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Abstract

To investigate localization in one-dimensional quasi-periodic nonlinear systems, we
consider the Schrödinger equation

iq̇n + ε(qn+1 + qn−1) + V (nα̃+ x)qn + |qn|2qn = 0, n ∈ Z,

as a model, with V a nonconstant real-analytic function on R/Z, and α̃ satisfying
a certain Diophantine condition. It is shown that, if ε is sufficiently small, then for
a.e. x ∈ R/Z, dynamical localization is maintained for “typical” solutions in a quasi-
periodic time-dependent way.
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1 Introduction

Physical motivations. Localization of particles and waves in disordered media is one of the
most intriguing phenomena in solid-state physics. This phenomenon was first analyzed by
P.W.Anderson[1]. He studied the transport of non-interacting electrons in a crystal lattice,
described by a single particle with random on-site energy. In his model, he showed that
when the amplitude of the disorder becomes higher than a critical value, the diffusion in
the lattice of an initially localized wavepacket is suppressed. An Anderson localized state
is characterized by an exponential decay of the amplitude of the wave function.

In many physics experiments, a relatively weak disorder on the structure of the lattice is
introduced by a quasi-periodic potential. This kind of system corresponds to an experimen-
tal realization of the so-called Aubry-André[2] or Harper[19] model. It is important in the
study of Bose-Einstein condensation and nonlinear optics. Anderson localization in such
linear systems, especially in the one-dimensional case, has been thoroughly studied[31],
and rigorous mathematical results have been established[22]. As a well-known model in
mathematical physics, the almost Mathieu operator Hx,λ,α̃ acting on `2(Z) is defined by

(Hx,λ,α̃ψ)n = (ψn+1 + ψn−1) + λ cos 2π(x+ nα̃)ψn, n ∈ Z,

where n is the primary lattice site index, α̃ is some ratio between the wavenumbers of two
lattices, x ∈ R/Z is an arbitrary phase, and ψn is a complex variable whose modulus square
gives the probability of finding a particle at the lattice site n. With α̃ a fixed Diophantine
number, for a.e. x and λ large enough, Hx,λ,α̃ exhibits dynamical localization[16, 17], i.e.,
for any ψ ∈ `2(Z) with compact support and arbitrary d > 0,

sup
t
r(d)(t) := sup

t

∑
n∈Z

n2d|(eiHx,λ,α̃tψ)n|2 <∞.

In particular, there exists a transparent transition between diffusion and localization for
the almost Mathieu operator. From the perspective of spectrum theory, it is shown by
Jitomirskaya[22] that, for a.e. x, Hx,λ,α̃ has

1. λ > 2: only pure point spectrum with exponentially decaying eigenfunctions;

2. λ = 2: purely singular-continuous spectrum;

3. λ < 2: purely absolutely continuous spectrum.

There is a perfect agreement with this conclusion in some experiments(e.g., [20]). For

α̃ =

√
5− 1

2
, with an initial δ−function wavepacket, the asymptotic spreading of the

wavepacket width r(1)(t) can be parametrized as r(1)(t) ∼ tγ , and one finds three different
regimes

1. λ > 2: localized regime, γ = 0;
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2. λ = 2: sub-diffusive, γ ∼ 0.5;

3. λ < 2: ballistic regime, γ = 1.

However, the situation is much less clear in the presence of interactions(nonlinearities).
It strongly influences the possibility to observe the localization induced by disorder. One
can start from the Gross-Pitaevskii(GP) equation[18, 27] in Hartree-Fock theory, and
get a generalized Aubry-André model which includes an additional nonlinear term that
represents the mean-field interaction. The Hamiltonian is

H =
∑
n∈Z

[
(ψn+1ψ̄n + ψ̄n+1ψn) + λ cos 2π(nα̃+ x)|ψn|2 +

1

2
β|ψn|4

]
,

and the equation of motion is generated by iψ̇n = − ∂H
∂ψ̄n

, yielding the nonlinear Schrödinger

equation

iψ̇n + (ψn+1 + ψn−1) + λ cos 2π(nα̃+ x)ψn + β|ψn|2ψn = 0, n ∈ Z, (1.1)

that can be considered as the GP equation on a discretized lattice. Similar versions of a
discretized GP equation have been already used to investigate the dynamics of condensates
in different situations(see, for instance, [33]).

It is shown experimentally in [25] that, if the condensate initially occupies a single lat-
tice site, i.e., a δ−function ψn(0) = δn,0, the dynamics of the interacting gas is dominated
by self-trapping in a wide range of parameters, even for weak interaction. Conversely, if

the diffusion starts from a Gaussian wavepacket of width σ, ψn(0) = ce−
n2

2σ2 , then self-
trapping is significantly suppressed and the destruction of localization by interaction is
more easily observable.

The aim of the present work is to analyze localization in the quasi-periodic nonlinear
dynamical systems, which are modeled by the discrete one-dimensional disordered non-
linear Schrödinger equations of the same form as (1.1). When the disorder is sufficiently
large, a rigorous mathematical argument for the maintainability of localization is given in
this paper, corresponding to the experimental conclusion in [25].

Related mathematical works. In the theory of mathematical physics, localization in disor-
dered, nonlinear dynamical systems was initiated by Fröhlich-Spencer-Wayne[12](Similar
work was also done by Pöschel[28] and Vittot-Bellissard[34]), who constructed infinite-
dimensional, compact invariant tori for a large class of non-coupling systems

iq̇n + Vnqn +
∑
m∈Z

εmn(qm + q̄m)2qn = 0, n ∈ Z,

via the KAM techniques, where {Vn}n∈Z are i.i.d. random variables, εmn are sufficiently
small and vanish for |m − n| large enough. Solutions which lie on such tori are localized
for all times. Besides the conclusion, they raised the following conjecture in that paper.

Conjecture.[12] Consider the equation

iq̇n + ε(qn+1 + qn−1) + Vnqn + δ|qn|2qn = 0, n ∈ Z, (1.2)

3



with {Vn}n∈Z i.i.d. random variables. If ε and δ are small enough, with the equation
in a large class, then for “most” initial conditions ( “Most”, e.g., with respect to the
uniform measure on finite-dimensional unit spheres.), q(0) = (qn(0))n∈Z, of finite support,
the solutions q(t) = (qn(t))n∈Z of (1.2) satisfy

lim
t→∞

t−1
∑
n∈Z

n2|qn(t)|2 = 0.

Recently, there are several breakthroughs on such problem. For a large class of equation
in (1.2), Bourgain-Wang[7] constructed a quasi-periodic solution when ε, δ are sufficiently
small. They also considered the slightly tempered equations[8], with the nonlinearity
replaced by λn|qn|2qn, |λn| < ε(1+|n|)−τ for some small τ > 0. By constructing symplectic
transformations to create energy barriers, they proved that, if ε is sufficiently small, then
the diffusion bound (i.e., the H1 norm) of the solution grows polynomially with t almost
surely. Moreover, a Nekhoroshev-type result about Equation(1.2) was given by Wang-
Zhang [35], who proved the long time Anderson localization for arbitrary `2 initial data.

By establishing an abstract KAM theorem, Geng-Zhao[15] constructed small-amplitude
time quasi-periodic solutions of the lattice Schrödinger equation

iq̇n + ε(qn+1 + qn−1) + tanπ(x+ nα̃)qn + ε|qn|2qn = 0, n ∈ Z, (1.3)

for most of x ∈ R/Z if ε is sufficiently small and α̃ is Diophantine. This is based on the
work by Bellissard-Lima-Scoppola[4], which have studied the linear operator correspond-
ing to Equation (1.3), the well-known Maryland model. The operator, which has dense
point spectrum, describes media with no resonance, and this provides convenience for the
KAM iteration.

Statement of the main result. Inspired by the conjecture in [12], we try to establish a
nonlinear version of “dynamical localization” in the quasi-periodic potential case.

Consider the one-dimensional nonlinear Schrödinger equation

iq̇n + ε(qn+1 + qn−1) + V (nα̃+ x)qn + |qn|2qn = 0, n ∈ Z, (1.4)

for 0 < ε � 1, with V a nonconstant real-analytic function on R/Z, and α̃ ∈ R is a
Diophantine number, i.e., there exist τ̃ > 1 and γ̃ > 0 such that (|x|1 is the absolute value
of x modulo 1 defined so that 0 ≤ |x|1 ≤ 1

2 .)

|nα̃|1 ≥
γ̃

|n|τ̃
, n 6= 0. (1.5)

The nonconstant real-analytic potential V , as in [11], is a smooth function in the Gevrey
class

sup
x∈R/Z

|∂mV (x)| ≤ CLm(m!)2, m ≥ 0, (1.6)

for some C, L > 0, and satisfying the transversality condition

max
0≤m≤s̃

|∂mϕ (V (x+ ϕ)− V (x))| ≥ ξ̃ > 0, ∀x,∀ϕ, (1.7)

max
0≤m≤s̃

|∂mx (V (x+ ϕ)− V (x))| ≥ ξ̃|ϕ|1, ∀x,∀ϕ, (1.8)
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for some ξ̃, s̃ > 0. Clearly, the case V (x) = cos 2πx is included.
Based on an earlier KAM mechanism which was introduced by Eliasson[11], we con-

struct an abstract KAM theorem, and apply this theorem to prove well-localization of
Equation (1.4) for typical initial data. From the KAM perspective, the main technical
challenges in this work are the following:

i) Unlike the model in [12], we need to tackle with the second order perturbation in
the Hamiltonian;

ii) Different from the method in [7], our proof is developed from the traditional KAM
method;

iii) Compared with the work in [15], the main difficulty is that the corresponding linear
operator has dense point spectrum with infinitely many resonances.

The main result can be stated as follows.

Theorem 1 Consider the one-dimensional nonlinear Schrödinger equation

iq̇n + ε(qn+1 + qn−1) + V (nα̃+ x)qn + |qn|2qn = 0, n ∈ Z, (1.9)

with V a nonconstant real-analytic function on R/Z, and α̃ ∈ R a Diophantine number.
Given an integer b > 1, and any J = {n1, · · · , nb} ⊂ Z, there exists a sufficiently small
ε∗ = ε∗(V, α̃,J ), such that if 0 < ε < ε∗, then the following holds for a.e. x ∈ R/Z.

There exists a Cantor set Oε = Oε(x) ⊂ [0, 1]b with |[0, 1]b \ Oε| → 0 1 as ε → 0
such that the solution q(t) = (qn(t))n∈Z of Equation (1.9), with initial datum q(0) ∈ Oε
supported on J , satisfies, for any fixed d > 0,

sup
t

∑
n∈Z

n2d|qn(t)|2 <∞.

Moreover, for each n ∈ Z, qn(t) is quasi-periodic in time.

Remark 1.1 The quasi-periodic solutions we obtained are not necessarily small-amplitude,
since the nonlinearity |qn|2qn is integrable. Moreover, if the nonlinearity is “diagonal dom-
inant” with some short-range decay, e.g.,

|qn|2qn + ε
∑
m 6=n

e−%|m−n||qm|2qn,

the theorem above can also be obtained.

Remark 1.2 Smallness assumption on ε is necessary, otherwise the result is not true
even for the linear problem. This is different from the random potential case.

2 Preliminaries

From now on, in the formulations and proofs of various assertions, we shall encounter
absolute constants depending on the Hamiltonian, the dimension and so on. All such
constants will be denoted by c, c1, c2, · · ·, and sometimes even different constants will be
denoted by the same symbol.

1Hereafter, we use the symbol |O| to denote the Lebesgue measure of O ⊂ Rb.
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2.1 The quasi-periodic Schrödinger operator

Consider the Schrödinger operator T = T (x) : `2(Z)→ `2(Z) defined as

(Tq)n := ε(qn+1 + qn−1) + V (x+ nα̃)qn, n ∈ Z, (2.1)

with V and α̃ as in Equation (1.9). It is well-known from [11] that if ε is sufficiently small,
then for a.e. x ∈ R/Z, the spectrum of T (x) is pure point. We refer to [6, 9, 13, 21, 23, 32]
for other works on the pure point spectrum and Anderson localization of quasi-periodic
Schrödinger operators.

Now, we are going to represent the main idea of [11], which is critical for the KAM
iteration in this paper. Let us start with some notations for infinite-dimensional matrices.
Given an infinite-dimensional matrix D, with Dmn ∈ R the (m,n)th entry, for a subset
Λ ⊂ Z, we define Λ⊥ := Z \ Λ,

RΛ := {n ∈ RZ : ni = 0 if i 6∈ Λ}, DΛ :=

{
Dmn, m, n ∈ Λ
δmn, otherwise

.

Then DΛ : RΛ+RΛ⊥ → RΛ+RΛ⊥ , acts as RΛ ↪→ RZ D−→ RZ ⊥proj−→ RΛ on the first component
and as the identity on the second component. (When there is no risk for confusion, we
will use DΛ also to denote its first component.)

Let D0 = diag{V (x + nα̃)}n∈Z and Z0 = ε∆ with ∆ the discrete Laplacian. With

ε0 = ε
1
4 , σ0 = 1 and any

M0 ≥ max

{
2s̃+4C

Ls̃+1((s̃+ 1)!)2

ξ̃
, 2τ̃ , 8

}
, N0 ≥ 1, ρ0 = N−1

0 ,

one can define the following sequences as in [11],

Mν+1 = M s̃M3
ν

ν , aν =
1

τ̃
M−3s̃M3

ν
ν , εν+1 = ε

1
2
ε
−aν/2
ν

ν ,

Nν+1 = ε−aνν , ρν+1 = εaνν , σν+1 =
1

3
ρν .

(2.2)

These sequences of parameters will be applied in the KAM iteration in this paper.

Proposition 1 There exists a constant ε0 = ε0(C,L, ξ̃, s̃, γ̃, τ̃) such that the following
holds for the operator (2.1) if 0 < ε < ε0.

Fix any x ∈ R/Z. There exists a sequence of orthogonal matrices Uν , ν = 1, 2, · · ·, with

|(Uν − IZ)mn| ≤ ε
1
2
0 e
− 3

2
σν |m−n|,

such that U∗ν (D0 + Z0)Uν = Dν + Zν , where Zν is a symmetric matrix satisfying

|(Zν)mn| ≤ ενe−ρν |m−n|,

and Dν is a symmetric matrix which can be block-diagonalized via an orthogonal matrix
Qν with

(Qν)mn = 0 if |m− n| > Nν .
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More precisely, there is a disjoint decomposition
⋃
j Λνj = Z such that

D̃ν = Q∗νDνQν =
∏
j

D̃ν
Λνj

with ]Λνj ≤Mν , diamΛνj ≤MνNν , ∀j.2

Moreover, there exists a full-measure subset X̃ ⊂ R/Z such that if we fix x ∈ X̃ , then
for each k ∈ Z, there is a ν0(k) such that

Λν+1(k) = Λν(k), ∀ν ≥ ν0(k).

Proposition 1 shows the pure point spectrum of T . In Appendix A.1, we shall give an
outline of the proof.

2.2 Decay property of matrices

Lemma 2.1 Given two matrices G = (Gmn)m,n∈Z and F = (Fmn)m,n∈Z. Let K = GF .

(1) If |Gmn| ≤ cGe−σG|m−n|, |Fmn| ≤ cF e−σF |m−n| for some positive cG, cF , σG, σF > 0,
then we have

|Kmn| ≤ cKe−σK |m−n|

for any 0 < σK < min{σG, σF } and cK = c · cGcF (min{σG, σF } − σK)−1.

(2) If |Gmn| ≤ cGe−σG max{|m|, |n|}, |Fmn| ≤ cF e−σF |m−n|, then

|Kmn| ≤ cKe−σK max{|m|, |n|}.

(3) If |Gmn| ≤ cGe−σG|m−n|, |Fmn| ≤ cF e−σF max{|m|, |n|}, then

|Kmn| ≤ cKe−σK max{|m|, |n|}.

(4) If |Gmn| ≤ cGe−σG max{|m|, |n|}, |Fmn| ≤ cF e−σF max{|m|, |n|}, then

|Kmn| ≤ cKe−σK max{|m|, |n|}.

In particular, if σG 6= σF , then the conclusions above hold with σK = min{σG, σF } and
cK = c · cGcF |σG − σF |−1.

Proof: Since the matrix element of K = GF can be formulated as Kmn =
∑
l∈ZGmlFln,

we have that, in Case (1), for any 0 < σK < min{σG, σF },

|(GF )mn| ≤
∑
l∈Z
|Gml||Fln|

≤ cGcF
∑
l∈Z

e−σG|m−l|e−σF |l−n|

≤ cGcF e
−σK |m−n|

∑
l∈Z

e−(σG−σK)|m−l|e−(σF−σK)|l−n|

≤ c · cGcF (min{σG, σF } − σK)−1e−σK |m−n|.

2The disjoint decomposition defines an equivalence relation m ∼ n on the integers and, for each n ∈ Z,
we denote its equivalence class by Λν(n).
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Here we have applied the basic triangular inequality |m− l|+ |l − n| ≥ |m− n|.
Moreover, if σG 6= σF , assume that 0 < σG < σF without loss of generality, then

|(GF )mn| ≤ cGcF
∑
l∈Z

e−σG|m−l|e−σF |l−n|

≤ cGcF e
−σG|m−n|

∑
l∈Z

e−(σF−σG)|l−n|

≤ c · cGcF (σF − σG)−1e−σG|m−n|.

As for Case (2)−(4), the corresponding conclusions can also be obtained by using the
trivial facts

|m− l|+ max{|l|, |n|} ≥ max{|m|, |n|}, max{|m|, |l|}+ max{|l|, |n|} ≥ max{|m|, |n|}.

Thus Lemma 2.1 has been proved.

Remark 2.1 If we replace the matrix F satisfying |Fmn| ≤ cF e
−σF max{|m|, |n|} with a

vector f = (fn)n∈Z satisfying |fn| ≤ cfe−σf |n| in Case (3) and (4), then for the vector Gf ,
we can obtain the conclusion that |(Gf)n| ≤ cKe−σK |n|, where cK and σK are the same as
in the lemma.

3 Abstract KAM theorem

3.1 Function space norms

Given d, ρ > 0, let `1d,ρ(Z) be the space of summable complex valued sequences q =
(qn)n∈Z, with the norm

‖q‖d,ρ :=
∑
n∈Z
|qn|〈n〉deρ|n| <∞,

where 〈n〉 :=
√

1 + n2. For r, s > 0, let Dd,ρ(r, s) be the complex b-dimensional neighbor-
hood of Tb × {0} × {0} × {0} in Tb × Rb × `1d,ρ(Z)× `1d,ρ(Z), i.e.,

Dd,ρ(r, s) := {(θ, I, q, q̄) : |Imθ| = |Im(θ1, · · · , θb)| < r, |I| < s2, ‖q‖d,ρ = ‖q̄‖d,ρ < s},

where | · | is the `1-norm of complex vectors.
Given a real-analytic function F (θ, I, q, q̄; ξ) on D = Dd,ρ(r, s), C1

W (i.e., C1 in the
sense of Whitney) parametrized by ξ ∈ O 3, a closed region in Rb. We expand F into the
Taylor-Fourier series with respect to θ, I, q, q̄:

F (θ, I, q, q̄; ξ) =
∑
α,β

Fαβ(θ, I; ξ)qαq̄β,

where, for multi-indices α :=
∑
n∈Z αnen, β :=

∑
n∈Z βnen, αn, βn ∈ N, with finitely many

non-vanishing components,

Fαβ(θ, I; ξ) =
∑

k∈Zb, l∈Nb
Fklαβ(ξ)I lei〈k,θ〉, qαq̄β =

∏
(αn,βn)6=(0,0)

qαnn q̄βnn .

3In this paper, all dependencies on the parameter ξ ∈ O are assumed of class C1
W , thus all derivatives

with respective to ξ will be interpreted in this sense.
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(Here em denotes the vector with the mth component being 1 and the other components
being zero.)

Definition 3.1 For each non-zero multi–index (α, β) = (· · · , αn, βn, · · ·)n∈Z, αn, βn ∈ N,
with finitely many non-vanishing components, we define

n+
αβ := max{n ∈ Z : (αn, βn) 6= (0, 0)},
n−αβ := min{n ∈ Z : (αn, βn) 6= (0, 0)},
n∗αβ := max{|n+

αβ|, |n
−
αβ|},

and |α| :=
∑
n αn, |β| :=

∑
n βn.

In particular, for |α| = |β| = 0, we define n+
αβ = n−αβ = n∗αβ = 0.

With |∂ξFklαβ| :=
∑b
i=1 |∂ξiFklαβ| and |Fklαβ|O := supξ∈O (|Fklαβ|+ |∂ξFklαβ|), let

‖Fαβ‖O :=
∑
k,l

|Fklαβ|O |I l|e|k||Imθ|, ‖F‖O :=
∑
k,l,α,β

|Fklαβ|O |I l|e|k||Imθ| |qα||q̄β|.

Define the weighted norm of F as

‖F‖D,O := sup
D
‖F‖O.4

For the Hamiltonian vector field XF = (∂IF,−∂θF, (−i∂qnF )n∈Z, (i∂q̄nF )n∈Z) associated
F on D ×O, its norm is defined by

‖XF ‖D,O := ‖∂IF‖D,O +
1

s2
‖∂θF‖D,O + sup

D

1

s

∑
n∈Z

(‖∂qnF‖O + ‖∂q̄nF‖O) 〈n〉de|n|ρ.

Sometimes, for the sake of notational simplification, we shall not write the subscript O in
the norms defined above if it is obvious enough.

Given two real-analytic functions F and G on D, let {·, ·} denote the Poisson bracket
of such functions, i.e.,

{F,G} = 〈∂IF, ∂θG〉 − 〈∂θF, ∂IG〉+ i
∑
n∈Z

(∂qnF · ∂q̄nG− ∂q̄nF · ∂qnG) .

Some basic estimates about the Hamiltonian vector field and the Poisson bracket are given
in Appendix A.2.

3.2 Statement of the abstract KAM theorem

Now, we consider the perturbed Hamiltonian

H = N + P̆ + P

= e(x, ξ) + 〈ω(x, ξ), I〉+ 〈Ω(x, ξ)q, q̄〉+ P̆ (q, q̄;x) + P (θ, I, q, q̄;x, ξ), (3.1)

defined on the domain D = Dd,ρ(r, s). Our goal is to prove that, for a.e. x ∈ R/Z, the
Hamiltonian H admits invariant tori for “most” of the parameter ξ ∈ O = O(x), provided
that ‖XP̆+P ‖D,O is sufficiently small.

4In the case of a vector-valued function F : D × O → Cn(n < ∞), the norm is defined as ‖F‖D,O :=∑n

i=1
‖Fi‖D,O.
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Remark 3.1 From now on, we shall not report x for convenience if it is irrelevant.

To this end, we need to impose some conditions on ω, Ω, and the perturbations P̆ +P .

(A1) Nondegeneracy of tangential frequencies: The map ξ → ω is a C1
W diffeomorphism

between O and its image.

(A2) Regularity of Ω: Ω = T +A+W .

– T is the symmetric matrix defined in (2.1), independent of ξ. More precisely,

T = diag{V (x+ nα̃)}n∈Z + ε∆,

with V and α̃ as in Equation (1.9).

– A is Hermitian, independent of ξ, satisfying

|Amn| ≤
{
c, |m|, |n| ≤ N̂
0, otherwise

(3.2)

for some positive N̂ .

– W is C1
W parametrized by ξ ∈ O, with

|Wmn|O ≤
{
pe−σmax{|m|, |n|}, |m|, |n| ≤ N

0, otherwise
(3.3)

for some positive p� 1, σ � ρ and sufficiently large N .

Moreover, there exists a subset J ⊂ Z such that

Ωmn ≡ 0 if m or n ∈ J . (3.4)

(A3) Short range of P̆ : P̆ (q, q̄) =
∑
|α|=|β|≥2 P̆αβq

αq̄β is real-analytic in q, q̄, and indepen-
dent of ξ, with

|P̆αβ| ≤ e−ρ(n+
αβ
−n−

αβ
), |α| = |β| ≥ 2, (3.5)

∂qnP̆ = ∂q̄nP̆ ≡ 0, ∀n ∈ J . (3.6)

(A4) Decay property of P : P =
∑
α,β Pαβ(θ, I; ξ)qαq̄β is real-analytic in θ, I, q, q̄, C1

W

parametrized by ξ ∈ O, and, with ε = ε
1
4 ,

‖Pαβ‖D,O ≤
{
εe−ρn

∗
αβ , |α|+ |β| ≤ 2

e−ρn
∗
αβ , |α|+ |β| ≥ 3

, (3.7)

∂qnP = ∂q̄nP ≡ 0, ∀n ∈ J . (3.8)

(A5) Gauge invariance of P : For P =
∑

k∈Zb,l∈Nb
α,β

PklαβI
lei〈k,θ〉qαq̄β, we have

Pklαβ ≡ 0 if
b∑

j=1

kj + |α| − |β| 6= 0.

10



Our abstract KAM theorem can be stated as follows.

Theorem 2 Consider the Hamiltonian H in (3.1), with (A1)− (A5) satisfied. There is
a positive constant ε∗ = ε∗(ω, V, α̃, N̂ , p, σ,N, r, s, d, ρ) such that if ‖XP̆+P ‖D,O ≤ ε ≤ ε∗,

then for every x ∈ X̃ , there exists a Cantor set Oε = Oε(x) ⊂ O(x) with |O \ Oε| → 0 as
ε→ 0, such that the following holds.

(a) There exists a C1
W map ω̃ : Oε → Rb, such that |ω̃ − ω|Oε → 0 as ε→ 0.

(b) There exists a map Ψ : Tb × Oε → Dd,0(r/2, 0), real-analytic in θ ∈ Tb and C1
W

parametrized by ξ ∈ O, such that ‖Ψ−Ψ0‖Dd,0(r/2,0),Oε → 0 as ε → 0, where Ψ0 is

the trivial embedding: Tb ×O → Tb × {0} × {0} × {0}.

(c) For any θ ∈ Tb and ξ ∈ Oε, Ψ(θ + ω̃(ξ)t, ξ) = (θ + ω̃(ξ)t, I(t), q(t), q̄(t)) is a b-
frequency quasi-periodic solution of equations of motion associated with the Hamil-
tonian (3.1).

(d) For each t, q(t) = (qn(t))n∈Z ∈ `1d,0(Z).

Remark 3.2 The statement (d) of Theorem 2 implies that

sup
t

∑
n∈Z

n2d|qn(t)|2 < c

(
sup
t

∑
n∈Z
〈n〉d|qn(t)|

)2

<∞,

which is exactly the conclusion of Theorem 1.

Remark 3.3 In case that H satisfies (A1)− (A5) at the first step, all assumptions hold
for the Hamiltonian at each KAM step (with suitable parameters).

3.3 Application to Equation (1.9)

The Hamiltonian associated with Equation (1.9) is

H =
∑
n∈Z

V (x+ nα̃)qnq̄n + ε
∑
n∈Z

q̄n(qn+1 + qn−1) +
1

2

∑
n∈Z
|qn|4. (3.9)

Fix J = {n1, · · · , nb} ⊂ Z, and Z1 = Z \ J . Let ε = ε
1
4 , with ε sufficiently small such that

|ni| ≤ | ln ε| =
1

4
| ln ε|, i = 1, · · · , b.

We introduce action-angle variables and amplitude parameters to the Hamiltonian (3.9),

qn =
√
In + ξne

iθn , q̄n =
√
In + ξne

−iθn , n ∈ J ,

where (I, θ) = (In1 , · · · , Inb , θn1 , · · · , θnb) are the standard action-angle variables in the

(qn, q̄n)n∈J -space around ξ, with ξ = (ξn1 , · · · , ξnb) ∈ O = [ε
1
12 , 1] ⊂ [0, 1]b a parameter,

11



and (q, q̄) = (qn, q̄n)n∈Z1 . Then the Hamiltonian (3.9) becomes H = N (θ, I, q, q̄;x, ξ) +
P̆ (q, q̄) + P (θ, I, q, q̄; ξ), with

N (θ, I, q, q̄;x, ξ) :=
∑
n∈J

(V (x+ nα̃)ξn +
1

2
ξ2
n) +

∑
n∈J

(V (x+ nα̃) + ξn)In

+
∑
n∈Z1

V (x+ nα̃)|qn|2 + ε
∑
n/∈J

n+1/∈J ,

(q̄nqn+1 + qnq̄n+1),

P̆ (q, q̄) :=
1

2

∑
n∈Z1

|qn|4,

P (θ, I, q, q̄; ξ) :=
1

2

∑
n∈J

I2
n + ε

∑
m∈J , n/∈J
|m−n|=1

√
Im + ξm(e−iθmqn + eiθm q̄n)

+ ε
∑

m,n∈J
|m−n|=1

√
Im + ξm

√
In + ξn(e−i(θm−θn) + ei(θm−θn)).

After introducing the action-angle variables, we find that the structure of the linear
operator T in (3.9) has been destroyed. To overcome this disadvantage, we need to add b
variables q′n1

, · · · , q′nb and the corresponding conjugates q̄′n1
, · · · , q̄′nb into this system. For

convenience, omit the prime of the newly-added variables and still use q to denote (qn)n∈Z,
since there is no confusion. We then rewrite N as

N =
∑
n∈J

(V (x+ nα̃)ξn +
1

2
ξ2
n) +

∑
n∈J

(V (x+ nα̃) + ξn)In

+

∑
n∈Z1

V (x+ nα̃)|qn|2 +
∑
n∈J

V (x+ nα̃)|qn|2 + ε
∑
n∈Z

(q̄nqn+1 + qnq̄n+1)


−
∑
n∈J

V (x+ nα̃)|qn|2 − ε
∑

n or n+1∈J
(q̄nqn+1 + qnq̄n+1)

= e(x, ξ) + 〈ω(x, ξ), I〉+ 〈T (x)q, q̄〉+ 〈A(x)q, q̄〉,

with e(x, ξ) :=
∑
n∈J

V (x+ nα̃)ξn +
1

2

∑
n∈J

ξ2
n,

ω(x, ξ) := (V (x+ n1α̃) + ξn1 , · · · , V (x+ nbα̃) + ξnb), (3.10)

Tmn(x) :=


V (x+mα̃), m = n

ε, m− n = ±1
0, otherwise

, (3.11)

Amn(x) :=


−V (x+mα̃), m = n, m ∈ J

−ε, m− n = ±1, m or n ∈ J
0, otherwise

. (3.12)

Now, on some domain Dd,ρ(r, s), the regularity of P̆ + P holds true:

Lemma 3.1 For ε > 0 sufficiently small and s =
1

8
ε

1
4 , if |I| < s2 and ‖q‖d,ρ < s, then

‖XP̆+P ‖Dd,ρ(r,s),O ≤ ε
1
4 = ε.
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We need to show that the Hamiltonian H = N + P̆ + P satisfies the assumptions
(A1)− (A5) of the KAM theorem, in which (A3) and (A5) are obviously satisfied.

(A1): Since {V (x+ nα̃)}n∈Z is independent of ξ, we have that ∂ω
∂ξ ≡ IJ in view of (3.10).

Thus (A1) holds.

(A2): Here, W ≡ 0. Then it is evident that (A2) holds with N̂ = 1
4 | ln ε|, by (3.12).

(A4): We focus on the formulation of P . Note that terms of P merely correspond to the
normal variables qn, q̄n, n 6∈ J , n− 1 or n+ 1 ∈ J , with the coefficients no more than ε,
and J ⊂ [−N̂ , N̂ ] = [−1

4 | ln ε|,
1
4 | ln ε|]. Then, with ρ ≤ 1

6N̂
−1, (3.7) is verified since

cε1−
1
24 ≤ ε

1
4 e−ρN̂ .

Hence, Theorem 1 is a corollary of Theorem 2.

4 KAM step

To start the KAM iteration for the Hamiltonian (3.1), let D0 = Dd,ρ0(r0, s0), O0,

N0(including e0, ω0, W0, p0, σ0, N0), P0, ε0 = ε
1
4 denote the initial quantities given in

the assumptions (A1)− (A5) respectively, and require that ε smaller than the ε0 given in
Proposition 1.

Suppose we have arrived at the νth step of the KAM iteration, ν = 0, 1, 2, · · ·, recalling
that several sequences have been given in (2.2). We consider the Hamiltonian on Dν :=
Dd,ρν (rν , sν) and Oν ,

Hν = Nν + P̆ + Pν

= eν + 〈ων , I〉+ 〈Ωνq, q̄〉+ P̆ + Pν , (4.1)

where Ων = T +A+Wν , and (A1)− (A5) are satisfied, including (3.2), (3.5), (3.6) and

(Ων)mn ≡ 0, m or n ∈ J , (4.2)

|(Wν)mn|Oν ≤
{
pνe
−σν max{|m|, |n|}, |m|, |n| ≤ Nν

0, otherwise
, (4.3)

‖(Pν)αβ‖Dν ,Oν ≤
{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρνn
∗
αβ , |α|+ |β| ≥ 3

, (4.4)

∂qnPν = ∂q̄nPν ≡ 0, n ∈ J . (4.5)

Moreover, ‖XP̆+Pν
‖Dν ,Oν ≤ εν .

Choose some rν+1 such that 0 < rν+1 < rν , and let Jν :=

[
5
2ε
−aν

2
ν

]
. For j = 0, 1, · · · , Jν ,

we define the quantities at each KAM sub-step as

ρ(j)
ν = (1− j

2Jν
)ρν , r(j)

ν = rν −
j(rν − rν+1)

Jν
, s(j)

ν = 2−3jε
j
5
ν sν ,
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and D(j)
ν = Dd,ρν+1(r

(j)
ν , s

(j)
ν ), ε

(j)
ν = ε

j
5

+1
ν . Our goal is to construct a set Oν+1 ⊂ Oν and

a finite sequence of maps

Φ(j)
ν : D(j)

ν → D(j−1)
ν , j = 1, 2, · · · , Jν ,

so that the Hamiltonian transformed into the (ν + 1)th KAM cycle

Hν+1 = Hν ◦ Φ(1)
ν ◦ · · · ◦ Φ(Jν)

ν

= Nν+1 + P̆ + Pν+1

= eν+1 + 〈ων+1, I〉+ 〈Ων+1q, q̄〉+ P̆ + Pν+1

satisfies all the above iterative assumptions (A1) − (A5) on Dν+1 = D(Jν)
ν and C1

W

parametrized by ξ ∈ Oν+1, with new suitable parameters. Moreover,

‖XP̆+Pν+1
‖Dν+1,Oν+1 ≤ ε(Jν)

ν ≤ ε
1
2
ε
−aν/2
ν

ν = εν+1.

In the remaining part of this paper, all constants labeled with c, c0, c1, · · · are positive
and independent of the iteration step.

4.1 Construction of Oν+1

As described in Proposition 1, there exists an orthogonal matrix Uν with

|(Uν − IZ)mn| ≤ ε
1
2
0 e
− 3

2
σν |m−n|, (4.6)

such that U∗νTUν = Dν + Zν , where Zν is a symmetric matrix satisfying

|(Zν)mn| ≤ ενe−ρν |m−n|, (4.7)

and Dν is a symmetric matrix which can be block-diagonalized via an orthogonal matrix
Qν with

(Qν)mn = 0 if |m− n| > Nν . (4.8)

More precisely,

D̃ν = Q∗νDνQν =
∏
j

D̃ν
Λνj

with ]Λνj ≤Mν , diamΛνj ≤MνNν , ∀j.

To describe U∗νΩνUν , we need furthermore to consider U∗νAUν and U∗νWνUν . In view
of (3.2), (4.3) and (4.6), there exists a constant c1 > 0 such that

| (U∗ν (A+Wν)Uν)mn |Oν ≤ c1 max{N̂2e3σνN̂ , pνσ
−2
ν } · e−σν ·max{|m|, |n|},

by a simple application of Lemma 2.1. Define the truncation Âν as

(Âν)mn :=

{
(U∗ν (A+Wν)Uν)mn , |m|, |n| ≤ Nν

0, otherwise
. (4.9)

It follows that ∣∣∣(U∗ν (A+Wν)Uν − Âν
)
mn

∣∣∣
Oν
≤ ενe−ρν max{|m|, |n|} (4.10)

under the assumption
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(C1) c1 max{N̂2e3σνN̂ , pνσ
−2
ν } · e−(σν−ρν)Nν ≤ εν .

Let Kν+1 := Nν+1 − (Mν + 1)Nν with the sequences Mν , Nν , ν = 0, 1, · · ·, defined in
(2.2) and

D̃ν
Λν :=

∏
Λνj⊂Λν

D̃ν
Λνj
, Ãν := Q∗νÂνQν , (4.11)

where Λν :=
⋃
{Λνj : Λνj ∩ [−(Kν+1 + Nν), Kν+1 + Nν ] 6= ∅} ⊂ [−Nν+1, Nν+1]. In view

of (4.8) and (4.9), we have

(Ãν)mn ≡ 0 if |m| or |n| > 2Nν .

Since both of D̃ν
Λν and Ãν are Hermitian, there is an orthogonal matrix Oν such that

O∗ν(D̃ν
Λν + Ãν)Oν = diag{µνj }j∈Λν ,

where {µνj }j∈Λν are eigenvalues of D̃ν
Λν + Ãν . Due to the block-diagonal structure of

D̃ν
Λν + Ãν , we also have

(Oν)mn ≡ 0 if |m− n| > 2(Mν + 2)Nν . (4.12)

Indeed, D̃ν
Λν + Ãν can be expressed as

D̃ν
Λν + Ãν = (D̃ν

Λ′ν
+ Ãν) ·

∏
Λνj∩[−2Nν ,2Nν ]=∅

D̃ν
Λνj

where Λ′ν :=
⋃
{Λνj : Λνj ∩ [−2Nν , 2Nν ] 6= ∅, Λνj ⊂ Λν} with diamΛ′ν ≤ 2(Mν + 2)Nν . The

diagonalization of D̃ν
Λν + Ãν is just the diagonalization of blocks (D̃ν

Λ′ν
+ Ãν) and D̃ν

Λνj
.

As for the eigenvalues of D̃ν
Λν+Ãν , it is well-known that {µνn}n∈Λν C

1
W -smoothly depend

on ξ and there exist orthonormal eigenvectors ψνn corresponding to µνn, C1
W -smoothly

depending on ξ (see e.g. [10]). In fact, µνn = 〈(D̃Λν + Ãν)ψνn, ψ̄
ν
n〉 and

∂ξjµ
ν
n = 〈(∂ξj (D̃Λν + Ãν))ψνn, ψ̄

ν
n〉, j = 1, · · · , b.

By the construction of Ãν , we have ∂ξj Ãν = Q∗ν(∂ξj Âν)Qν , with Âν the truncation of
U∗ν (A+Wν(ξ))Uν . Since Dν , A, Uν and Qν are all independent of ξ,

sup
ξ∈Oν

|∂ξµνn| ≤ c sup
ξ∈Oν
m,n

|∂ξ(Wν)mn| ≤ cpν . (4.13)

Now we defined the new parameter set Oν+1 ⊂ Oν as

Oν+1 :=

ξ ∈ Oν :

|〈k, ων〉| > γν
|k|τ , k 6= 0,

|〈k, ων〉+ µνn| >
γν

|k|τN2
ν+1

, k 6= 0, n ∈ Λν ,

|〈k, ων〉+ µνm ± µνn| >
γν

|k|τN4
ν+1

, k 6= 0, m, n ∈ Λν .

 (4.14)

for some 0 < γν � 1, τ ≥ b. These inequalities are famous small-divisor conditions for
controlling the solutions of the linearized equations.

From now on, to simplify notations, the subscripts (or superscripts) “ν” of quantities
at the νth step are neglected, and the corresponding quantities at the (ν + 1)th step are
labeled with “+”. In addition, we still use the superscript (j) to distinguish quantities at
various sub-steps.
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4.2 Homological equation and its approximate solution

For P =
∑
k,l,α,β Pklαβ(ξ)I lei〈k,θ〉qαq̄β, according to (4.4) and the definition of norm in

subsection 3.1, we have

|Pklαβ|O ≤ εe−ρn
∗
αβe−|k|r, 2|l|+ |α|+ |β| ≤ 2, ∀k ∈ Zb. (4.15)

Decompose P = R+ (P −R) with

R :=
∑
k

2|l|+|α|+|β|≤2

Pklαβe
i〈k,θ〉I lqαq̄β, P −R =

∑
k

2|l|+|α|+|β|≥3

Pklαβe
i〈k,θ〉I lqαq̄β.

It follows ‖XR‖D,O ≤ ‖XP ‖D,O ≤ ε. Recalling that P̆ (q, q̄) is a sum of high-order terms,
there exists a constant c2 > 0 such that

‖XP̆ ‖Dd,ρ(r, ηs),O, ‖XP−R‖Dd,ρ(r, ηs),O ≤ c2ηs ≤
1

8
ε

6
5 , (4.16)

with η := ε
1
5 , provided

(C2) c2s ≤ 1
8ε.

Let e′ := P0000 and ω′ :=

∫
∂P

∂I
dθ|q=q̄=0,I=0. With O+ defined as in (4.14), we have

Proposition 2 There exist two real-analytic Hamiltonians

F =
∑
k 6=0

1≤2|l|+|α|+|β|≤2

Fklαβq
αq̄βI lei〈k,θ〉, P̀ =

∑
k

1≤|α|+|β|≤2

P̀k0αβq
αq̄βei〈k,θ〉,

and a Hermitian matrix W ′, all of which are C1
W parametrized by ξ ∈ O+, such that

{N , F}+R = e′ + 〈ω′, I〉+ 〈W ′q, q̄〉+ P̀ . (4.17)

Moreover, both of F and P̀ have gauge invariance, and for ε sufficiently small,

|Fklαβ|O+ ≤ ε
4
5 |k|2τ+1e−|k|re−ρn

∗
αβ , (4.18)

|P̀k0αβ|O+ ≤ ε
7
5 |k|2τ+1e−|k|re−ρ

(1)n∗αβ , (4.19)

|W ′mn|O+ ≤
{
εe−ρmax{|m|, |n|}, |m|, |n| ≤ N+, m, n 6∈ J

0, otherwise
, (4.20)

∂qnF = ∂q̄nF = ∂qnP̀ = ∂q̄nP̀ ≡ 0, n ∈ J . (4.21)

Proof of Proposition 2: We decompose the proof into the following parts.

• Truncation and approximate linearized equations

At first, we rewrite R as

R =
∑
k
|l|≤1

Pkl00e
i〈k,θ〉I l+

∑
k

(〈P k10, q〉+〈P k01, q̄〉+〈P k20q, q〉+〈P k11q, q̄〉+〈P k02q̄, q̄〉)ei〈k,θ〉,
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where P k10, P k01, P k20, P k11, P k02 respectively denote(
P k10
n

)
:= (Pk0en0) ,

(
P k01
n

)
:= (Pk00en) ,(

P k20
mn

)
:=
(
Pk0(em+en)0

)
,
(
P k11
mn

)
:= (Pk0emen) ,

(
P k02
mn

)
:=
(
Pk00(em+en)

)
.

The gauge invariance (A5) implies that P 010, P 001, P 020, P 002 ≡ 0.
We try to construct a Hamiltonian F , of the same form as R, such that

{N , F}+R = e′ + 〈ω′, I〉+ 〈P 011q, q̄〉. (4.22)

By a straightforward calculation and simple comparison of coefficients, Equation (4.22) is
equivalent to the following equations for k 6= 0 and |l| ≤ 1,

〈k, ω〉Fkl00 = iPkl00, (4.23)

(〈k, ω〉IZ − Ω)F k10 = iP k10, (4.24)

(〈k, ω〉IZ + Ω)F k01 = iP k01, (4.25)

(〈k, ω〉IZ − Ω)F k20 − F k20Ω = iP k20, (4.26)

(〈k, ω〉IZ − Ω)F k11 + F k11Ω = iP k11, (4.27)

(〈k, ω〉IZ + Ω)F k02 + F k02Ω = iP k02. (4.28)

In view of the definition of O+, we know that (4.23) is solved on O+, with

|Fkl00|O+ ≤ γ−2|k|2τ+1εe−|k|r.

As for (4.24)− (4.28), consider the equations(
〈k, ω〉IZ − (D + Â)

)
F̂ k10 = iR̂k10, (4.29)(

〈k, ω〉IZ + (D + Â)
)
F̂ k01 = iR̂k01, (4.30)(

〈k, ω〉IZ − (D + Â)
)
F̂ k20 − F̂ k20(D + Â) = iR̂k20, (4.31)(

〈k, ω〉IZ − (D + Â)
)
F̂ k11 + F̂ k11(D + Â) = iR̂k11, (4.32)(

〈k, ω〉IZ + (D + Â)
)
F̂ k02 + F̂ k02(D + Â) = iR̂k02 (4.33)

instead, where D and Â are defined in the previous subsection, and for k 6= 0,

R̂kxn =

{
(U∗P kx)n, |n| ≤ K+

0, otherwise
, x = “10”, “01”, (4.34)

R̂kxmn =

{
(U∗P kxU)mn, |m|, |n| ≤ K+

0, otherwise
, x = “20”, “11”, “02”. (4.35)

By (4.6) and (4.15), combining with Lemma 2.1, there exists c3 > 0 such that

|(U∗P kx)n|O ≤ c3(σ − ρ)−1εe−ρ|n|e−|k|r, (4.36)

|(U∗P kxU)mn|O ≤ c3(σ − ρ)−2εe−ρmax{|m|, |n|}e−|k|r. (4.37)
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This means

|(U∗P kx − R̂kx)n|O ≤
1

4
ε

7
5 e−ρ

(1)|n|e−|k|r, (4.38)

|(U∗P kxU − R̂kx)mn|O ≤
1

4
ε

7
5 e−ρ

(1) max{|m|, |n|}e−|k|r (4.39)

under the assumption that

(C3) c3(σ − ρ)−4e−(ρ−ρ(1))K+ ≤ 1
4ε

2
5 .

Equation (4.29) − (4.33) provide us with approximate solutions to (4.24) − (4.28), with
the error estimated later.

• Block-diagonalization and construction of F

Consider the equations(
〈k, ω〉IΛ − (D̃Λ + Ã)

)
F̃ k10 = iR̃k10, (4.40)(

〈k, ω〉IΛ + (D̃Λ + Ã)
)
F̃ k01 = iR̃k01, (4.41)(

〈k, ω〉IΛ − (D̃Λ + Ã)
)
F̃ k20 − F̃ k20(D̃Λ + Ã) = iR̃k20, (4.42)(

〈k, ω〉IΛ − (D̃Λ + Ã)
)
F̃ k11 + F̃ k11(D̃Λ + Ã) = iR̃k11, (4.43)(

〈k, ω〉IΛ + (D̃Λ + Ã)
)
F̃ k02 + F̃ k02(D̃Λ + Ã) = iR̃k02, (4.44)

where D̃Λ, Ã are defined as in (4.11) via the orthogonal matrix Q, and

R̃kx :=

{
Q∗R̂kx, x = “10”, “01”

Q∗R̂kxQ, x = “20”, “11”, “02”
.

Note that Qmn = 0 if |m− n| > N , then by (4.34) and (4.35), we have

R̃kxn ≡ 0, if |n| > K+ +N, x = “10”, “01”,

R̃kxmn ≡ 0, if |m| or |n| > K+ +N, x = “20”, “11”, “02”.

Thus, recalling that Λ :=
⋃
{Λj : Λj ∩ [−(K+ + N), K+ + N ] 6= ∅}, solutions of these

finite-dimensional equations satisfy

F̃ kxn ≡ 0, if n 6∈ Λ, x = “10”, “01”,

F̃ kxmn ≡ 0, if m or n 6∈ Λ, x = “20”, “11”, “02”.

Then, in view of the facts(
〈k, ω〉IZ ± (D̃ + Ã)

)
F̃ kx =

(
〈k, ω〉IΛ ± (D̃Λ + Ã)

)
F̃ kx, x = “10”, “01”,(

〈k, ω〉IZ ± (D̃ + Ã)
)
F̃ kx =

(
〈k, ω〉IΛ ± (D̃Λ + Ã)

)
F̃ kx, x = “20”, “11”, “02”,

F̃ kx(D̃ + Ã) = F̃ kx(D̃Λ + Ã), x = “20”, “11”, “02”,
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they are also solutions of(
〈k, ω〉IZ − (D̃ + Ã)

)
F̃ k10 = iR̃k10,(

〈k, ω〉IZ + (D̃ + Ã)
)
F̃ k01 = iR̃k01,(

〈k, ω〉IZ − (D̃ + Ã)
)
F̃ k20 − F̃ k20(D̃ + Ã) = iR̃k20,(

〈k, ω〉IZ − (D̃ + Ã)
)
F̃ k11 + F̃ k11(D̃ + Ã) = iR̃k11,(

〈k, ω〉IZ + (D̃ + Ã)
)
F̃ k02 + F̃ k02(D̃ + Ã) = iR̃k02,

which are respectively equivalent to Equation (4.29) − (4.33) since D can be block-
diagonalized by the orthogonal matrix Q.

Now we focus on the following equations

(〈k, ω〉 − µn)F̌ k10
n = i(O∗R̃k10)n,

(〈k, ω〉+ µn)F̌ k01
n = i(O∗R̃k01)n,

(〈k, ω〉 − µm − µn)F̌ k20
mn = i(O∗R̃k20O)mn,

(〈k, ω〉 − µm + µn)F̌ k11
mn = i(O∗R̃k11O)mn,

(〈k, ω〉+ µm + µn)F̌ k02
mn = i(O∗R̃k02O)mn,

for k 6= 0 and m,n ∈ Λ, which is transformed from (4.40)− (4.44) by diagonalizing D̃Λ + Ã
via the orthogonal matrix O. Obviously, these equations can be solved in O+. Hence,
(4.29)− (4.33) are solved with

F̂ kx =

{
QOF̌ kx, x = “10”, “01”

QOF̌ kxO∗Q∗, x = “20”, “11”, “02”
.

Let

F kx :=

{
UF̂ kx, x = “10”, “01”

UF̂ kxU∗, x = “20”, “11”, “02”
,

then we obtain a Hamiltonian

F =
∑
k 6=0
|l|≤1

Fkl00e
i〈k,θ〉I l+

∑
k 6=0

(〈F k10, q〉+〈F k01, q̄〉+〈F k20q, q〉+〈F k11q, q̄〉+〈F k02q̄, q̄〉)ei〈k,θ〉.

It is easy to see that F̄ = F , by noting

F(−k)l00 = Fkl00, F (−k)10 = F k01, F (−k)01 = F k10,

F (−k)20 = F k02, (F (−k)11)∗ = F k11, F (−k)02 = F k20.

• Estimates for coefficients of F

Let us consider F k20
mn for instance, and the other terms can be treated in an analogous

way. By the construction above, one sees that

F k20
mn = i

∑
F0

Umn1Qn1n2On2n3O
∗
n3n4

Q∗n4n5
R̂k20
n5n6

Qn6n7On7n8O
∗
n8n9

Q∗n9n10
U∗n10n

〈k, ω〉 − µn3 − µn8

, (4.45)
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where the summation notation F0 denotes{
n1 ∈ Z, |n2 − n1| ≤ N, |n3 − n2|, |n4 − n3| ≤ 2(M + 2)N, |n5 − n4| ≤ N,
n10 ∈ Z, |n9 − n10| ≤ N, |n8 − n9|, |n7 − n8| ≤ 2(M + 2)N, |n6 − n7| ≤ N

}

by virtue of the structure of Q and O, i.e, (4.8) and (4.12). Then, by (4.37) and Lemma
2.1,

sup
ξ∈O+

|F k20
mn (ξ)| ≤ c(γ−1|k|τN4

+)(σ − ρ)−4M4N8e(4M+10)Nρεe−|k|re−ρmax{|m|,|n|}.

Here we have applied the property of the orthogonal matrices Q and O, and used the
factor e(4M+10)Nρ to recover the exponential decay.

To estimate |∂ξjF k20
mn |, we need to differentiate both sides of (4.42) with respect to ξj ,

j = 1, 2, · · · , b. Then we obtain the equation about ∂ξj F̃
k20

(〈k, ω〉IΛ − (D̃Λ + Ã))(∂ξj F̃
k20)− (∂ξj F̃

k20)(D̃Λ + Ã) = R̆k20
ξj ,

which can also be solved by diagonalizing D̃Λ + Ã via O as above, where

R̆k20
ξj := i∂ξj R̃

k20 + F̃ k20(∂ξj Ã)− (∂ξj (〈k, ω〉I − Ã))F̃ k20.

We get the formulation

∂ξjF
k20
mn =

∑
F1

Umn1Qn1n2On2n3O
∗
n3n4

(R̆k20
ξj

)n4n5On5n6O
∗
n6n7

Q∗n7n8
U∗n8n

〈k, ω〉 − µn3 − µn6

,

with F1 denotes{
n1 ∈ Z, |n2 − n1| ≤ N, |n3 − n2|, |n4 − n3| ≤ 2(M + 2)N,
n8 ∈ Z, |n7 − n8| ≤ N, |n6 − n7|, |n5 − n6| ≤ 2(M + 2)N

}
.

By the decay property of R̂k20 and ∂ξj Â, we have that

sup
ξ∈O+

|(R̆k20
ξj )mn| ≤ c(γ−1|k|τ+1N4

+)(σ − ρ)−4M4N8e(4M+11)Nρεe−|k|re−ρmax{|m|,|n|}.

Thus there exists c4 > 0 such that

sup
ξ∈O+

(|F k20
mn |+ |∂ξF k20

mn |)

≤ c4(γ−2|k|2τ+1N8
+)(σ − ρ)−6M8N14e(8M+20)Nρεe−ρmax{|m|,|n|}e−|k|r

≤ ε
4
5 |k|2τ+1e−|k|re−ρmax{|m|,|n|},

under the assumption

(C4) c4γ
−2(σ − ρ)−6N8

+M
8N14e(8M+20)Nρε

1
5 ≤ 1.

Suppose that
∑b
i=1 ki + 2 6= 0, which means P k20 ≡ 0. Then R̂k20 ≡ 0, since it is a

truncation of U∗P k20U . By the formulation of F k20
mn in (4.45), F k20 ≡ 0.

Doing the same thing for F k11, F k02, F k10, F k01 as above, we obtain the gauge invari-
ance of F and the inequality (4.18).
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• Estimates for coefficients of P̀

Let W ′ be the truncation of P 011, satisfying

W ′mn =

{
P 011
mn , |m|, |n| ≤ N+

0, otherwise
,

and

P̀ = 〈P̀ 011q, q̄〉+
∑
k 6=0

(〈P̀ k10, q〉+ 〈P̀ k01, q̄〉+ 〈P̀ k20q, q〉+ 〈P̀ k11q, q̄〉+ 〈P̀ k02q̄, q̄〉)ei〈k,θ〉

with

P̀ 011 := P 011 −W ′,
P̀ k10 := (P k10 − UR̂k10)− i(À+ Z̀)F k10,

P̀ k01 := (P k01 − UR̂k01) + i(À+ Z̀)F k01,

P̀ k20 := (P k20 − UR̂k20U∗)− i(À+ Z̀)F k20 − iF k20(À+ Z̀),

P̀ k11 := (P k11 − UR̂k11U∗)− i(À+ Z̀)F k11 + iF k11(À+ Z̀),

P̀ k02 := (P k02 − UR̂k02U∗) + i(À+ Z̀)F k02 + iF k02(À+ Z̀),

where À := (A+W )− UÂU∗, and Z̀ := UZU∗. Then we obtain

{N , F}+R = e′ + 〈ω′, I〉+ 〈W ′q, q̄〉+ P̀ . (4.46)

By (4.4) and (4.5), we have (4.20) holds and

|P̀ 011
mn |O+

≤ εe−ρmax{|m|, |n|} ≤ ε
7
5 e−ρ

(1) max{|m|, |n|},

under the assumption

(C5) e−(ρ−ρ(1))N+ ≤ ε
2
5 .

As for the case k 6= 0 in (4.19), we only estimate P̀ k20, with the others entirely
analogous. By (4.39) and (C3), combining with Lemma 2.1,∣∣∣(P k20 − UR̂k20U∗

)
mn

∣∣∣
O

=
∣∣∣(U(U∗P k20U − R̂k20)U∗

)
mn

∣∣∣
O
≤ 1

4
ε

7
5 e−ρ

(1) max{|m|, |n|}e−|k|r.

(4.47)
In view of (4.7) and (4.10),

|Àmn|O ≤ c(σ − ρ)−2εe−ρmax{|m|, |n|}, |Z̀mn| ≤ c(σ − ρ)−2εe−ρ|m−n|.

Then, by applying Lemma 2.1 again, there exists c6 > 0 such that∣∣∣(F k20(À+ Z̀)
)
mn

∣∣∣
O+

,
∣∣∣((À+ Z̀)F k20

)
mn

∣∣∣
O+

≤ c6(σ − ρ)−2(ρ− ρ(1))−1ε
9
5 |k|2τ+1e−|k|re−ρ

(1) max{|m|, |n|}

≤ 1

4
ε

7
5 |k|2τ+1e−|k|re−ρ

(1) max{|m|, |n|}, (4.48)

provided that
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(C6) c6(σ − ρ)−2(ρ− ρ(1))−1ε
2
5 ≤ 1

4 .

Thus, we can obtain the estimate for P̀ k20 by putting (4.47) and (4.48) together.
By the construction of P̀ , the gauge invariance is easily verified.

• Verification of (4.21)

In view of the construction of R and W ′ above, the objects in (4.46) that may depend
on the variables (qn, q̄n)n∈J are F and P̀ . Let

F́ =
∑
k 6=0

∑
n∈J

(F k10
n qn + F k01

n q̄n) +
∑

m orn∈J
(F k20

mn qmqn + F k11
mn qmq̄n + F k02

mn q̄mq̄n)

 ei〈k,θ〉

=:
∑
k 6=0

(
〈F́ k10, q〉+ 〈F́ k01, q̄〉+ 〈F́ k20q, q〉+ 〈F́ k11q, q̄〉+ 〈F́ k02q̄, q̄〉

)
ei〈k,θ〉.

For m or n ∈ J , by (4.2), we have(
(〈k, ω〉IZ − Ω)F́ k20 − F́ k20Ω

)
mn

= 〈k, ω〉F́ k20
mn −

∑
l 6∈J

ΩmlF́
k20
ln −

∑
l 6∈J

F́ k20
ml Ωln

=


〈k, ω〉F k20

mn , m, n ∈ J
〈k, ω〉F k20

mn −
∑
l 6∈J ΩmlF

k20
ln , m 6∈ J , n ∈ J

〈k, ω〉F k20
mn −

∑
l 6∈J F

k20
ml Ωln, m ∈ J , n 6∈ J

=
(
(〈k, ω〉IZ − Ω)F k20 − F k20Ω

)
mn

.

This means, by comparing the coefficients in both side of Equation (4.46),(
(〈k, ω〉IZ − Ω)F́ k20 − F́ k20Ω

)
mn

= −iP̀ k20
mn m or n ∈ J .

Similarly, (
(〈k, ω〉IZ − Ω)F́ k10

)
n

= −iP̀ k10
n , n ∈ J ,(

(〈k, ω〉IZ + Ω)F́ k01
)
n

= −iP̀ k01
n , n ∈ J ,(

(〈k, ω〉IZ − Ω)F́ k11 + F́ k11Ω
)
mn

= −iP̀ k11
mn , m or n ∈ J ,(

(〈k, ω〉IZ + Ω)F́ k02 + F́ k02Ω
)
mn

= −iP̀ k02
mn , m or n ∈ J .

Thus, {N , F́} equals to

∑
k 6=0

∑
n∈J

(P̀ k10
n qn + P̀ k01

n q̄n) +
∑

m orn∈J
(P̀ k20

mn qmqn + P̀ k11
mn qmq̄n + P̀ k02

mn q̄mq̄n)

 ei〈k,θ〉.

Hence, if we substitute F with F − F́ , which is independent of the variables (qn, q̄n)n∈J ,
then P̀ in the homological equation (4.46) is replaced correspondingly, independent of
(qn, q̄n)n∈J . (4.21) is satisfied.
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4.3 Verification of assumptions after one sub-step

We proceed to estimate the norm of XF , and to study properties of Φ1
F on smaller

domains Di := Dd,ρ+(r(1) + i
4(r − r(1)), i

4s), i = 1, 2, 3, 4.

Lemma 4.1 For ε sufficiently small, we have ‖XF ‖D3,O+ ≤ ε
3
4 and ‖XP̀ ‖D3,O+ ≤ ε

5
4 .

Proof: In view of the decay property of F in Proposition 2, it follows that

1

s2
‖∂θF‖D3,O+ , ‖∂IF‖D3,O+ ≤ c(r − r(1))−(2τ+b+1)ε

4
5 ,

and

sup
D3

1

s

∑
n∈Z

(
‖∂qnF‖O+ + ‖∂q̄nF‖O+

)
〈n〉deρ+|n|

≤ sup
D3

c

s

∑
n∈Z

∑
k 6=0

(
|F k10
n |O+ + |F k01

n |O+

)
e|k|(r−

1
4

(r−r(1)))〈n〉deρ+|n|

+ sup
D3

c

s

∑
n∈Z

∑
k 6=0
m∈Z

(|F k20
mn |O+ + |F k11

mn |O+ + |F k02
mn |O+)|qm|e|k|(r−

1
4

(r−r(1)))〈n〉deρ+|n|

≤ c(r − r(1))−(2τ+b+1)(ρ− ρ+)−2ε
4
5 .

Putting together the estimates above, there is a constant c7 > 0 such that

‖XF ‖D3,O+ ≤ c7(r − r(1))−(2τ+b+1)(ρ− ρ+)−2ε
4
5 .

In an entirely analogous way, we have

‖XP̀ ‖D3,O+ ≤ c7(r − r(1))−(2τ+b+1)(ρ(1) − ρ+)−2ε
7
5 .

Moreover, if

(C7) c7(r − r(1))−(2τ+b+1)(ρ(1) − ρ+)−2ε
1
20 ≤ 1

3 ,

then Lemma 4.1 follows.

Let Diη = Dd,ρ+(r(1) + i
4(r − r(1)), i4ηs), i = 1, 2, 3, 4.

Lemma 4.2 For ε sufficiently small, we have Φt
F : D2η → D3η, −1 ≤ t ≤ 1 and moreover,

‖DΦt
F − I‖D1η < 2ε

3
4 .

Let F (1), e(1), ω(1), W (1), P̀ (1) be the corresponding quantities in (4.17) respectively,
which means that we are in the 1st sub-step. Define H(1) as

H(1) := H ◦ Φ1
F (1)

= (N + P̆ +R) ◦ Φ1
F (1) + (P −R) ◦ Φ1

F (1)

= N + P̆ + {N , F (1)}+R+

∫ 1

0
(1− t){{N , F (1)}, F (1)} ◦ Φt

F (1) dt

+

∫ 1

0
{P̆ +R,F (1)} ◦ Φt

F (1) dt+ (P −R) ◦ Φ1
F (1)

= N + P̆ + e(1) + 〈ω(1), I〉+ 〈W (1)q, q̄〉+ P (1),
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where

P (1) := P̀ (1) +

∫ 1

0
{(1− t){N , F (1)}+ P̆ +R,F (1)} ◦ Φt

F (1) dt+ (P −R) ◦ Φ1
F (1) .

Let R(t) := (1− t)(e(1) + 〈ω(1), I〉+ 〈W (1)q, q̄〉+ P̀ (1))+ tR, which satisfies ‖XR(t)‖D3 ≤ cε.
Then P (1) can be written as

P (1) = P̀ (1) +

∫ 1

0
{R(t) + P̆ , F (1)} ◦ Φt

F (1) dt+ (P −R) ◦ Φ1
F (1) .

Hence,

XP (1)−P̀ (1) =

∫ 1

0
(Φt

F (1))
∗X{R(t)+P̆ , F (1)} dt + (Φ1

F (1))
∗X(P−R).

By Lemma A.4,

‖X{R(t)+P̆ , F (1)}‖D2η ≤ cη−2ε
7
4 = ε

27
20 .

Then, combining with (4.16), recalling the conclusion of Lemma 4.1 and 4.2,

‖XP (1)‖D(1),O+
≤ 1

2
ε

6
5 + 2ε

5
4 + 2cε

27
20 ≤ ε

6
5 = ε(1).

Now we need to show P (1) satisfies assumptions (A4) and (A5). Note that

P (1) = P̀ (1) + P −R+ {P̆ , F (1)}+ {P, F (1)}

+
1

2!
{{N , F (1)}, F (1)}+

1

2!
{{P̆ , F (1)}, F (1)}+

1

2!
{{P, F (1)}, F (1)}+ · · ·

+
1

n!
{· · · {N , F (1)} · · · , F (1)︸ ︷︷ ︸

n

}+
1

n!
{· · · {P̆ , F (1)} · · · , F (1)︸ ︷︷ ︸

n

}

+
1

n!
{· · · {P, F (1)} · · · , F (1)︸ ︷︷ ︸

n

}+ · · · .

Since all ofN , P̆ , P , F (1), P̀ (1) have gauge invariance, independent of variables (qn, q̄n)n∈J ,
so does P (1) due to Lemma A.5 and A.6 in Appendix.

For P −R =
∑

2|l|+|α|+|β|≥3

Pklαβe
i〈k,θ〉I lqαq̄β, we have

‖Pαβ‖D(1) ≤
{

1
4ε

(1)e−ρn
∗
αβ , |α|+ |β| ≤ 2

e−ρn
∗
αβ , |α|+ |β| ≥ 3

.

Here we applied the estimate |I| ≤ s(1) ≤ 1
4ε

(1) to handle the case that |α| + |β| ≤ 2 and
2|l|+ |α|+ |β| ≥ 3.

The decay property of remaining terms, which are made up of several Poisson brackets,
is covered by the following lemmas.

Lemma 4.3 For ε sufficiently small, {P, F (1)} satisfies

‖{P, F (1)}αβ‖D3η ,O+ ≤

 ε
5
4 e−ρ

(1)n∗αβ , |α|+ |β| ≤ 2

ε
1
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3
.
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Proof: A straightforward calculation yields that

{P, F (1)}αβ = i
∑
n∈Z

(α̌,β̌)+(α̂,β̂)=(α,β)

(
Pα̌+en,β̌

F
(1)

α̂,β̂+en
− Pα̌,β̌+en

F
(1)

α̂+en,β̂

)
(4.49)

+
∑

(α̌,β̌)+(α̂,β̂)=(α,β)

{
Pα̌β̌, F

(1)

α̂β̂

}
. (4.50)

• Terms in (4.49)

Let us consider terms Pα̌+en,β̌
F

(1)

α̂,β̂+en
first.

i) |α|+ |β| ≤ 2

Since |α̂|+ |β̂ + en| = 1 or 2 in view of the construction of F (1), we have that

|α̌+ en|+ |β̌| = |α|+ |β|+ 1− (|α̂|+ |β̂|) ≤ 3. (4.51)

If |α̌+ en|+ |β̌| ≤ 2, then, noting that n∗αβ ≤ max{n∗
α̌+en,β̌

, n∗
α̂,β̂+en

}, we have

‖Pα̌+en,β̌
F

(1)

α̂,β̂+en
‖D3,O+ ≤ εe

−ρn∗
α̌+en,β̌ · ε

3
4 e
−ρn∗

α̂,β̂+en ≤ ε
7
4 e−ρn

∗
αβ . (4.52)

If |α̌+en|+ |β̌| = 3, then, by (4.51), (α̂, β̂) = (0, 0), (α̌, β̌) = (α, β). By the definition
of norm ‖XP ‖D,O and the construction of F (1),

‖Pα+en,β‖D3,O ≤ e
−ρn∗α+en,β , ‖F (1)

0,en‖D3,O+ ≤ sε
3
4 e−ρ|n|.

Thus, noting that n∗αβ ≤ max{n∗α+en,β
, |n|},

‖Pα+en,βF
(1)
0,en‖D3,O+ ≤ sε

3
4 e−ρn

∗
αβ ≤ 1

4
ε

7
4 e−ρn

∗
αβ . (4.53)

ii) |α|+ |β| ≥ 3

By the same argument as above,

‖Pα̌+en,β̌
F

(1)

α̂,β̂+en
‖D3,O+ ≤ e

−ρn∗
α̌+en,β̌ · ε

3
4 e
−ρn∗

α̂,β̂+en ≤ ε
3
4 e−ρn

∗
αβ . (4.54)

Doing the same for Pα̌,β̌+en
F

(1)

α̂+en,β̂
, we finish estimates for terms in (4.49).

• Terms in (4.50)
By Lemma A.3 and the inequality n∗αβ ≤ max{n∗

α̌β̌
, n∗

α̂β̂
}, we have

‖{Pα̌β̌, F
(1)

α̂β̂
}‖D3η ≤ c(r − r(1))−1η−2

{
ε

7
4 e−ρn

∗
αβ , |α|+ |β| ≤ 2

ε
3
4 e−ρn

∗
αβ , |α|+ |β| ≥ 3

. (4.55)

Combining (4.52)− (4.55), there exists c8 > 0 such that

‖{P, F (1)}αβ‖D3η ≤ c8(r − r(1))−1η−2(ρ− ρ(1))−2

 ε
7
4 e−ρ

(1)n∗αβ , |α|+ |β| ≤ 2

ε
3
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3
,

applying the fact that |α̂|+ |β̂| ≤ 2. Moreover, if
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(C8) c8(r − r(1))−1η−2(ρ− ρ(1))−2ε
1
2 ≤ 1

4 ,

Lemma 4.3 is proved.

By (4.15), (4.19) and (4.20), it is evident that the coefficients of

{N , F (1)} = e(1) + 〈ω(1), I〉+ 〈W (1)q, q̄〉+ P̀ (1) −R

satisfies ‖{N , F (1)}αβ‖D3,O+ ≤ cεe−ρ
(1)n∗αβ . Then we have the following lemma, whose

proof is analogous to that of Lemma 4.3.

Lemma 4.4 For ε sufficiently small, {{N , F (1)}, F (1)} satisfies

‖{{N , F (1)}, F (1)}αβ‖D3η ,O+ ≤
1

4
ε

6
5 e−ρ

(1)n∗αβ .

Lemma 4.5 For ε sufficiently small, {P̆ , F (1)} satisfies

‖{P̆ , F (1)}αβ‖D3,O+ ≤ ε
1
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3.

Proof: It can be calculated that

{P̆ , F (1)}αβ = i
∑
n∈Z

(α̌,β̌)+(α̂,β̂)=(α,β)

(
P̆α̌+en,β̌

F
(1)

α̂,β̂+en
− P̆α̌,β̌+en

F
(1)

α̂+en,β̂

)
. (4.56)

For P̆α̌+en,β̌
F

(1)

α̂,β̂+en
in (4.56), since |α̂| + |β̂ + en| = 1 or 2 and |α̌ + en| + |β̌| ≥ 4 here, it

is obvious that |α|+ |β| = |α̌|+ |β̌|+ |α̂|+ |β̂| ≤ 3.
Note that n∗αβ ≤ max{n∗

α̌+en,β̌
, n∗

α̂,β̂+en
}, and

n∗
α̌+en,β̌

= max{n+
α̌+en,β̌

, −n−
α̌+en,β̌

}, n∗
α̂,β̂+en

= max{n+

α̂,β̂+en
, −n−

α̂,β̂+en
}.

Then n+
α̌+en,β̌

− n−
α̌+en,β̌

+ n∗
α̂,β̂+en

≥ n∗αβ, and hence

∥∥∥P̆α̌+en,β̌
F

(1)

α̂,β̂+en

∥∥∥
D3,O+

≤ e−ρ(n+

α̌+en,β̌
−n−

α̌+en,β̌
) · ε

3
4 e
−ρn∗

α̂,β̂+en ≤ ε
3
4 e−ρn

∗
αβ .

Doing the estimate for P̆α̌,β̌+en
F

(1)

α̂+en,β̂
in (4.56) similarly, we have that

‖{P̆ , F (1)}αβ‖D3,O+ ≤ c8(ρ− ρ(1))−2ε
3
4 e−ρ

(1)n∗αβ ≤ ε
1
4 e−ρ

(1)n∗αβ , |α|+ |β| ≥ 3,

if (C8) holds.

Summarize the analysis above, then the decay property for P (1) can be expressed as

Proposition 3 For ε sufficiently small, P (1) =
∑
α,β P

(1)
αβ (θ, I; ξ)qαq̄β satisfies

‖P (1)
αβ ‖D(1),O+

≤

 ε(1)e−ρ
(1)n∗αβ , |α|+ |β| ≤ 2

e−ρ
(1)n∗αβ , |α|+ |β| ≥ 3

.
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4.4 A succession of symplectic transformations

With the verification of assumptions (A4) and (A5) completed, we finish one sub-step
of KAM iteration. Suppose that we have arrived at the jth sub-step, j = 1, · · · , J , with

J =
[

5
2ε

a
2

]
, then we encounter the Hamiltonian

H(j−1) = H ◦ Φ1
F (1) ◦ · · · ◦ Φ1

F (j−1)

= N + P̆ +
j−1∑
i=1

(
e(i) + 〈ω(i), I〉+ 〈W (i)q, q̄〉

)
+ P (j−1),

with the superscript “(0)” labeling quantities before the 1st sub-step in particular. Let

R(j−1) :=
∑
k

2|l|+|α|+|β|≤2

P
(j−1)
klαβ ei〈k,θ〉I lqαq̄β. (4.57)

As demonstrated in Proposition 2, on O+, the following homological equation

{N , F (j)}+R(j−1) = e(j) + 〈ω(j), I〉+ 〈W (j)q, q̄〉+ P̀ (j), (4.58)

can be solved, with F (j), e(j), ω(j), W (j), P̀ (j) having properties similar to F (1), e(1), ω(1),
W (1), P̀ (1) respectively. Then we obtain

H(j) = H(j−1) ◦ Φ1
F (j) = N + P̆ +

j∑
i=1

(
e(i) + 〈ω(i), I〉+ 〈W (i)q, q̄〉

)
+ P (j).

The estimates for F (j) and the verification of assumptions for P (j) can be done similarly
as in subsection 4.3.

The process above can be summarized as

Proposition 4 Consider the Hamiltonian H in (4.1). There exist J symplectic transfor-
mations Φ(j) = Φ1

F (j), j = 1, · · · , J , generated by the corresponding real-analytic Hamilto-

nians F (j) respectively, such that

H(j) = H ◦ Φ(1) ◦ · · · ◦ Φ(j) = N + P̆ +Gj + P (j),

is real-analytic on D(j) = Dd,ρ+(r(j), s(j)), with Gj =
∑j
i=1

(
e(i) + 〈ω(i), I〉+ 〈W (i)q, q̄〉

)
.

For i = 1, 2, 3, 4, η = ε
1
5 , let

D(j)
i = Dd,ρ+(r(j+1) +

i

4
(r(j) − r(j+1)),

i

4
s(j)),

D(j)
iη = Dd,ρ+(r(j+1) +

i

4
(r(j) − r(j+1)),

i

4
ηs(j)).

(a) With R(j−1) defined in (4.57), F (j) satisfies the homological equation (4.58) on O+,

‖XF (j)‖D(j−1)
3 ,O+

≤ ε−
1
4 ε(j−1), Φt

F (j) : D(j−1)
2η → D(j−1)

3η , −1 ≤ t ≤ 1, and

‖DΦt
F (j) − I‖D(j−1)

1η

< 2ε−
1
4 ε(j−1),

‖F (j)
αβ ‖D(j−1)

3 ,O+
≤
{
ε−

1
4 ε(j−1)e−ρ

(j−1)n∗αβ , |α|+ |β| ≤ 2
0, |α|+ |β| ≥ 3

,

∂qnF
(j) = ∂q̄nF

(j) ≡ 0, ∀n ∈ J .
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(b) Gj satisfies that ‖XGj‖D(j)
3 ,O+

≤ cε and for i = 1, 2, · · · , j,

|ω(i)|O+ ≤ ε(i−1),

|W (i)
mn|O+ ≤

{
ε(i−1)e−ρ

(i−1) max{|m|, |n|}, |m|, |n| ≤ N+, m, n 6∈ J
0, otherwise

.

(c) P (j) satisfies ‖XP̆+P (j)‖D(j),O+
≤ ε(j) and assumptions (A4), (A5), which include

‖P (j)
αβ ‖D(j),O+

≤

 ε(j)e−ρ
(j)n∗αβ , |α|+ |β| ≤ 2

e−ρ
(j)n∗αβ , |α|+ |β| ≥ 3

,

∂qnP
(j) = ∂q̄nP

(j) ≡ 0, ∀n ∈ J .

Let s+ = s(J) = 2−3Jε
J
5 s, Φ = Φ(1) ◦ · · · ◦ Φ(J), and

N+ = e+ + 〈ω+, I〉+ 〈Ω+q, q̄〉,

with Ω+ = T +A+W+, and

e+ = e+
J∑
j=1

e(j), ω+ = ω +
J∑
j=1

ω(j), W+ = W +
J∑
j=1

W (j).

Then Φ : D+ ×O+ → D ×O. From the estimates of ω(j) and W (j), we have

|ω+ − ω|O+ ≤ cε, (4.59)

|(W+ −W )mn|O+ ≤
{
ε

1
2 e−

ρ
2

max{|m|, |n|}, |m|, |n| ≤ N+, m, n 6∈ J
0, otherwise

. (4.60)

Since W ∗ = W and (W (i))∗ = W (i), W+ is still a Hermitian matrix. Then, by (4.59) and

(4.60), (A1) and (A2) hold with p+ = p+ ε
1
2 and σ+ := 1

3ρ.

Let P+ = P (J). It has been verified that the assumptions (A4) and (A5) for P (J)

hold, which is an analogue to the process in subsection 4.3.
This completes one step of KAM iterations.

5 Proof of the KAM theorem

With ε0 = ε
1
4 , σ0 = 1, N̂ = | ln ε0|, and

M0 = max

{
2s̃+4C

Ls̃+1((s̃+ 1)!)2

ξ̃
, 2τ̃ , 8,

12(2τ + b+ 3)

τ̃

}
, N0 = 6| ln ε0|, ρ0 = N−1

0 ,

one can define the following sequences as in [11],

Mν+1 = M s̃M3
ν

ν , aν =
1

τ̃
M−3s̃M3

ν
ν , εν+1 = ε

1
2
ε
−aν/2
ν

ν ,

Nν+1 = ε−aνν , ρν+1 = εaνν , σν+1 =
1

3
ρν .
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Given p0 = ε
1
2
0 , r0 = r, s0 = s, the other sequences are defined as

pν+1 = pν + ε
1
2
ν , Kν+1 = Nν+1 − (Mν + 1)Nν , Jν =

[
5

2
ε
−aν

2
ν

]
,

rν = r0

(
1−

ν+1∑
i=2

2−i
)
, sν+1 = 2−3Jνε

Jν
5
ν sν , γν = ε

1
80
ν .

Let Dν and Oν be as defined in Section 4.

5.1 Iteration lemma

The preceding analysis can be summarized as follows.

Lemma 5.1 There exists ε0 sufficiently small such that the following holds for all ν =
0, 1, · · ·.

(a) Hν = Nν + P̆ + Pν is real-analytic on Dν , and C1
W parametrized by ξ ∈ Oν , where

Nν = eν + 〈ων , I〉+ 〈Ωνq, q̄〉, Pν =
∑
α,β

(Pν)αβ(θ, I)qαq̄β,

with Ων = T +A+Wν satisfying

(Ων)mn ≡ 0 if m or n ∈ J ,

|(Wν)mn|Oν ≤
{
pνe
−σν max{|m|, |n|}, |m|, |n| ≤ Nν

0, otherwise
,

|ων+1 − ων |Oν+1 ≤ εν ,

|(Wν+1 −Wν)mn|Oν+1 ≤
{
ε

1
2
ν e
− ρν

2
max{|m|, |n|}, |m|, |n| ≤ Nν+1, m, n 6∈ J
0, otherwise

.

Moreover, Pν has gauge invariance and ‖XP̆+Pν
‖Dν ,Oν ≤ εν ,

‖(Pν)αβ‖Dν ,Oν ≤
{
ενe
−ρνn∗αβ , |α|+ |β| ≤ 2

e−ρνn
∗
αβ , |α|+ |β| ≥ 3

,

∂qnPν = ∂q̄nPν ≡ 0, ∀n ∈ J .

(b) For each ν, there is a symplectic transformation Φν : Dν+1 → Dν with

‖DΦν − Id‖Dν+1,Oν+1 ≤ ε
1
2
ν ,

such that Hν+1 = Hν ◦ Φν .

Proof: Let c0 := 8e20 max{c1, · · · , c8}. We need to verify the assumptions (C1)− (C8)
for ν = 0, 1, · · · . By noting that

Nν+1 = εaνν = ρ−1
ν+1, σν+1 =

1

3
ρν , r(j)

ν −r(j+1)
ν =

rν − rν+1

2Jν
, ρ(j)

ν −ρ(j+1)
ν =

ρν − ρν+1

2Jν
,

it is sufficient for us to check:
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(D1) c0sν ≤ εν ,

(D2) c0

(
rν − rν+1

2Jν

)−(2τ+b+1) (ρν − ρν+1

2Jν

)−2

≤ ε−
1
20

ν ,

(D3) c0N
8
ν+1M

8
νN

20
ν e

8MνNνρν ≤ ε−
7
40

ν ,

(D4) e−
ρνKν+1

2Jν ≤ ε
2
5
ν ,

for all ν = 0, 1, · · · .
By the choice of s0, the condition (D1) clearly holds for ν = 0. Suppose that it holds

for some ν, then it is easy to see that

c0sν+1 = 2−3Jνε
Jν
5
ν · c0sν < 2−3Jνε

Jν
5
ν · εν < εν+1.

Hence (D1) holds for all ν.
Let us first take ε0 sufficiently small such that

ε
1
20
− 1

2
a0(2τ+b+3)

0 ≤ 1

c0

(
r0

20

)2τ+b+1 (1− εa0
0

5

)2

.

Here we have applied M0 ≥ 12
τ̃ (2τ+b+3) and a0 = M

−3s̃M3
0

0 such that 1
20−

1
2a0(2τ+b+3) >

0. Then, recalling that rν − rν+1 = r0
22+ν and Jν =

[
5
2ε
−aν

2
ν

]
,

c0

(
r0 − r1

2J0

)−(2τ+b+1) (ρ0 − ρ1

2J0

)−2

≤ ε−
1
20

0 ,

i.e., (D2) holds for ν = 0. Since for ν ≥ 1 and for ε0 sufficiently small,

ε
1
40
− 1

2
aν(2τ+b+3)

ν � ε
( 6

5)
ν

0 � 1

2ν(2τ+b+1)c0

(
r0

20

)2τ+b+1

, ε
1
40
ν �

(
ε
aν−1

ν−1 − εaνν
5

)2

,

we have

c0

(
rν − rν+1

2Jν

)−(2τ+b+1) (ρν − ρν+1

2Jν

)−2

≤ ε−
1
20

ν .

Thus, (D2) holds true.
In Section 6 of [11], the basic smallness assumption of εν , i.e., the inequality (A.1) in

Lemma A.1, has been verified, then all other assumptions are immediate, including the
inequality

ΓνN
2
ν e

6MνNνρν ≤ ε−
1
8

ν ,

where Γν increases superexponentially in Mν . Since all of Mν , Nν , ρν and εν here are
defined in the same way as [11], we can apply this inequality. So (D3) has been verified.

By the definition of ρν , aν and εν , we have

ρνε
− 1

2
aν

ν > ln
1

εν
.

Then we see that (D4) holds for ν = 0, 1, · · ·.
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5.2 Convergence

Now we fix x ∈ X̃ , with X̃ defined as in Proposition 1. This means that the blocks
mentioned in Proposition 1 are eventually stationary after some step, i.e., for each n ∈ Z,
there is a ν0(n) such that

Λν+1(n) = Λν(n), ∀ν ≥ ν0(n).

In this case, the local decay rate for n may not shrink with ν necessarily(ρν is the global
upper bound of the rates for all n ∈ Z).

Define Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν−1, ν = 1, 2, · · ·. An induction argument shows that
Ψν : Dν+1 → D0, and

H0 ◦Ψν = Hν = Nν + P̆ + Pν .

Let Oε0 = ∩∞ν=0Oν . As in standard arguments (e.g. [24, 29]), thanks to Lemma 4.2, it
concludes that Hν , Nν , Pν , Ψν , eν , ων and Wν converge uniformly on Dd,0(1

2r0, 0) × Oε0
to, say, H∞, N∞, P∞, Ψ∞, e∞, ω∞ and W∞ respectively, in which case it is clear that

N∞ = e∞ + 〈ω∞, I〉+ 〈(T +A+W∞)q, q̄〉,

with Ω∞ = T + A + W∞ satisfying (Ω∞)mn ≡ 0 if m or n ∈ J . Since ‖XPν‖Dν ,Oν ≤ εν
with εν → 0, it follows that ‖XP∞‖Dd,0( 1

2
r0,0),Oε0

= 0.

Since H0 ◦Ψν = Hν , we have Φt
H0
◦Ψν = Ψν ◦Φt

Hν
, with Φt

H0
denoting the flow of the

Hamiltonian vector field XH0 . The uniform convergence of Ψν and XHν implies that one
can pass the limit in the above and conclude that

Φt
H0
◦Ψ∞ = Ψ∞ ◦ Φt

H∞ , Ψ∞ : Dd,0(
1

2
r0, 0)→ D0.

Hence,

Φt
H0

(Ψ∞(Tb × {ξ})) = Ψ∞Φt
N∞(Tb × {ξ}) = Ψ∞(Tb × {ξ}), ∀ξ ∈ Oε0 .

This means that Ψ∞(Tb × {ξ}) is an embedded invariant torus of the original perturbed
Hamiltonian system at ξ ∈ Oε0 . Moreover, the frequencies ω∞(ξ) associated with Ψ∞(Tb×
{ξ}) are slightly deformed from the unperturbed ones, ω(ξ).

5.3 Measure estimate

At the νth step of KAM iteration, we need to exclude the following resonant parameter
set

Rνk := Rν1
k

⋃( ⋃
n∈Λν

Rν2
kn

)⋃ ⋃
m,n∈Λν

Rν3
kmn

⋃ ⋃
m,n∈Λν

Rν4
kmn

 , k 6= 0

for any fixed x ∈ X̃ , where

Rν1
k :=

{
ξ ∈ Oν : |〈k, ων〉| <

γν
|k|τ

}
,

Rν2
kn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνn| <

γν
|k|τN2

ν+1

}
,
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Rν3
kmn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνm + µνn| <

γν
|k|τN4

ν+1

}
,

Rν4
kmn :=

{
ξ ∈ Oν : |〈k, ων〉+ µνm − µνn| <

γν
|k|τN4

ν+1

}
,

with {µνj }j∈Λν eigenvalues of D̃ν
Λν + Ãν . It is clear O0 \ Oε0 ⊆

⋃
ν≥0

⋃
k 6=0Rνk.

Recalling that ω0 is a diffeomorphism of ξ, together with the estimates in (4.13), (4.59)
and (4.60), we have

|∂ξ(〈k, ων〉+ µνm − µνn)| ≥ |∂ξ〈k, ω0〉| − ε
1
4
0 |k| − p = O(|k|)

for the set Rν4
kmn. The cases for Rν1

k , Rν2
kn, Rν3

kmn can be handled in an entirely analogous
way. Thus∣∣∣∣∣∣Rν1

k

⋃( ⋃
n∈Λν

Rν2
kn

)⋃ ⋃
m,n∈Λν

Rν3
kmn

⋃ ⋃
m,n∈Λν

Rν4
kmn

∣∣∣∣∣∣ ≤ cγν
|k|τ+1

.

Since τ ≥ b, we have that

|O0 \ Oε0 | ≤

∣∣∣∣∣∣
⋃
ν≥0

⋃
k 6=0

Rνk

∣∣∣∣∣∣ ≤ c
∑
ν≥0

∑
k 6=0

γν
|k|τ+1

= c
∑
ν≥0

γν ∼ γ0 = ε
1
80
0 .

A Appendix

A.1 Outline of the proof of Proposition 1

For any smooth function f defined on I ⊂ R/Z, let |f |Cj := max
0≤k≤j

sup
x∈I

1

k!
|∂kxf(x)|.

The operator T in (2.1) can be viewed as a sum of two infinite-dimensional matrices,
i.e., diag{V (x + nα̃)}n∈Z + ε∆ with ∆ denoting the discrete Laplacian. It is natural to
define an abstract normal form containing diag{V (x+ nα̃)}n∈Z.

Definition A.1 Given a symmetric matrix D, smoothly parametrized by x ∈ R/Z and
satisfying the shift condition

Dm+k,n+k(x) = Dmn(x+ kα̃), ∀k ∈ Z,

where α̃ is a Diophantine number, i.e., for some γ̃ > 0 and τ̃ > 1,

|nα̃|1 ≥
γ̃

|n|τ̃
, n 6= 0.

We say that D is in normal form if the following conditions hold.

(a) Short-range.

|Dmn|Ck ≤
{
Ce−ρ|m−n|Lk, |m− n| ≤ N

0, otherwise
, ∀k ≥ 0.

(b) Block diagonalization. Fix any x∗ ∈ R/Z. There exist an interval I centered in x∗, a
disjoint decomposition

⋃
j Λj = Z and a smooth orthogonal matrix Q on I such that
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(b1) ]Λj ≤M and diamΛj ≤MN for each j.

(b2) the conjugated matrix D̃ = Q∗DQ is a product of commuting blocks∏
j

D̃Λj (x), ∀x ∈ I.

(b3) Qmn ≡ 0 if |m− n| > N . Moreover, for all m, Qmn 6≡ 0 for at most M different n.

(b4) |Q|Ck ≤ Lk for each k ≥ 0.

(c) Eigenvalues. There is a piecewise smooth function E(x) such that for each j,

{E(x∗ + nα̃)}n∈Λj are the eigenvalues of D̃Λj (x∗),

and there are sets Ωj ⊃ Λj such that

(c1) for each n, if inf l∈Λj |E(x∗ + lα̃)− E(x∗ + nα̃)| < κ, then

x∗ + nα̃ ∈ x∗ +mα̃+
1

2
(I − x∗) for some m ∈ Ωj ,

Q(x)(RΛ(n)) ⊂ RΩj+n−m, ∀x ∈ I.

(c2) the resultant

uΩj (ϕ, x) = Res
(
det(D(x+ ϕ)Ωj − tIΩj ),det(D(x)Ωj − tIΩj )

)
5

satisfies
|uΩj |Ck < (4MC)2M2

Bk, ∀k ≤ s̃M2 + 1, 6

max
0≤k≤s̃M2

∣∣∣∣ 1

ν!Bk
∂kϕuΩj (ϕ, x)

∣∣∣∣ ≥ ϑ, ∀ϕ, ∀x ∈ R/Z.

(c3) ]Ωj ≤M and diamΩj ≤
(

1
λ

)τ̃+2
.

(c4) the intervals {nα̃+ I}dist(n,Ωj)<N are pairwise disjoint.

(c5) for each ϕ ∈ I, uΩj (ϕ, x) satisfies

|uΩj |Ck < (2MC)2M2
Bk, ∀k ≤ s̃M2 + 1, 7

max
0≤k≤s̃M2

∣∣∣∣ 1

ν!Bk
∂kxuΩj (ϕ, x)

∣∣∣∣ ≥ ϑ
 ∏
m,n∈Ωj

|ϕ+ (m− n)α̃|1

 , ∀x ∈ R/Z.

5The resultant of two monic polynomials P and Q is defined as the product Res(P,Q) =
∏

P (x)=0
Q(y)=0

(x− y).

6The norm is with respect to the variable ϕ.
7The norm is with respect to the variable x.
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Remark A.1 Condition (a) implies an estimate of D in the operator norm on `2(Z) →
`2(Z):

‖D‖Ck ≤ C
eρ + 1

eρ − 1
Lk ≤ C 4

ρ
Lk, ∀k ≥ 0,

if ρ ≤ 1.

Lemma A.1 (The inductive lemma of [11]) Let D be in normal form on an interval
I ⊂ R/Z with parameters C, L, ρ, M , N , κ, B, ϑ, λ, and let a < g < h be numbers
restricted by

1

τ̃M3s̃M3 ≤ a <
g

20s̃τ̃M4
<

h

100s̃2τ̃M8
, h ≤ 1

5s̃M2s̃M3 .

Assume, as simplification, that

1 ≤ B ≤ L, M ≥ 8, 1 < C < 2, ρ, κ, ϑ ≤ 1.

Let Z be a symmetric matrix, smoothly parametrized on R/Z, satisfying the shift condition.
Assume that

λ ≤ |I| ≤ ϑ/B,

|Zmn|Ck < εe−ρ|m−n|Lk, k ≥ 0.

If there is a constant Γ = Γ(γ̃, τ̃ , s̃,M), super-exponentially decaying in M , such that

|ε| < Γ

[
ρτ̃κϑλτ̃

2

LN τ̃
e−Nρ

]ees̃M4

, (A.1)

then there is a smooth orthogonal matrix Ũ , satisfying the shift condition, such that

|(Ũ − I)mn|Ck < ε
1
2 e−ρ

′|m−n|L′k

and
Ũ∗(D + Z)Ũ = D′ + Z ′,

with Z ′ a symmetric matrix, smoothly parametrized on R/Z, satisfying the shift condition,
and D′ in normal form on an interval I ′ ⊂ I, with parameters

C ′ = (1 + ε
1
2 )C, L′ = ε−hL, ρ′ = 1

2ρ,

λ′ = 9−M
′
λ, M ′ = M s̃M3

, N ′ = ε−a,
κ′ = εh, B′ = L, ϑ′ = εgL,

and
2λ′ ≤ |I ′| ≤ εg,

|Z ′mn|Ck < ε
1
2
ε−a/2e−ρ

′|m−n|L′k.

In addition,

|E(x∗ +mα̃)− E(x∗ + nα̃)| < M ′
L

ρ
εg, ∀m ∈ Λ′(n),
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Q′(x)(RΛ′(n)) ⊂
∑

m∈Λ′(n)

Q(x)(RΛ(m)), ∀x ∈ I ′,

D′ is in normal form with the same parameters also on x∗ +
1

2
(I ′ − x∗).

Finally, if M ≥ 2τ̃ then the closure of the sets

{x∗ +mα̃ : |E(x∗ +mα̃)− E(x∗ + (m+ n)α̃)| < 2M ′
L

ρ
εg}, ∀ 4(1/λ)τ̃+2 < |n| < M ′N ′,

{x∗ +mα̃ : |E(x∗ +mα̃)− E(x∗ + (m+ n)α̃)| < 2ε
1
8 }, ∀M ′N ′ < |n| < 4(1/λ′)τ̃+2

are unions of, respectively, at most ε−
g

5s̃M2 and ε−M
4g many components, each component

being of length, respectively, at most ε
g

4s̃M2 and ε2M4g.

For the detail of proof, which contains the construction of new blocks Λ′i, i.e., the new
equivalence relation on Z, and the new orthogonal transformation Q′, see Section 5 of
Reference [11].

Recall that (1.5) − (1.8) have defined quantities γ̃, τ̃ , C, L, s̃, ξ̃ associated with the
Diophantine number α̃ and the nonconstant real-analytic function V . It has been proved
by Eliasson in Section 6 of [11] that D0 = diag{V (x + nα̃)}n∈Z is in normal form with
C0 = C, L0 = L, any

M0 ≥ max

{
2s̃+4C

Ls̃+1((s̃+ 1)!)2

ξ̃
, 2τ̃ , 8

}
, N0 ≥ 1, ρ = N−1

0 ,

and other suitable parameters κ0, B0, λ0, ϑ0. With ε0 = ε
1
4 , Z0 = ε∆ satisfies

|(Z0)mn|Ck < ε0e
−ρ0|m−n|Lk0.

For ν = 0, 1, 2, · · ·, let Mν+1 = M
s̃M3

ν
ν , and

aν =
1

τ̃

(
1

Mν

)3s̃M3
ν

, gν = 20s̃τ̃M4
ν aν , hν =

1

5s̃

(
1

Mν

)2s̃M3
ν

.

The other sequences can be defined as

εν+1 = ε
1
2
ε
−aν/2
ν

ν , Cν+1 = (1 + ε
1/2
ν )Cν , Lν+1 = ε−hνν Lν ,

Nν+1 = ε−aνν , ρν+1 = εaνν , κν+1 = εhνν ,
Bν+1 = Lν , λν+1 = 9−Mνεgνν , ϑν+1 = εgνν Lν .

The inequality (A.1), about parameters at the νth step, has been verified in Section 6 of
[11], so we can apply Lemma A.1 iteratively. For each ν ≥ 0, there is an orthogonal matrix
Ũν satisfying the shift condition, such that

|(Ũν − IZ)mn|Ck < ε
1
2
ν e
− ρν

2
|m−n|Lkν+1

and
(Ũ0 · · · Ũν)∗(D0 + Z0)(Ũ0 · · · Ũν) = Dν+1 + Zν+1,
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where Dν+1 is in normal form with parameters Cν+1, Lν+1, ρν+1, Mν+1, Nν+1, κν+1, Bν+1,
ϑν+1, λν+1, and Zν+1 is a symmetric matrix, smoothly parametrized on R/Z, satisfying
the shift condition and

|(Zν+1)mn|Ck ≤ εν+1e
−ρν+1|m−n|Lkν+1.

Hence, in the operator norm ‖ · ‖Ck ,

Ũ0 · · · Ũν → U, Zν → 0, Dν → D∞.

Let Uν+1 = Ũ0 · · · Ũν , by a simple calculation, we have

|(Uν+1 − IZ)mn|Ck < ε
1
2
0 e
− ρν

2
|m−n|Lkν+1.

Clearly there is a uniform limit Eν(x) → E∞(x) which describes the spectrum of
D∞(x)–it is the closure of the image of E∞. Consider now the closure Sν of the set of all
x such that

|E∞(x)− E∞(x+ nα̃)| < 3

2
Mν+1

Lν
ρν
εgνν for some 4(1/λν)τ̃+2 < |n| < Mν+1Nν+1

or

|E∞(x)− E∞(x+ nα̃)| < 3

2
ε

1
8
ν for some Mν+1Nν+1 < |n| < 4(1/λν+1)τ̃+2.

According to the final statement of Lemma A.1, this set is of measure less than cε
gν/20s̃M2

ν
ν .

By Borel-Cantelli Lemma, we conclude that there is a full-measure subset X̃ of R/Z such
that for any x ∈ X̃ , each x+ nα̃ will belong to only finitely many Sν ’s. Choose x = x∗ of
this sort, i.e., for all n ∈ Z there is a ν0(n) such that x∗ + nα̃ 6∈ Sν for ν ≥ ν0(n). Hence
for such ν’s,

|Eν(x∗ + nα̃)− Eν(x∗ + nα̃+mα̃)| ≥ 2Mν+1
Lν
ρν
εgνν , ∀ 4(1/λν)τ̃+2 < |m| < Mν+1Nν+1,

|Eν(x∗ + nα̃)− Eν(x∗ + nα̃+mα̃)| ≥ 2ε
1
8
ν , ∀Mν+1Nν+1 < |m| < 4(1/λν+1)τ̃+2.

This implies that Λν(n) ⊂ [n − 4(1/λν0(n))
τ̃+2, n + 4(1/λν0(n))

τ̃+2] for ν ≥ ν0(n). The
blocks Λν(n) therefore become eventually stationary:

Λν+1(n) = Λν(n), ∀ν ≥ ν0(n).

A.2 Hamiltonian vector field and Poisson bracket

For d, ρ, r, s > 0, let F,G be two real-analytic functions on D = Dd,ρ(r, s), both of
which C1

W depend on the parameter ξ ∈ O.

Lemma A.2 The norm ‖ · ‖D,O has the Banach algebraic property, i.e.,

‖FG‖D,O ≤ ‖F‖D,O‖G‖D,O.
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Proof: Since (FG)klαβ =
∑

ǩ+k̂=k, ľ+l̂=l

α̌+α̂=α, β̌+β̂=β

Fǩľα̌β̌Gk̂l̂α̂β̂, we have that

‖FG‖D,O = sup
D

∑
k,l,α,β

|(FG)klαβ|O|qα||q̄β||I l|e|k||Imθ|

≤ sup
D

∑
k,l,α,β

∑
ǩ+k̂=k, ľ+l̂=l

α̌+α̂=α, β̌+β̂=β

|Fǩľα̌β̌Gk̂l̂α̂β̂|O|q
α||q̄β||I l|e(|ǩ|+|k̂|)|Imθ|

≤ ‖F‖D,O‖G‖D,O.

Lemma A.3 (Generalized Cauchy Inequalities) The various components of the Hamil-
tonian vector field XF satisfy: for any 0 < r′ < r, 0 < ρ′ < ρ,

‖∂θF‖Dd,ρ(r′, s) ≤
c

r − r′
‖F‖D,

‖∂IF‖Dd,ρ(r, s
2

) ≤
c

s2
‖F‖D,

sup
Dd,ρ(r, s

2
)

∑
n∈Z

(‖∂qnF‖O + ‖∂q̄nF‖O) 〈n〉de|n|ρ′ ≤ c

s(ρ− ρ′)
‖F‖D.

Proof: We only prove the third inequality, with others shown analogously. Given
ω ∈ `1d,ρ(Z) \ {0}, f(t) = F (·, ·, q + tω, ·) is an analytic function on the the complex disc
{z ∈ C : |z| < s

‖ω‖d,ρ }. Hence

|f ′(0)| =
∣∣∣∣∣∑
n∈Z

ωn · ∂qnF
∣∣∣∣∣ ≤ c

s
‖F‖D · ‖ω‖d,ρ,

by the usual Cauchy inequality. As a linear operator on `1d,ρ(Z), ∂qF satisfies

‖∂qF‖op := sup
ω 6=0

∣∣∑
n∈Z1

ωn · ∂qnF
∣∣

‖ω‖d,ρ
≤ c

s
‖F‖D.

Let ‖ω‖d,ρ = s
2 , then

|∂qnF | ≤ sup
‖ω‖d,ρ= s

2

|∂qnF | · |ωn|
‖ω‖d,ρ

≤ ‖∂qF‖op|ωn|
s
2

≤ c

s
‖F‖D〈n〉−de−|n|ρ.

Hence, for any 0 < ρ′ < ρ,∑
n∈Z
|∂qnF |〈n〉de|n|ρ

′ ≤
∑
n∈Z1

c

s
‖F‖De−|n|(ρ−ρ

′) ≤ c

s(ρ− ρ′)
‖F‖D.

With F̃ =
∑
k,l,α,β(∂ξFklαβ)I lei〈k,θ〉qαq̄β, it can be proved similarly that∑

n∈Z
|∂qnF̃ |e|n|ρ

′ ≤ c

s(ρ− ρ′)
‖F‖D.

Since in the process above, ξ ∈ O and (θ, I, q, q̄) ∈ Dd,ρ(r, s2) are arbitrarily chosen, this
inequality is proved.
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Remark A.2 These inequalities can be seen as a generalization of the standard Cauchy
estimates, which is similar to Lemma A.3 in [30].

Let {·, ·} denote the Poisson bracket of smooth functions, i.e.,

{F,G} = 〈∂IF, ∂θG〉 − 〈∂θF, ∂IG〉+ i
∑
n∈Z1

(∂qnF · ∂q̄nG− ∂q̄nF · ∂qnG) .

Lemma A.4 If ‖XF ‖D < ε′, ‖XG‖D < ε′′, then

‖X{F,G}‖Dd,ρ(r−σ, ηs) < cσ−1η−2ε′ε′′,

for any 0 < σ < r and 0 < η � 1.

The proof is similar to that of Lemma 7.3 in [14].

Remark A.3 For more information about the norm ‖ · ‖D,O, see references [3, 5, 26].

Lemma A.5 If both of F and G have gauge invariance, then {F,G} has gauge invariance.

Proof: F and G can be written as

F =
∑
k,α,β

Fkαβ(I; ξ)ei〈k,θ〉qαq̄β, G =
∑
k,α,β

Gkαβ(I; ξ)ei〈k,θ〉qαq̄β,

with Fkαβ = Gkαβ ≡ 0 if
∑b
j=1 ki + |α| − |β| 6= 0. By a simple calculation, we have

{F,G}kαβ = i
∑
ǩ+k̂=k
α̌+α̂=α

β̌+β̂=β

(
〈∂IFǩα̌β̌, k̂〉Gk̂α̂β̂ − 〈ǩ, ∂IGk̂α̂β̂〉Fǩα̌β̌

)
(A.2)

+i
∑
ǩ+k̂=k
α̌+α̂=α

β̌+β̂=β

∑
m∈Z

(
Fǩ(α̌+em)β̌Gk̂α̂(β̂+em) − Fǩα̌(β̌+em)Gk̂(α̂+em)β̂

)
. (A.3)

Assume
∑b
j=1 ki + |α| − |β| 6= 0. Then, in the summation above, it is impossible that

b∑
j=1

ǩj + |α̌| − |β̌| =
b∑

j=1

k̂j + |α̂| − |β̂| = 0,

or
b∑

j=1

ǩj + |α̌+ em| − |β̌| =
b∑

j=1

k̂j + |α̂| − |β̂ + em| = 0,

b∑
j=1

ǩj + |α̌| − |β̌ + em| =
b∑

j=1

k̂j + |α̂+ em| − |β̂| = 0.

This means, in (A.2) and (A.3), each term ≡ 0. Thus Lemma A.5 is obtained.
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Lemma A.6 If there exists n∗ ∈ Z such that

∂qn∗F = ∂q̄n∗F = ∂qn∗G = ∂q̄n∗G ≡ 0,

then ∂qn∗{F,G} = ∂q̄n∗{F,G} ≡ 0.

Proof: Since

∂qn∗{F,G} = ∂qn∗

(
〈∂IF, ∂θG〉 − 〈∂θF, ∂IG〉+ i

∑
m∈Z

(∂qmF · ∂q̄mG− ∂q̄mF · ∂qmG)

)
=

〈
∂I(∂qn∗F ), ∂θ(∂qn∗G)

〉
−
〈
∂θ(∂qn∗F ), ∂I(∂qn∗G)

〉
+i
∑
m∈Z

(
∂qm(∂qn∗F ) · ∂q̄m(∂qn∗G)− ∂q̄m(∂qn∗F ) · ∂qm(∂qn∗G)

)
≡ 0

and similarly, ∂q̄n∗{F,G} ≡ 0, this lemma is proved.
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[13] Fröhlich, J., Spencer, T., Wittwer, P.: Localization for a class of one dimensional
quasi-periodic Schrödinger operators. Commun. Math. Phys. 132, 5–25(1990).

[14] Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with
periodic boundary conditions. J. Diff. Eqs. 209, 1–56(2005).

[15] Geng, J., Zhao, Z.: Quasi-periodic solutions for one-dimensional discrete nonlinear
Schrödinger equations with tangent potential. Preprint, 2011.

[16] Germinet, F.: Dynamical localization II with an application to the almost Mathieu
operator. J. Stat. Phys. 95, no. 1-2, 273–286(1999).

[17] Germinet, F., Jitomirskaya, S. Ya.: Strong dynamical localization for the almost
Mathieu model. Rev. Math. Phys. 13, 755–765(2001).

[18] Gross, E. P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20,
454–477(1961).

[19] Harper, P. G.: Single band motion of conduction electrons in a uniform magnetic
field. Proc. Phys. Soc. London Sect. A 68, 874–878(1955).

[20] Hiramoto, H., Abe, S.: Dynamics of an Electron in Quasiperiodic Systems. II. Harp-
er’s Model. J. Phys. Soc. Jpn. 57 1365–1371(1988).

[21] Jitomirskaya, S. Ya.: Anderson localization for the almost Mathieu equation: a non-
perturbative proof. Commun. Math. Phys. 165, 49–57(1994).

[22] Jitomirskaya, S. Ya.: Metal-insulator transition for the almost Mathieu operator.
Annal. Math., 150, 1159–1175(1999).

[23] Klein, S.: Anderson localization for the discrete one-dimensional quasi-periodic
Schrödinger operator with potential defined by a Gevrey-class function. J. Funct.
Anal. 218, 255–292(2005).

40



[24] Kuksin, S. B.: Nearly integrable infinite dimensional Hamiltonian systems. Lecture
Notes in Mathematics, 1556. Berlin: Springer, 1993.

[25] Larcher, M., Dalfovo, F., Modugno, M.: Effects of interaction on the diffusion of
atomic matter waves in one-dimensional quasiperiodic potentials. Phys. Rev. A 80,
053606(2009).

[26] Nikolenko, N. V.: The method of Poincaré normal forms in problems of integrability
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