ol(q’tF)*X{R(t),F}dt +(®F)* X(p—p).
According to Lemma 3.3,
ID®Y — Id|p,, < ey 2et, —1<t<1,
thus
|ID®% | p,, <1+ ||D®% —Id|p, <2, —-1<t<1.

Due to Lemma 6.3,
1 X Rty | oy < Y2025,
and
1 X (p—r)ll Doy < e,

we have »
_9 _9 19
”XP+||DP(7‘+,S+) Semet ey T te10 < ceq.
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3.5 Verification of the assumptions after one KAM step

To continue the iteration we must show that the new Hamiltonian H, satisfies the
assumptions similar to (A1) — (A6). We have obtained the regularity of @} and {Q} },ez,
in the form of (3.1) and (3.2) in view of (3.25). For the next step, we shall prove the
Melnikov’s nondegeneracy for @, and the gap condition for {2 },cz, in Section 5 via
measure estimates. Since the regularity of P, together with its smallness, has been verified
in the last subsection, we only need to check the decay property and gauge invariance here.

In Taylor series, Py is expressed in terms of the iterated Poisson bracket

P, = P-R+{PF}+ %{{N,F}, F}+ %{{p, F},F}

1 1
+...+f{...{N’F}...’F}+f{...{P’F}...’F}+...
n! N——— n! ——

The support of any term Fjy,g is finite, with n* < In %, therefore, applying Corollary 1
and 2 with G = P and

G={N,F}=Pyooo+ (W .I)+ > Pllauin — R,

|n|§ln%

we obtain that the decay property and gauge invariance are satisfied. Note that the new
decay property of Py = P, + Py + P, is expressed as

IBJ5ll < ce™@™ < cem ™, for a| +|B] > 1,
1Pl < cem@™ <ceme™, for 1< ||+ 8] <2,
125, < ceme+ =) for |a| + 18] > 3,

with oy = %Q in view of Corollary 1.

4 Iteration lemma and convergence

For any given r, €q, s, p, 0, 7 and for all v > 1, we define the following sequences

v+1

r, =r(l— Z 27%),
i=2

6
Ey = 6772(7011—1 - 701/)7055717
1 v
Sy = T My—1Sv—1 = 2_2V(H 57§)537
4 .
=0
v+1 )
py=p(1—=> 27",
=2
Ov = 271}@
1
Yo = e
1
771/ = 537
D, = Dpl, (Tya 51/)7



where ¢ is a constant. Note that

is a well-defined function of 7.

4.1 Iteration lemma
The preceding analysis can be summarized as follows.

Lemma 4.1 Let € is small enough and v > 0. Suppose that

(1). Ny = ey +{@0(W)u, I) + Xpez, U (W)qnGn is a normal form with the tangential fre-
quencies

Oy(w) =w+ 0y (w), weO,,
where O, is a closed set in R?, Wy (w) is a C%V function of w € O, with C’év—norm bounded
by €0, and {2 (w)tnez, satisfies

v _ Q?L+erz(w)7 ‘Tl‘ Slnai
2 (w) = { 0o, n| >t

with {90} nez, € X, being the initial normal frequencies and Q%(w)’s are Cfy functions of
w with C&V—norm bounded by 9. Moreover,

|(:JV - (I)I/—1|OV <ep-1, |QZ - QZ;L?”OV <ep_1;
(2). For fized {Q0} ez, € X, the parameters w € O, satisfying

Q4 — QU > — T ntm,

In*mIT’

(k)| 2 i

v Tv
[(k,@v) + Q| > ——,
k[

[(k,@v) + Q4+ Q5] >

Ik!T’

(k@) + Q= Q| > 27,
IkIT

for all k # 0 and |n|,|m| <1n 2

Ev 7

(3). P, has the gauge invariance defined in (A6) and

1Xp, D0, < eu.

Moreover, if we write that P, = B,+P,+ PV, where

p,,zé,(@,[,q,(j; ZPﬁqq Z Pklaﬁq qﬁ ik, )Ila
(k,)#0
a,B
P, =P,(q,Gw) = Z Pﬁq qﬁ Z POVOaﬁqaqﬁv
ol +[B]<2 laf+[8]<2
P, =Pl w) = > Pl = Y Plapd"a
laf+8]=3 |al+]8]=3
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then P has decay property, i.e.

|PLgl| < ce™ @™, for |af + |8] > 1,

|B)| < cem@™, for 1 < |a| + 8] <2,

1PZgl < cemer=n)

where

, for |af + 5] =3,

nt =nT(a,B) = max{n € Z: (ay, B,) # 0},
n~ =n" (o, ) =min{n € Z: (an, Bn) # 0},

n*(a, B) = max{|n*[, [n"[}.

Then there are subsets O,+1 C Oy and X,41 C X, such that

=0\ U (RETURLTURGE) |-
\nl,\m\}c;g sylﬂ
where
RE = {w e Ol @ (@)l <
RiE = Aw € Ovs (@) + 957 < T
REHL = {w €0, |tk Gyar (W) + QT £ Qi < Ty

and X, 41 is expressed as

{1000ens € X, sl -t > 22 g,

n—m|™’
with

Wy41 = @y + Fyjgos

1
QTVL‘H =Qr + PS}E}’”, In| <ln—,
€

14

and a symplectic transformation of variables

q)l/ : DV+1 X Oy+1 — DV X Oy,

k|7

nl,[m| < In

such that on D, (ry11,Sv41) X Opy1, Hyp1 = Hy 0 @, has the form

Hy1=epp1+ <‘Du+1a I> + Z QZ+IQnQn + Py,

nezi

with {00} ez, € X111 and

"Dy+1 - a]u|(’)y+1 < ey, |Q7VL+1 - Q?"/L|Ol/+1 <

29
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And also
PI/-‘rl :PV+1+PI/+1+PI/+1

satisfies that
HXPV-H HDV+17OV+1 < &y,

has the gauge invariance defined in (A6) and the decay property, i.e.
1P < e for |af + (8] > 1,
HPO'fEIH <ce ", forl< la| + 18] < 2,

IPZEY| < cem@ (=) for o] 48] > 3.

4.2 Convergence

Let V¥ =®go0Pjo0---0d,, v=1,2,---. An induction argument shows that
v :D,x 0O, — DyxO

and HyoV” = H, = N, + P, with {Q%} € X, forall v = 1,2, - -.

Let O = N22,0, and X = N%,X,. Using Lemma 4.1 and standard arguments
[36, 37], one can conclude that H,, e,, N,, P,, ¥, &, and {Q%},ez, converge uniformly
on Dg(%, 0) x O to, say, Huoo, €o0s Noo, Poo, ¥, weo and {Q°} ez, , respectively, in which
case it is clear that

Neo = €0 + <(:)007I> + Z QZOQnQn-

nezy
Since . ,
evi1 = 032 (ry = ) el < (ey U (r)e) ),
we have, by Lemma 4.1 that
XpPulp, (z0)x6 =0
2

Let @’}{ denote the flow of any Hamiltonian vector field Xy. Since H o V¥ = H,,, we have
Pl o WY =TV o Pl . (4.1)

The uniform convergence of U”, D¥”, w, and Xp, implies that the limits can be taken
on both sides of (4.1). Hence, on Dg(%, 0) x O we get

Pl o U® =T o Pl (4.2)

and

oo r 2
v :D§(§7O) X O = Dy(r,s) x O.

It follows from (4.2) that
Ol (T(T° x {ws})) = XD (T° x {w}) = T(T° x {w})

for w € O. This means that ¥*°(T® x {w}) is an embedded torus which is invariant for the
original perturbed Hamiltonian system at wee € O. We remark here that the frequencies
Qoo associated to W (T® x {w}) are slightly different from the initial frequencies w. The
normal behavior of the invariant torus is governed by normal frequencies 27°.
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5 Measure estimate

In the KAM steps, we have assume that the small divisor conditions in the form of (3.5) —
(3.9) are satisfied. In this section, we shall estimate the measure of the set of parameters

such that these conditions are violated during the iterations.

5.1 Small divisors concerning the tangential frequencies

At the (v + 1)™ step of the KAM iteration, we have to exclude the following resonant set

RV+1 — U Ru+1 U Rl/—i—l URV—i—l

knm
k#0

], |m|<In oL

€41

where

R — {w €Oy (h,Dyer ()] < 22EL }

L
Rzt = {00 @) + 2wl < T2
R = {w €00 k@) + 2 w) £ 25 W) <
1
Ev+1 ’
v+1 v+1 y+1 ’Yu-i-l
‘R UR Usznm |k|7'+1'
Proof: Recall that @,11(w) =w + 37 Pgloo (w) with
S0 < <o,
Oy
and Q4 (w) = Q) + X% PO (w) with
SO <
Jj=0 o,
It follows that !
> clk],

O(k,Byex) + 0471 = Q)
Oow

then the proof of this lemma is evident, we omit it.

'Here | - | denotes £'-norm.
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Lemma 5.2 The total measure we need to exclude along the KAM iteration is

UrR=IU U  (RIURGURGm)| <’ 9>0.
v>0 v>0 k0

1
\n|,|m\§ln;

Proof: By Lemma 5.1,

T
Uretl < 0 Y 0
v>0 v>0  k#0 K|

1
\n|,|m\§ln§

1\2 Yo

< e ) () oy

v>0 k#0 v I

1

DM IR
= Cie

v>0 k#£0

1

< ey

v>0

1
< vz,
This completes the measure estimate for the tangential frequencies. [ |

5.2 Small divisors concerning the normal frequencies

As we proceed the v + 1" KAM step, we need to verify that the inequality

Qi -t > (5.3)
[ —ml"

holds for n,m € Z;, n # m and |n|,|m| <In ﬁ, under the assumption that

A R
for n,m € Z1, n # m and |n|,|m| < In é Since Q4T — O%]p, ., < &y, the assumption
above implies that (5.3) is automatically satisfied for |n|, |m| < In i
If In| <In é and In % < |m| <lIn ﬁ, then with Q¥*! fixed we can exclude the set
of QY s
{0, 100, - oy < A

[n —ml|7

whose measure is no more than —%— recalling that Q%! = Q0 for |m| > In L. As for
[n—m|7> m m e

the case that In é < |n|,Im| < In i, with the former normal frequency fixed, we also

can estimate the measure of the latter variables such that (5.3) fail, just as in Section 2
where we verify the assumption (A2).
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After the procedures above, the remaining values of variables {Qn}ln L <Jn]<ln —L— form
v+l
a subset, with its measure more than

1
cln —1— A2
(I —cypyr) vt > e v,

Thus the total probability of {QO} ez, We can choose as the normal frequencies is larger
than

o0 1

2
H e W >e Y

v=0

=

6 Appendix

Lemma 6.1 The Banach algebraic property of the norm:

HFGHDP(T,S),O < HFHDP(T,S),OHGHDP(T,S),(’)'

Proof: Since
- TR, TL L, [ 9
(FG)k‘la’ﬂ Z Fk kK -l ,a—o! B /B/Gk/l/alﬁ/
kl7ll7a,’/8/
we have that
IFGlp, im0 = sup Y. [(FGuaslola®|lg’|s* el
lallo<s ki a8

< sup Y > Feewi—va—ars-p Grraplold®lla
lallo<s k.t,0,8 k' 1,0 57

< ||FHDP(T’,S),OHGHD;,('I‘,S),O'

8) g2l Jklr

Lemma 6.2 (Generalized Cauchy Inequalities) The various components of the Hamilto-
nian vector field X satisfy the estimates:

C
||89F||Dp('r—cr,s),(9 < EHFHD/)(T',S),O’

||8IFHD,, (ry= s)(’) QHFHD (r,8),0

and .
100, Fll p, r10y.0 < < I Dyirs). 06"
c
196, Fllp, 5,400 < SI1E Loy .06
Proof: The inequalities follow from the standard Cauchy estimate. See [37]. [ |
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Let {-,-} denote the Poisson bracket of smooth functions, i.e.,

OF 8G. OF 9G OF 9G  OF 0G
Foy = (2 Oy (28 Ty ge o Y2 9=
{F.GY = {5759 <89’af>*‘1§:(a%16@1 94, 00,

nezi

which is perhaps the most important quantity to be estimated in this norm defined for the
vector fields, as it is significant to Hamiltonian mechanics. Then we have the following
lemma:

Lemma 6.3 If

IXFlp,ns) <€ 1Xcl, s <€,

for some €'," > 0, then

||X{F7G} ||DP(T‘_0',778) < 60-_177—26/61/’

forany 0 <o <r and 0 < n < 1. In particular, if n ~ ei, g ~e el ~ 5%, we have that
n n
5
HX{F,G} HDP(Tfo',ns) ~E4.
For the proof, see [24]. ]
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