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Abstract

In this paper, we consider the following lattice Schrödinger equations

iq̇n(t) = tanπ(nα+ x)qn(t) + ε(qn+1(t) + qn−1(t)) + δvn(t)|qn(t)|2τ−2qn(t),

with α satisfying a certain Diophantine condition, x ∈ R/Z and τ = 1 or 2, where
vn(t) is a spatial localized real bounded potential (i.e. |vn(t)| ≤ Ce−ρ|n| ). We prove
that the growth of H1 norm of the solution {qn(t)}n∈Z is at most logarithmic if the
initial data {qn(0)}n∈Z ∈ H1 for ε sufficiently small and a.e. x fixed.

Furthermore, suppose the linear equation has a time quasi-periodic potential, i.e.,

iq̇n(t) = tanπ(nα+ x)qn(t) + ε(qn+1(t) + qn−1(t)) + δvn(θ0 + tω)qn(t),

then the linear equation can be reduced to an autonomous equation for a.e. x and
most values of the frequency vectors ω if ε and δ are sufficiently small.

Keywords:Tangent potential. Birkhoff normal form. Reducibility.

1 Introduction and statement of main results

The diffusion for a class of lattice Schrödinger equations with time-dependent linear
or nonlinear perturbation has been studied for several years. This problem falls within
the same general category of bounds on the higher Sobolev norms (H1 or beyond) for
the continuum nonlinear Hamiltonian PDE in a compact domain, e.g., a circle or a finite
interval with Dirichlet boundary conditions, see e.g., [B1]. (Recall that typically the L2(`2)
norm is conserved, so the H1 norm is the first non-trivial norm to consider.)

In previous papers [BW1, BW2, WZ], the following random Schrödinger equations
under perturbation were considered,

iq̇n = µnqn + ε(qn+1 + qn−1) + δnW(t)qn, (1.1)

iq̇n = µnqn + ε(qn+1 + qn−1) + δn|qn|2qn, (1.2)

where {qn(t)}n∈Z are complex variables in `2(Z) for each t ∈ [0,+∞), the dot over qn
denotes the partial derivative with respect to t, µn are independent randomly chosen vari-
ables in [0, 1] (uniform distribution), δn decay with n fast and W(t) is quasi-periodic in t
with a Diophantine 1 frequency. Spectral properties of the Schrödinger operator and the

1If
|〈k, ω〉|1 ≥

γ

|k|σ , ∀0 6= k ∈ Zd, (1.3)
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dynamical localized phenomenons of qn(t) were studied in those papers.

In this paper, we focus on a different model, where µn are chosen to be the tangent
potential. Indeed, we consider the one-dimensional discrete equations

iq̇n(t) = tanπ(nα+ x)qn(t) + ε(qn+1(t) + qn−1(t)) + δvn(t)qn(t), (1.4)

iq̇n(t) = tanπ(nα+ x)qn(t) + ε(qn+1(t) + qn−1(t)) + δvn(t)|qn(t)|2qn(t), (1.5)

where n ∈ Z, x ∈ T1 = R/Z and α satisfies Diophantine condition. Moreover, the potential
{vn(t)}n∈Z satisfies

|vn(t)| ≤ Ce−ρ|n|, ρ > 0. (1.6)

We are mainly interested in two topics about equations (1.4) and (1.5). We will discuss
them separately in the following two subsections.

1.1 Growth of Soblev Norm

First, we are going to study the time evolution of the above equations, more precisely, to
bound the norm (∑

n∈Z
(1 + |n|2)|qn(t)|2

) 1
2

in terms of t as t→ +∞ for the initial condition∑
n∈Z

(1 + |n|2)|qn(0)|2 = 1 (1.7)

The expression in (1.8) is sometimes called the diffusion norm. The `2(i.e., H0) norm∑
n∈Z |qn|2 is a conserved quantity for (1.4) and (1.5)(see (5.2) in the Appendix). The

initial condition (1.7) shows the concentration on the lower modes qn at t = 0, with
|n| not too large. The diffusion norm (1.8) measures the propagation into higher ones,
qn, |n| � 1. If one interprets n as an index of Fourier series, then (1.8) is the equivalent
of H1 norm for continuous nonlinear Schrödinger equations (NLS) on a circle. So in fact
one could also pursue higher moments:

‖q‖Hp :=
{∑
n∈Z

(1 + |n|2p)|qn(t)|2
} 1

2 , (1.8)

for p > 1, which correspond to Hp norms.

We have the following bound on the diffusion norm (1.8) for equations (1.4) and (1.5).

Theorem 1 Let δ be a fixed positive number, α be a fixed Diophantine numbe and x ∈ T
satisfy nα+x 6= 1

2+k for any n, k ∈ Z. Suppose that vn(t) satisfies the decay condition (1.6)
with ρ > 0 fixed. There exists ε0 = ε0(α, x, ρ) sufficiently small such that if 0 < |ε| < ε0,

with some γ > 0 and σ > d,then the vector ω ∈ Rd is said to be a Diophantine vector of type (γ, σ).
Here 〈·, ·〉 denotes the inner product on Rd, | · |1 is the distance on T1 and |k| = |k1| + · · · + |kd|. If
ω = (α, 1) ∈ R2 is Diophantine, we say α is Diophantine.
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then for any p ≥ 1 and β > 0, the solutions {qn(t)}n∈Z for (1.4) and (1.5) with initial
condition

‖q(0)‖Hp+1+β =
(∑
n∈Z

(1 + |n|2(p+1+β))|qn(0)|2
) 1

2 = 1

will satisfy the following estimate:∑
n∈Z
|n|2p|qn(t)|2 ≤ C + C(log t)(2p+1+β), (1.9)

where the positive constant C = C(α, x, δ, ε, ρ, p, β) is independent of t .

The linear equation

iq̇n(t) = tanπ(nα+ x)qn(t) + ε(qn+1(t) + qn−1(t)), n ∈ Z (1.10)

is called the Maryland model(see Appendix for more details about the Maryland model),
which corresponds to δ = 0 in (1.4) or (1.5). The equation (1.10) corresponds to the
1-body approximation to the many body problem in the study of electron conduction. In
the many body cases, one needs to take into account the interactions among electrons,
which is a hard problem. In Maryland model, interaction is approximated by the tangent
potential and diffusion is obstructed by proving A. L., i.e., the existence of a complete set
of `2 eigenfunctions which are well localized (actually uniformly localized) with respect to
the canonical basis of Z.

In this paper, we consider (1.10) perturbed by bounded, localized (in space), time-
dependent terms δvn(t)qn(linear case) or δvn(t)|qn|2qn(nonlinear case). Respectively, (1.4)
and (1.5). In these perturbated cases, spectral theory for linear operator is no longer
available. However, we are still interested in the persistence of A.L. with perturbations.

Considering the nonlinear case first, Geng and Zhao [GZ] have constructed time quasi-
periodic solutions to the standard nonlinear Schrödinger equation on Z1:

iq̇n(t) = tanπ(nα+ x)qn(t) + ε(qn+1(t) + qn−1(t)) + δ|qn|2qn, (1.11)

which corresponds to vn(t) ≡ 1 for all n in (1.5). The desired soloution survived on a set of
(x, α) with positive measure and for a corresponding appropriate set of small initial data
with compact support. Clearly such initial data are a subset of qn satisfying (1.7). The
present theorem is an attempt to address the growth of Sobolev norm for more generic
initial data.

However, we have no idea for the Soblev bound for the standard equation (1.11) without
any decay condition. Decay condition (1.6) is crucial for the proof of Theorem 1. A similar
artificial decay condition appears in [BW2] when bounding the Soblev norm for nonlinear
random Schrödinger equation (1.2). Bourgain and Wang proved in [BW2] that ‖q‖H1

grows more slowly than the polynomial of t with any positive degree under the assumption
δn ≤ ε/|n|A for ε sufficiently small and A sufficiently large, compared with the logarithmic
growth (1.9) under the exponentially-decay condition (1.6) in (1.5). We need to point out
that the same strategy used in Theorem 1 is sufficient to prove polynomial growth in (1.5)
under the weaker decay condition |vn(t)| ≤ 1/|n|A.

The soblev norm growth of the solution to the standard nonlinear Schrödinger equa-
tion with either random or general quasi-periodic potential remains largely open. [WZ]
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proved the so-called long time Anderson localization for the nonlinear random Schrödinger
equation for arbitrary `2 initial data. The term ‘long time’ indicates that the diffusion
remains small only between long enough but limited time interval. Few results were known
about the turely long time behavior of the solution.

In the present paper, we recast the Schrödinger equation as infinite-dimensional Hamil-
tonian equations of motion and uses Birkhoff normal form type transformations. However,
the proof of Theorem 1 is unlike [BW2] nor [GZ]. We do not need a series of symplectic
changes to get a better normal form but only one change. Even the multiplier δ need not
to be small in comparison with [BW2, GZ]. In [BW2], symplectic transforms were make
to construct energy barriers centered at some n0 ∈ Z, n0 > 1 of width log n0, where the
terms responsible for mode propagation are small. In [GZ], the KAM scheme for infinite
Hamiltonian PDE was developed to construct finite dimensional invariant torus. Both of
them need to deal with small divisor problem and remove the resonant frequencies.

The proof of the present theorem relies strongly on the localization result for the Mary-
land model due to Bellissard, Lima and Scoppola [BLS]. According to [BLS](see Theorem
4 in Appendix), under the assumption of Theorem 1, we make a symplectic transform

from Hp+ 1+β
2 to Hp(for any p ≥ 1 and β > 0) to render the Hamiltonian (2.4) into a

normal form amenable to the proof. The main feature of this normal form, to be spelt
out completely in (2.7) is that the mode propagation terms decay fast along the diagonal
direction. In the following two sections, we shall show the structure of the transformed
Hamiltonian and then calculate the growth of Sobolev norm(1.9) directly from the new
Hamiltonian(2.7). Then (1.9) will be a consequence of the bound of the unitary transfor-
mation. We note that in those two sections, linear case (1.4) and nonlinear case (1.5) will
be treated together, no essential difference is involved.

1.2 Reducibility for Linear Equation

For linear equation (1.4), we want to proceed further. Indeed, we can consider a more
general linear equation under time-dependent perturbations, i.e.,

iq̇n = tanπ(nα+ x)qn + ε(qn+1 + qn−1) + δ(V(t)q)n, n ∈ Z, (1.12)

where V(t) : `2(Z)→ `2(Z) is a bounded operator for any t ∈ [0,+∞), defined by

(V(t)q)n :=
∑
m∈Z

vmn(t)qm, n ∈ Z, (1.13)

for each q = (qn)n∈Z ∈ `2 with the coefficients vmn(t) satisfying

|vmn(t)| ≤ Ce−ρ·(|m|+|n|), ρ > 0. (1.14)

In Section 2, we will see that the Hamiltonian associated to (1.12) can be treated in the
same way as the Hamiltonian associated to (1.4). Consequently, the diffusion bound (1.9)
remains correct for (1.12).

A more special case is

vmn(t) =

{
v(t), m = n,

0, m 6= n,
∀m,n ∈ Z, (1.15)
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which corresponds to equation

iq̇n = tanπ(nα+ x)qn + ε(qn+1 + qn−1) + δv(t)qn, n ∈ Z. (1.16)

This equation can also be transformed to an explicitly solvable one

iQ̇n(t) = (Ωn + δv(t))Qn(t), n ∈ Z. (1.17)

The corresponding Hamiltonian is completely diagonal and there is no interaction between
different modes(i.e., Qn, Qm, n 6= m). Thus,

‖Q(t)‖H1 = ‖Q(0)‖H1

and
‖q(t)‖H1 ≤ C‖q(0)‖H1 , ∀t > 0. (1.18)

The reason we are interested in the linear case (1.4) is not only the above generalization
but also the following reducibility result: if the time-dependence on t of the potential
vmn(t) is quasi-periodic, then the linear Schrödinger equation with such potential can be
reduced to an autonomous equation for most values of the frequency vector.

To be precise, we study the following time quasi-periodic Schrödinger equation:

iq̇n = tanπ(nα+ x)qn + ε(qn+1 + qn−1) + δ
∑
m∈Z

vmn(ωt)qm, n ∈ Z, (1.19)

where ω = (ω1, · · · , ωd) ∈ Td.
To proceed further, we assume vmn(θ1, · · · , θd) = vmn(θ) are functions on the d-

dimensional torus Td = Rd/Zd, and the frequency vector ω is regarded as a parameter
chosen from O = {y ∈ Rd : |y| ≤ 1} ⊂ Rd . The function vmn(θ;ω) is C1-smooth in (θ, ω)
and is analytic in θ for any m,n ∈ Z. For some R > 0, vmn(θ) can be extended analytically
in θ to the domain

TdR = {z = (z1, · · · , zd) ∈ Cd/Zd : |=zi| < R, i = 1, · · · , d}.

We have the following reducibility result for (1.19).

Theorem 2 Suppose that vmn in (1.19) satisfies

|vmn(ωt)| ≤ e−ρ(|m|+|n|), ρ > 0.

Let α be a fixed Diophantine number, x ∈ T satisfies nα + x 6= 1
2 + k for any n, k ∈ Z.

For ε = ε(α, x, ρ) sufficiently small, there exists δ0 = δ0(ε, d,R) > 0, such that the non-
autonomous equation (1.19) can be analytically reduced to an autonomous equation.

More precisely, for any 0 < δ < δ0(ε, d,R), there exists a Cantor set Oδ ⊂ Td, such
that for any ω ∈ Oδ, θ ∈ Td, there exists a complex linear isomorphism Φ(θ) = Φ(ωt; δ)
in the space `2(Z) with the following properties:
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(T1) Φ(θ) = Φ(ωt; δ) is analytic in θ ∈ TdR and depends smoothly on ω;
(T2) Φ(θ) transforms equation (1.19) into an autonomous system of the form

iQ̇n(t) = (KQ)n(t) = ΩnQn(t) + δ
∑
m∈Z

AmnQn(t), Q(t) = Φ(ωt)q(t), (1.20)

here K is a Hermitian operator depending smoothly on ω but independent of t, and {Ωn}n∈Z
are of the form Ω(nα+ x) 2;
(T3) Φ,Ω, A,Oδ meet the estimates

‖Φ(θ)− Id‖`2 ≤ βδ,
‖Ω(nα+ x)− tanπ(nα+ x)‖sup(T1) ≤ Cε,

|Amn| ≤ Ce−
1
10
ρ·max{|m|,|n|},

mes(Td −Oδ) ≤ Cδκ,

where C > 0, κ > 0 depend only on d,R and β depends on d,R, ω.

Remark 1.1 The linear operators in the right hand side of linear Hamiltonian equation-
s (1.19) and (1.20) are complex linear Hermitian transformations. So the flow-maps of
these equations are complex linear, symplectic and unitary. The conjugating transforma-
tions U(θ) are complex linear. It can be shown that they also are symplectic. Hence, they
are unitary. So the conjugations respect all structures, preserved by Eqs. (1.19) and (1.20).

The motivation for studying (1.19) comes from questions of Anderson localization for
non-linear Schrödinger equations (see e.g., [DS, FSW] for random model), which in turn
is a approximation to the many body problem mentioned earlier.

On the other hand, we remark that linear Schrödinger equations with time-dependent
potential in the form

i
∂

∂t
u = ∆u+ V (t, x)u, u(t, x) ∈ L2

x(Td) (1.21)

is considered more extensively in the continuum medium. For details, see e.g. [B1, B2, W1,
W2, EK, N]. The problem of growth of solutions for the linear Schrödinger equation with
time quasi-periodic and with smooth bounded potentials was considered by J. Bourgain
in [B1, B2], respectively. In [B1], it was shown that for a Diophantine frequency vector ω
Sobolev norms of any solution for (1.21) grow with t at most logarithmically, while results
of [B2] imply that for any ω each Sobolev norm grows slower than any positive degree of t.
Wang has strengthened the result of [B2] on the circle in [W1]. In contrast, it was proven
by Nersesyanin in [N] that with the additional assumption that the time dependence is
random, the Sobolev norms are unbounded with probability 1.

Eliasson and Kuksin have specified these results for ‘typical’ vectors ω in any dimen-
sion. In [EK], it was shown that the Sobolev norms of solutions for Eq. (1.21) remain
bounded in time, provided that the frequency vector ω is ‘typical’. Wang [W2] proved the
norms of the solutions may stay bounded also in the opposite case when ω is ‘completely

2Ω(z) is a period 1 meromorphic function on DR = {z ∈ C : |=z| < R}. See details in the Appendix.
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resonant’ for Eq. (1.21) where d = 1 and ω = 1.

However, in the discrete case, there are very few results on the bound of Soblev norms.
At present, it seems difficult to completely understand the long time behavior of the
solutions for lattice PDEs with generic intial value. Only the nonlinear random model was
treated in few articles. Bourgain and Wang [BW1] have studied the discrete case with
random potential and time quasi-periodic perturbation(i.e.,(1.1)). They proved that the
displacement of the wave front is uniform in t, i.e., for any γ > 0, there exists N such that

sup
t

∑
|n|>N

|qn(t)|2 ≤ γ (1.22)

compared with the standard nonlinear case in [WZ] where the displacement of the wave
front N can not be uniformly bounded in t, which is believed to be the true behavior of
the nonlinear equation. Bourgain and Wang got the desired dynamical behavior of the
solution from the spectral property of the so-called quasi energy operator

K = −i
∂

∂t
+ ε∆ + V +W(t)

acting on `2(Zν)×L2(Td). See more related work in [H1, SW, YK] about the quasi energy
operator and the quantum stability.

We need to point out that the growth of Sobolev norm in (1.1) can not be derived
from (1.22) directly, since the relation between γ and N in (1.22) was not specified from
the spectral theory in [BW1]. While dealing with the tangent model (1.4) in this paper,
though in Theorem 1 we get log t bound of the Sobolev norm with no more specific condi-
tion on the time dependence, we have no idea of the spectral property of the quasi energy
operator nor such diffusion tail estimate as in (1.22).

Theorem 1 and 2 of this paper is an attemp to address more dynamical results(long
time behavior and stability) for general discrete quasi-periodic Schrödinger equation. We
shall focus on the model with tangent potential. Our results extend automatically to a class
of quasiperiodic functions P constructed by Bellissard, Lima and Scoppola (see [BLS] for
precise definition of class P). The class P has singularities, containing the tangent model
and the spectrum of the corresponding Schrödinger operator has been studied extensively.
Our aim is to generalize the results to general quasi-periodic Schrödinger operator(e.g.,
the almost Mathieu operator with cosine potential). The ideas and techniques needed
for general quasi-periodic potential might be more involved and distinct from the random
model. The linear operator theory for quasi-periodic case is more difficult and the theory
is far less developed than for the random case since, among other reasons, quasiperiodicity
does not allow for nice perturbations. When we deal with the discrete nonlinear quasi-
periodic Schrödinger equations, the small-divisor problem does not only come from the
linear part but also from the nonlinear interaction. See [J] for more comparison between
random Schrödinger operator and quasi-periodic one. The literature [J] also contains the
most extensive results about linear random and quasi-periodic Schrödinger operators. As
we have mentioned above, there are many open problems related to these two models(as
well as their nonlinear version), there is still a long way to go to truly understand any of
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the problems.

The rest of this paper is organized as follows. We transform (1.4) and (1.5) into new
forms via the change of coordinates in [BLS] in Section 2. Then we shall complete the
proof of Theorem 1 in Section 3 based on the special structure of the transformed system.
In section 4 we derive Theorem 2 from an abstract KAM theorem in [GZ] and will discuss
more details. Section 5 is regarded as an appendix, in which we prove the `2 conservation
law and present Localization results for the Maryland model in [BLS].

2 Structure of the Transformed Hamiltonians and Analysis
of the Symplectic Transformation

In this section, we use the transformation in [BLS] to render equations (1.4) and
(1.5) into a new form amenable to the proof of Theorem 1. Recall from Section 1, the
Schrödinger equation:

iq̇n = tanπ(nα+ x)qn + ε(qn+1 + qn−1) + δvn(t)|qn|2τ−2qn (2.1)

where τ = 1 in the linear case (1.4) and τ = 2 in the nonlinear case (1.5). Here α is a
fixed Diophantine number, x satisfies that nα+x 6= 1

2 +k for any n, k ∈ Z and 0 < ε� 1.
The potential vn(t) satisfies the condition

|vn(t)| ≤ e−ρ|n| (2.2)

with ρ > 0 fixed. As mentioned in Section 1, (2.2) (previously (1.6)) is crucial for the
transformation below.

Equation (2.1) can be recast as infinite-dimensional Hamiltonian equations of motion

iq̇n =
∂H

∂q̄n
, n ∈ Z, (2.3)

with canonical variables (q, q̄) and the Hamiltonian

H(q, q̄) =
∑
n∈Z

tanπ(nα+ x)|qn|2+ε
∑
n∈Z

(qn+1+qn−1)q̄n+δ
∑
n∈Z

vn(t)|qn|2τ , τ = 1, 2. (2.4)

As mentioned in Section 1, we use the complete set of `2 eigenfunctions for Maryland
model to obstruct energy transfer from low to high modes. This obstruction is achieved
by controlling the truncated sum of higher modes∑

|n|>n0

|qn|2, n0 � 1, (2.5)

which in turn enables us to control the sum∑
n∈Z
|n|2|qn|2. (2.6)

We construct a unitary transformation U : `2 → `2 by the set of eigenfunctions and do
coordinates change q = UQ. Then Γ = (U, Ū) will be sympletic.
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Since the eigenfunctions are uniformly localized, the decay property (2.2) is preserved
in some sense and the transformation U are bounded on H1. Through Γ, H in (2.4) is
transformed into H ′ = H ◦ Γ of the form:

H ′(Q, Q̄) =
∑
n∈Z

Ωn|Qn|2 + δP ′(Q, Q̄), (2.7)

where {Ωn}n∈Z are the eigenvalues of the linear operator according to the Maryland model,
and

P ′(Q, Q̄) =
∑
m,n∈Z

P ′mn(t)QmQ̄n when τ = 1, (2.8)

P ′(Q, Q̄) =
∑

m,n,j,k∈Z
P ′mnjk(t)QmQ̄nQjQ̄k when τ = 2, (2.9)

satisfying

|P ′mn(t)| ≤ 5e−
1
4
ρ·max{|n|,|m|}, (2.10)

|P ′mnjk(t)| ≤ 5e−
1
4
ρ·max{|n|,|m|,|j|,|k|}. (2.11)

We state the above assertions about Hamiltonian (2.4) as the following Lemma:

Lemma 2.1 Let α be a fixed Diophantine number, x ∈ T satisfy that nα+x 6= 1
2 +k for any

n, k ∈ Z and δ, ρ be fixed positive numbers. Suppose that vn(t) in (2.4) satisfies the decay
condition (2.2). Then for ε = ε(α, x, ρ) sufficiently small, there exist a unitary operator U
and a corresponding symplectic transformation Γ = (U, Ū) such that the Hamiltonian H
in (2.4) is transformed into H ′ = H ◦ Γ in (2.7), satisfying decay properties (2.10) when
τ = 1 and (2.11) when τ = 2.

U , U∗ preserve `2 norm. Moreover, for any p ≥ 1 and β > 0, U , U∗ are bounded

operators from Hp+ 2+β
2 to Hp, i.e.,

‖UQ‖`2 = ‖Q‖`2 , ‖U∗q‖`2 = ‖q‖`2 ,

‖UQ‖Hp ≤ C‖Q‖
Hp+

2+β
2
, ‖U∗q‖Hp ≤ C‖q‖

Hp+
2+β
2
, (2.12)

where the constant C depends on α, x, ρ but is independent of t.

Proof : Let
H0 =

∑
n∈Z

tanπ(nα+ x)|qn|2 + ε
∑
n∈Z

(qn+1 + qn−1)q̄n, (2.13)

where α is a fixed Diophantine number, and x ∈ T satisfies that nα + x 6= 1
2 + k for any

n, k ∈ Z. According to Theorem 4 in the Appendix, given any positive ρu, for sufficiently
small ε, there exists a unitary operator U = Uα,x,ρu : `2(Z) → `2(Z)(independent of t),
such that under the coordinate change

qn(t) =
∑
j∈Z

UnjQj(t), n ∈ Z, (2.14)

H0 is transformed into
H ′0(Q, Q̄) =

∑
n∈Z

Ωn|Qn(t)|2, (2.15)
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where {Qj(t)}j∈Z ∈ `2 is the new coordinate and Unj is the (n, j) matrix element of U
satisfying

|Unj | ≤ e−ρu|n−j|. (2.16)

Applying the coordinate change (2.14) to H = H0 + δP in (2.4), where

P =
∑
n∈Z

vn(t)|qn|2τ τ = 1, 2, (2.17)

one gets immediately that

H ′(Q, Q̄) =
∑
n∈Z

Ωn|Qn|2 + δP ′(Q, Q̄). (2.18)

When τ = 1 in (2.17),
P =

∑
n∈Z

vn(t)qnq̄n,

then

P ′ = P ◦ Γ = P (UQ,UQ) =
∑
n∈Z

vn(t)
(∑
j∈Z

UnjQj
)(∑

k∈Z
ŪnkQ̄k

)
=

∑
j,k∈Z

(∑
n∈Z

vn(t)UnjŪnk
)
QjQ̄k

:=
∑
j,k∈Z

P ′jkQjQ̄k, (2.19)

where
P ′jk =

∑
n∈Z

vn(t)UnjŪnk. (2.20)

Considering the decay condition (2.2), (2.16) for vn(t) and U , and assuming |j| ≥ |k| > 0,
we have

|P ′jk| ≤
∑
n∈Z

e−ρ|n|e−ρu|n−j|e−ρu|n−k|

≤
∑
n∈Z

e−ρ|n|e−ρu|n−j|

≤
∑

|n−j|> |j|
2

e−ρ|n|e−ρu|n−j| +
∑

|n−j|≤ |j|
2

e−ρ|n|e−ρu|n−j|

≤ e−ρu
|j|
2

∑
|n−j|> |j|

2

e−ρ|n| + e−ρ
|j|
2

∑
|n−j|≤ |j|

2

e−δ|n−j|

≤ 5e−ρ0|j|,

where ρ0 = 1
2min{ρu, ρ} > 0. Take ρu = ρ, then ρ0 ≥ ρ/4.

The same computation can be applied to the nonlinear case. Indeed, when τ = 2 in
(2.17),

P =
∑
n∈Z

vn(t)qnq̄nqnq̄n,
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then

P ′(Q, Q̄)

=
∑

j,k,l,m∈Z

(∑
n∈Z

vn(t)UnjŪnkUnlŪnm
)
QjQ̄kQlQ̄m

:=
∑

j,k,l,m∈Z
P ′jklmQjQ̄kQlQ̄m.

Suppose that |j| ≥ |k| ≥ |l| ≥ |m|, then

|P ′jklm| ≤
∑
n∈Z
|vn(t)UnjŪnkUnlŪnm|

≤
∑
n∈Z

e−ρ|n|e−ρu|n−j|e−ρu|n−k|e−ρu|n−l|e−ρu|n−m|

≤
∑
n∈Z

e−ρ|n|e−ρu|n−j|

≤ 5e−
1
4
ρ|j|.

Since U and U∗ are unitary, the `2 conservation is obvious. The H1 boundness (2.12)
follows immediately from (2.16):

(∑
n∈Z
|n|2s|(UQ)n|2

) 1
2 =

(∑
n∈Z
|n|2p|

∑
j∈Z

UnjQj |2
) 1

2

≤
(∑
n∈Z

(∑
j∈Z
|n|pe−ρu|n−j||Qj |

)2
) 1

2

≤
∑
j∈Z

(∑
n∈Z
|n|2pe−2ρu|n−j||Qj |2

) 1
2

≤ Cρu
∑
j∈Z
|Qj ||j|s

≤ C
(∑
j∈Z
|j|2p+1+β|Qj |2

) 1
2
(∑
j∈Z

1

|j|1+β

) 1
2

≤ C
(∑
j∈Z
|j|2p+1+β|Qj |2

) 1
2 .

‖UQ‖Hp ≤ ‖UQ‖`2 +
(∑
n∈Z
|n|2p|(UQ)n|2

) 1
2 ≤ ‖Q‖`2 + C‖Q‖

Hp+
2+β
2
≤ 2C‖Q‖

Hp+
2+β
2
.

Thus Lemma 2.1 is proved.

3 Growth of Soblev Norm and Proof of Theorem 1

In the previous section, the Hamiltonian H in (2.4) is transformed into H ′ in (2.7) with
decay properties (2.10) and (2.11) when τ = 1 and τ = 2 respectively. Now we are ready

11



to calculate the growth of H1 norm of the solution {Qn(t)}n∈Z associated to Hamiltonian
equations of motion

iQ̇n =
∂H ′

∂Q̄n
, n ∈ Z. (3.1)

We only deal with the case P ′ in (2.8) with decay condition (2.10), i.e.,

H ′(Q, Q̄) =
∑
n∈Z

Ωn|Qn|2 + δ
∑
m,n∈Z

P ′mn(t)QmQ̄n, (3.2)

with
|P ′mn(t)| ≤ e−

1
4
ρ·max{|n|,|m|}, ρ > 0. (3.3)

The nonlinear case (2.9) can be proved in a similar way and will be discussed later.

For convenience, we omit the prime in (3.1)-(3.3) when we state the following result.

Lemma 3.1 Suppose that Pmn(t) in (3.2) satisfies (3.3), then the solution {Qn(t)}n∈Z of
(3.1) satisfies that ∑

n∈Z
|n|2p|Qn(t)|2 ≤ Cp

(
1 + (

32

ρ
log t)2p

)
, (3.4)

provided that the initial value Q(0) = {Qn(0)}n∈Z ∈ Hp with ‖Q(0)‖Hp ≤ C. The constant
Cp is independent of t.

Proof : For some s0(t) ∈ N large enough( 2s0(t) ∼ log t, which will be specified later),
we do the following partition to P with respect to every s ∈ N, s ≥ s0(t):

P (Q, Q̄) =
∑
m,n∈Z

Pmn(t)QmQ̄n =
∑
m,n∈Z
|m|,|n|≤2s

Pmn(t)QmQ̄n +
∑
m,n∈Z

max{|m|,|n|}>2s

Pmn(t)QmQ̄n,

(3.5)
and use As and Bs to denote the two parts respectively,

As :=
∑
m,n∈Z
|m|,|n|≤2s

Pmn(t)QmQ̄n and Bs :=
∑
m,n∈Z

max{|m|,|n|}>2s

Pmn(t)QmQ̄n.

Then we estimate the derivative of the the truncated sum:

d

dt

∑
2s<|n|≤2s+1

|Qn(t)|2 =
∑

2s<|n|≤2s+1

Q̇nQ̄n +Qn
˙̄Qn

=
1

i

∑
2s<|n|≤2s+1

∂H

∂Q̄n
Q̄n −

∂H

∂Qn
Qn. (3.6)

Notice that indices of terms in the sum As are all less than 2s, which implies

∂As

∂Q̄n
=
∂As

∂Qn
= 0 (3.7)
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for |n| > 2s and s ≥ s0, so only terms in Bs contribute to (3.6) and according to the decay
property (3.3) we have that∣∣∣∣∣∣ d

dt

∑
2s<|n|≤2s+1

|Qn(t)|2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣
∑
m,n∈Z

2s<|n|≤2s+1

Pmn(t)QmQ̄n −
∑
m,n∈Z

2s<|n|≤2s+1

Pnm(t)QnQ̄m

∣∣∣∣∣∣∣∣
≤ 2

∑
m,n∈Z

2s<|n|≤2s+1

e−
1
4
ρ·max{|n|,|m|}|Qm‖Qn|

≤ 2
∑
m,n∈Z
|n|>2s

e−
1
8
ρ·(|m|+|n|)|Qm‖Qn|

≤ 2
∑
n∈Z
|n|>2s

e−
1
8
ρ·|n||Qn|

∑
m∈Z

e−
1
8
ρ·|m||Qm|

≤ 4e−
1
16
ρ·2s . (3.8)

Let εs = 4e−
1
16
ρ·2s and integrate (3.8) in t, we obtain∑

2s<|n|≤2s+1

|Qn(t)|2 ≤
∑

2s<|n|≤2s+1

|Qn(0)|2 + εst (3.9)

and ∑
|n|>2s0

|n|2p|Qn(t)|2 =
∑
s≥s0

∑
2s<|n|≤2s+1

|n|2p|Qn(t)|2

≤
∑
s≥s0

∑
2s<|n|≤2s+1

(2s+1)2p|Qn(t)|2

≤
∑
s≥s0

(2 · 2s)2p
∑

2s<|n|≤2s+1

|Qn(0)|2 +
∑
s≥s0

(2s+1)2pεst

≤ 4
∑
s≥s0

∑
2s<|n|≤2s+1

|n|2p|Qn(0)|2 +
∑
s≥s0

(2s+1)2pεst (3.10)

≤ Cp(1 + te−
1
32
ρ·2s0 ). (3.11)

Note that from (3.10) to (3.11) we use the initial condition ‖Q(0)‖Hp ≤ C and the super-
expotential convergence of εs in (3.8). Meanwhile,∑

|n|≤2s0

|n|2p|Qn(t)|2 ≤ 4ps0
∑
|n|≤2s0

|Qn(t)|2

≤ 4ps0
∑
n∈Z
|Qn(t)|2 (3.12)

= 4ps0
∑
n∈Z
|Qn(0)|2 (3.13)

≤ 4ps0C. (3.14)
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From (3.12) to (3.14), the `2 conservation law and the initial condition are used again.
Now take 2s0 to be about 32

ρ log t, one finally gets the bound

∑
n∈Z
|n|2p|qn(t)|2 ≤ 4ps0C + Cp(1 + te−

1
32
ρ·2s0 ) ≤ Cp

(
1 + (

32

ρ
log t)2p

)
. (3.15)

Remark 3.1 In the nonlinear case (2.9) where

P ′(Q, Q̄) =
∑

m,n,j,k∈Z
P ′mnjk(t)QmQ̄nQjQ̄k,

the only difference lies in the estimates of d
dt

∑
2s<|n|≤2s+1 |Qn(t)|2. Actually, we have∣∣∣∣∣∣ d

dt

∑
2s<|n|≤2s+1

|Qn(t)|2
∣∣∣∣∣∣ ≤ 4

∑
m,n,j,k∈Z

max{|m|,|n|,|j|,|k|}>2s

|Pmnjk(t)QmQ̄nQjQ̄k|

≤ 4
∑

m,n,j,k∈Z
max{|m|,|n|,|j|,|k|}>2s

e−
1
16
ρ·(|m|+|n|+|j|+|k|)|Qm‖Qn‖Qk‖Qj |

≤ 16e−
1
32
ρ2s .

Proof of Theorem 1: Consider the lattice equation

iq̇n = tanπ(nα+ x)qn + ε(qn+1 + qn−1) + δvn(t)|qn|τ−1qn, τ = 1, 2 (3.16)

with initial condition

‖q(0)‖Hp+1+β =
(∑
n∈Z

(1 + |n|2(p+1+β))|qn(0)|2
) 1

2 = 1.

Fix α, x, ρ as needed in Lemma 2.1, U = Uα,x,ρ is the unitary operator given by Lemma
2.1. Let q = UQ, then

‖Q(0)‖
Hp+

1+β
2

= ‖U∗q(0)‖
Hp+

1+β
2
≤ C‖q(0)‖Hp+1+β ≤ C, C = C(α, x, ε, ρ).

and the transformed Hamilton equations of Q(t) satisfies the decay condition in Lemma
3.1. By Lemma 3.1,∑

n∈Z
|n|2(p+ 1+β

2
)|Qn(t)|2 ≤ Cp,β

(
1 + (

32

ρ
log t)(2p+1+β)

)
.

Therefore,∑
n∈Z
|n|2p|qn(t)|2 ≤ ‖q(t)‖2Hp = ‖UQ(t)‖2Hp ≤ C2‖Q(t)‖2

Hp+
1+β
2
≤ Cp,β

(
1+(

32

ρ
log t)(2p+1+β)

)
,

where Cp,β is the constant depending on α, x, δ, ε, p, β only.
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4 Proof of the reducibility result

In this section, we drive Theorem 2 from a KAM theory in [GZ].(See related KAM scheme
in [GVYi, Y].) In order to prove Theorem 2, firstly we re-interpret Eq. (1.19) as an
autonomous Hamiltonian system in an extended phase-space:

ZR = TdR × Cd × `2(Z)× `2(Z) = {(θ, I, q, q̄)},

where
TdR := {θ = (θ1, · · · , θd) ∈ Cd/Zd : |=θi| < R, i = 1, · · · , d}.

The symplectic structure on ZR corresponds to the Hamiltonian equations of motion:

iq̇n =
∂H

∂q̄n
, θ̇ =

∂H

∂I
= ω, İ = −∂H

∂θ
, (4.1)

with the Hamilton function

H(θ, I, q, q̄) = 〈ω, I〉+
∑
n∈Z

tanπ(x+nα)|qn|2 + ε
∑
n∈Z

(qn+1 + qn−1)q̄n + δ
∑
m,n∈Z

vmn(θ)qmq̄n,

(4.2)
which is analytic in Z. Here, the coefficients vmn(θ) satisfy that

|vmn(θ)| ≤ Ce−ρ·(|m|+|n|) (4.3)

with some ρ > 0. The first two equations of (4.1) are independent of I and are equivalent
to equation (1.19).

As we have done in Lemma 2.1, given x ∈ T satisfying that nα + x 6= 1
2 + k for any

n, k ∈ Z, let the Diophantine number α and the positive number ρ in (4.3) be fixed and let
ε = ε(α, x, ρ) be sufficiently small. Let Γ = (U, Ū) be the symplectic transformation given
in Lemma 2.1. Then through (q, q̄) = (Uq′, Ū q̄′) the Hamiltonian (4.2) can be transformed
into H ′, where

H ′ = 〈ω, I〉+
∑
n∈Z

Ωn|q′n|2 + δ
∑
m,n∈Z

Pmn(θ)q′mq̄
′
n, (4.4)

with
Pmn(θ) =

∑
j,l∈Z

vjl(θ)UjmŪln

We have known that vmn(θ) is analytic in TdR. Expand vmn(θ) further into Fourier
series with respect to the basis {e2πi〈k,θ〉}k∈Zd :

vjl(θ) =
∑
k∈Zd

e2πi〈k,θ〉vjlk ∀j, l ∈ Z

with
|vjlk| ≤ e−R|k|‖vjl(θ)‖sup(TdR), ∀j, l ∈ Z, ∀k ∈ Zd

Omit the prime in (4.4) for convenience, then we have

Hδ
ω(θ, I, q, q̄) = 〈ω, I〉+

∑
n∈Z

Ωn|qn|2 + δ
∑
k∈Zd
m,n∈Z

Pmnke
2πi〈k,θ〉qmq̄n, (4.5)
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where
Pmnk =

∑
j,l∈Z

vjlkUjmŪln.

satisfying that

|Pmnk| ≤ e−
1
4
ρ·max{|n|,|m|}e−R|k|, ∀m,n ∈ Z, ∀k ∈ Zd.

In [GZ], Geng and Zhao have studied nonlinear Hamiltonian perturbations of infinite-
dimensional linear systems generated by the nonlinear Schrödinger equation:

iq̇n = tanπ(nα+ x)qn + ε(qn+1 + qn−1) + δ|qn|2qn.

Results of that work can be applied to the perturbed Hamiltonian Hδ
ω in (4.5). Let

Da(R, r) denote the domain

{(θ, I, q, q̄) : q ∈ `2(Z),
∑
n∈Z

ea|n||qn|2 < r, |=θ| ≤ R, |I| ≤ r2}.

Results of [GZ] imply the following assertions concerning Hamiltonian Hδ
ω (4.5) and The-

orem 2 follows directly.

Theorem 3 Consider the Hamiltonian Hδ
ω in (4.5). There is δ0 > 0 such that for every

0 < δ ≤ δ0, there exists a Borel set Oδ ⊂ Td, satisfying that

mes(Td −Oδ) ≤ Kδκ

for some 0 < κ < 1, such that for all ω ∈ Oδ the following holds:
There exists an analytic symplectic diffeomorphism Φ : D0(R/2, r/2) → D0(R, r),

which is analytic in θ and C1
W smooth in ω such that Hδ

ω ◦ Φ equals (modulo a constant)

〈ω, I〉+
∑
n∈Z

Ωn|Qn|2 + δ
∑
m,n∈Z

AmnQmQ̄n := H̃δ
ω, (4.6)

where the coefficients Amn are independent of θ and satisfy

|Amn| ≤ e−
1
10
ρ·max{|n|,|m|}. (4.7)

The transformation Φ = (Φq,Φq̄,Φθ,ΦI) satisfies

‖Φq − Idq‖`2 + |Φθ − Idθ|+ |ΦI − IdI | ≤ βδ

for all (q, q̄, θ, I) ∈ D0(R/2, r/2) 3. The positive constants δ0, κ,K depend on d,R, r, while
β also depends on ω.

3‖ · ‖`2 denotes the operator norm on `2 and | · | denotes the sup norm on Cd
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Remark 4.1 In [EK], the reduced system have a special form where the matrix element
Amn of the non-diagonal operator A satisfies Amn = 0 if |m| 6= |n|. As a corollary of the
reducibility result, the Sobolev norm of the solution q(t) stays bounded.

In the present model, however, we can not get such uniform bound(w.r.t. time t) of
the the Sobolev norm of the solution. One reason is that the separation property of the
normal frequencies of the discrete tangent model is worse than the separation property of
the continous model in [EK]. More precisely, the spectrum of Schödinger operator with
tangent potential is dense pure point with the gap condition

|Ωn − Ωm| ≥
γ

|m− n|τ
,

with the lower bound goes to 0 as |m− n| → ∞. While in [EK] the spectrum of the linear
operator is n2 and |m2 − n2| ≥ 1, m 6= n. Therefore, the normal form here in each KAM
step can not be diagonalized nor can be as simple as that in [EK].

Remark 4.2 The assertions of the theorem follow from Theorem 2 in [GZ] with slight
modification. That theorem deals with perturbations of integrable infinite-dimensional
Hamiltonian systems of a rather general form. Since the perturbation here is indepen-
dent of I, quadratic in q and we use ω as interior parameter instead of outer parameter ξ,
not all conditions (A1)–(A6) for the KAM theory in [GZ] are needed here, what is more,
the vector ω stays constant during the transformations.

Remark 4.3 Applying Geng and Zhao’s KAM scheme directly, exponentially decay weight
ρ in (4.7) would shrink to zero instead of the positive weight 1

10ρ. However, the perturbation
here is independent of I and quadratic in q, which guarantees the exponential weight ρ
reduces slower than the general case, e.g. ρ/4ν at the νth step . Hence the exponential
weight in the final state is no less than

ρ−
∑
ν∈N

(ρ/4ν) >
1

10
ρ,

which is the needed result.

5 Appendix: `2 conservation and Localization results for
Maryland model

Proposition 1 (`2 conservation) Let

iq̇n = Ωnqn + ε(qn+1 + qn−1) + fn(t, |qn|2)qn, n ∈ Z, (5.1)

where ε, Ωn are real and fn(t, |qn|2) are real functions of t and |qn|2 then∑
n∈Z
|qn(t)|2 =

∑
n∈Z
|qn(0)|2. (5.2)

Consequently, let fn be vn(t) or vn(t)|qn|2 as in (1.4) and (1.5), (5.2) hold.
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Proof: After computing the derivative of the `2 norm directly, one has

i
d

dt

∑
n∈Z
|qn(t)|2 = i

∑
n∈Z

q̇nq̄n + qn ˙̄qn

=
∑
n∈Z

(Ωnqn + ε(qn+1 + qn−1) + fnqn)q̄n

−
∑
n∈Z

qn(Ωnq̄n + ε(q̄n+1 + q̄n−1) + fnq̄n)

= ε
∑
n∈Z

(qn+1 + qn−1) q̄n − ε
∑
n∈Z

qn (q̄n+1 + q̄n−1)

= 0.

In what follows, we state the conclusion Bellissard, Lima and Scoppola have proved in
[BLS] for the Maryland model.

Firstly, let us introduce some necessary notations.
Given R > 0, for each x ∈ R/Z, we are concerned about the spectrum of the linear

operator Lx : `2(Zν)→ `2(Zν) by

(Lxψ)(n) := tanπ(x+ n · ω)ψ(n) + ε(∆ψ)(n), n ∈ Zν , (5.3)

where (∆ψ)(n) :=
∑
|m−n|=1 ψ(m) denotes the discrete laplace on Zν .

Let HR denote the set of period-one holomorphic bounded functions on the complex
region

DR := {z ∈ C : |=z| < R}

equipped with the sup-norm
‖f‖R = sup

z∈DR
|f(z)|,

and let PR denote the set of period-one meromorphic functions f on DR such that there
is a constant c > 0 with with

|f(z)− f(z − a)| ≥ c|a|1, ∀a ∈ R, ∀z ∈ DR, (5.4)

where | · |1 is defined as in (1.3). Then |f |R is defined as the biggest possible value of c in
(5.4). It is obvious the function f(z) = tanπz belongs to PR for any R > 0, with |f |R ≥ 1.

For R, r > 0 and ω ∈ Rν satisfying the Diophantine condition (1.3), we denote by UωR,%
the Banach ∗-algebra of kernels m = {m(z, n)}n∈Zν ,z∈DR where for each n ∈ Z, the map
z 7→ m(z, n) belongs to HR(or PR), and

‖m‖′R,% := sup
z∈DR

∑
n∈Zν

|m(z, n)|er|n|

is finite. (We need to exclude a subset of DR with measure zero in the case that m(·, n) ∈
PR and there is some poles in DR.) The ∗-algebraic structure is defined by

(m1 ·m2)(z, n) :=
∑
l∈Zν

m1(z, l)m2(z − lω, n− l),

m∗(z, n) := m(z̄ − nω,−n).
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Then the norm is defined by

‖m‖R,r = max {‖m‖′R,r, ‖m∗‖′R,r}.

For example, if g ∈ HR(or g ∈ PR) then g can be considered as an element of UωR,r, by
putting:

g(z, n) := g(z)δn,0.

Such a kernel is called diagonal. If e ∈ Zν , ue is the kernel

ue(z, n) := δn,e.

One can easily see that u0 is an identity and

u∗eue = ueu
∗
e = u0, ∀e ∈ Zν .

The Laplace kernel is then given by

∆ =
∑
|e|=1

ue.

A canonical set of representations of UωR,r in `2(Zν) is given by

[Πz(m)ψ](n) =
∑
l∈Zν

m(z − nω, l − n)ψ(l),

where ψ ∈ `2(Zν), z ∈ DR and m ∈ UωR,r. Actually, Πz(m) can be seen as an infinite
matrix, with its matrix elements [Πz(m)]k,l = m(z − lω, k − l).

In this set-up, the Schrödinger operator given by (5.3) can be seen as the operator
Πz(ε∆ + V ). For the sake of completeness, we restate the theorem of Bellissard–Lima–
Scoppola in [BLS] as follows:

Theorem 4 (Theorem 1 of Bellissard–Lima–Scoppola [BLS]) Given R > 0, r > 0,
and ω ∈ Rν satisfying the diophantine condition:

|ω · n|1 ≥
γ

|n|σ
with γ > 0, σ > ν, ∀0 6= n ∈ Zν . (5.5)

If V ∈ PR, there is a positive constant εc, depending on R, r, γ, σ and |V |R, such that if
m ∈ UωR,r, and ‖m‖R,r ≤ εc, there exists an invertible element u ∈ UωR,r and V̂ ∈ Pr/2 with

1. u(V + m)u−1 = V̂ ,

2. max(‖u− 1‖R/2,r/2, ‖u−1 − 1‖R/2,r/2) ≤ K1‖m‖R,r,

3. V − V̂ ∈ HR/2 and ‖V − V̂ ‖R/2 ≤ K2‖m‖R,r, |V̂ |R/2 ≥ 1
2 |V |R.

If in addition m + V is self-adjoint, then u is unitary and V̂ = V̂ ∗.
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Now we take V (z) = tanπz ∈ PR and Πz(m) = ε∆. The theorem is applicable to the
Maryland model provided ε‖∆‖R,r < εc. Since u ∈ UωR,r, the infinite matrix U = Πx(u)
has off-diagonal decay, i.e. the matrix elements Um,n satisfy

|Um,n| = |u(x− nω,m− n)| ≤ e−r|m−n|

for each (m,n) ∈ Zν × Zν . Thus with all parameters needed above fixed, U = Πx(u) will
be the unitary operator needed in Lemma 2.1 for a.e. x ∈ R/Z.
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