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Abstract. We propose a new definition for abstract syntax (with bind-
ing constructions), and, accordingly, for initial semantics and algebraic-
ity. Our definition is based on the notion of module over a monad and its
companion notion of linearity. In our setting, we give a one-line defini-
tion of an untyped lambda-calculus. Among untyped lambda-calculi, the
initial one, the pure untyped lambda-calculus, appears as defined by two
algebraic constructions (abs and the unary application app1), together
with two algebraic equations which are essentially the β and η rules.

1 Introduction

Although the lambda-calculus is by now seventy five years old, it still lacks
a comprehensive definition. Its standard definition (see e.g. Wikipedia) is quite
down-to-earth and requires tedious considerations on free versus bound variables
and capture-avoiding substitution. Here we fill these gaps and discover the true
nature of untyped lambda-calculi as follows:

– an untyped lambda-calculus is a functor LC from sets to sets: to a set V (of
free ”variables”) it assigns a set LC(V ) of lambda-terms built out from V ;
this functor enjoys substitution, which turns it into a monad;

– this monad is equipped on one hand with the so-called abstraction: abs is a
natural transformation V 7→ absV : LC(V ∗) −→ LC(V ), where V ∗ is obtained
by adjoining an element to V ; and on the other hand with the so-called unary
application: app1 is a natural transformation V 7→ (app1)V : LC(V ) −→
LC(V ∗);

– these natural transformations are compatible with substitution, more pre-
cisely they are (right-)LC-module morphisms (see [HM06]): indeed, both
V 7→ LC(V ) and V 7→ LC(V ∗) are (right) LC-modules and we say that
the latter is the derivative of the former;

– these two morphisms abs and app1 are inverse of each other, as expressed by
the familiar β and η rules.

There is a natural category of untyped lambda-calculi, where our theorem
asserts the existence of an initial object: the pure untyped lambda-calculus.

Summarizing, we have the one-line definitions:



– an untyped lambda-calculus is a monad over Set equipped with a module
isomorphism to its derivative;

– the pure untyped lambda-calculus is the initial untyped lambda-calculus.

This looks like a new point of view (for the old point of view, see [Sel96])
concerning the algebraicity of the lambda-calculus, which appears as defined by
two algebraic constructions, abs and app1, together with two algebraic equations,
β and η, expressing that the two constructions are inverse of each other.

The point of view proposed here can be accommodated at least to model the
simply-typed lambda-calculus through a monad on the category Set/T where T
is the set of simple types (see [Zsi06]), or to model β-reduction through a monad
on the category of partially ordered sets.

This paper is organized as follows. Section 2 gives a succinct account about
modules over a monad. In section 3, we develop a simple first-order typed syntax
adapted to our needs. A framework for abstract syntax with bindings is intro-
duced in section 4. Section 5 develops the theory of equations for our notion
of syntax and presents untyped lambda-calculus as an algebraic theory where
the β and η rules appear as algebraic equations. The last section contains some
pointers to and comparison with related works.

2 Modules over monads

We recall only the definition and some basic facts about (right) modules over a
monad. See [HM06] for a more extensive introduction on this topic.

Let C be a category. A monad over C is a monoid in the category C → C of
endofunctors of C, i.e., a triple R = 〈R,µ, η〉 given by a functor R : C → C, and
two natural transformations µ : R2 → R and η : I → R such that the following
diagrams commute:
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Let R be a monad over C.

Definition 1 (Right modules). A right R-module is given by a functor M : C →
D equipped with a natural transformation ρ : M · R → M , called action, which
is compatible with the monad composition:
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We will refer to the category D as the range of M .



We say that a natural transformation of right R-modules τ : M → N is linear
if it is compatible with substitution:

M ·R
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τR // N ·R
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M

τ // N

We take linear natural transformations as morphisms among right modules hav-
ing the same range D. It can be easily verified that we obtain in this way a
category that we denote ModD(R).

There is an obvious corresponding definition of left R-modules that we do not
need to consider in this paper. From now on, we will write R-modules instead
of right R-modules for brevity.

Example 1. Let us show some trivial examples of modules:

1. Every monad monad R is a module over itself, which we call the tautological
module.

2. For any functor F : D → E and any R-module M : C → D, the composition
F ·M is a R-module (in the evident way).

3. For every object W ∈ D we denote by W: C → D the constant functor
W := X 7→ W . Then W is trivially a R-module since W = W ·R.

Limits and colimits in the category of right modules can be constructed
point-wise. In particular:

Lemma 1 (Limits and colimits of modules). If D is complete (resp. cocom-
plete), then ModD(R) is complete (resp. cocomplete).

In particular, we will often make use of the fact that, if the range category
D is cartesian, then the category ModD(R) is also cartesian.

For our purposes, one important example of module is given by the following
general construction. Let D be a category with finite colimits and a final object
∗ and consider the final functor *: C → D.

Definition 2 (Derivation). For any R-module M with range D, the derivative
of M is the colimit M ′ := M + * of M and *. Derivation can be iterated, we
denote by M (k) the k-th derivative of M .

Proposition 1. Derivation yields an endofunctor of ModD(R). Moreover, if D
is a cartesian category, derivation is a cartesian endofunctor of ModD(R).

In the case C = D = Set, the functor M ′ is given by M ′ := X 7→ M(X + ∗),
where X + ∗ denotes the set obtained by adding a new point to X. Moreover,
we have a natural evaluation morphism

eval : M ′ ×R −→ M.



which is R-linear. This allows us to interpret the derivative M ′ as the “module
M with one formal parameter added”. Higher order derivatives have analogous
morphisms (that we still denote with eval)

eval : M (b) ×Rb −→ M.

where eval(t, m1, . . . ,mb) ∈ M(X) is obtained by substituting m1, . . . ,mb ∈
R(X) in the successive stars of t ∈ M (b)(X) = M(X + ∗+ · · ·+ ∗).

We already introduced the category ModD(R) of modules with fixed base
R and range D. It it often useful to consider a larger category which collects
modules with different bases. To this end, we need first to introduce the notion
of pull-back.

Definition 3 (Pull-back). Let f : R → S be a morphism of monads and M a
S-module. The action

R ·M fM−→ S ·M ρ−→ M

defines a R-module which is called pull-back of M along f and noted f∗M . It
can be easily verified that a S-linear natural transformation g : M → N is also
a R-linear natural transformation f∗g : f∗M → f∗N and that f∗ : ModD(S) →
ModD(R) is a functor.

It can be easily verified that pull-back is well-behaved with respect to many
important constructions. In particular:

Proposition 2. Pull-back commutes with products and with derivation.

Definition 4 (The large module category). We define the large module
category LMod as follows:

– its objects are pairs (R,M) of a monad R and a R-module M .
– a morphism from (R,M) to (S, N) is a pair (f,m) where f : R −→ S is

a morphism of monads, and m : M −→ f∗N is a morphism of R-modules.
The category LMod comes equipped with a forgetful functor to the category
of monads and with derivation as an endofunctor.

3 First-order graded syntax

In this section we expose a simple kind of first order syntax, “graded” over a
fixed set D, especially tuned for our applications to higher-order syntax (where
we will need only the case D = N though). We do not claim any originality of
thought for the material in this section.

Definition 5 (D-sets). We call D-set any family of sets indexed by D. We have
a category of D-sets, where morphisms are applications preserving the degree.

For each D-set X and d ∈ D, we denote by Xd the component of X in degree
d.



Definition 6 (D-arities and D-signatures). A D-arity is a finite non-empty
list of elements in D. We use a colon to single out this first element of the list. A
signature is a family of arities, i.e., a pair Σ = (O,α) where α(o) = (b(o) : a(o))
is an arity for every o ∈ O.

Definition 7 (Representation of a D-arity). Given a D-set M , we define
a representation of the arity α = (b : a1, . . . , an) in M to be an application

r :
n∏

i=1

Mai −→ Mb.

We also say that r is a construction of arity α in M .

Definition 8 (Representation of a D-signature). A representation of the
signature Σ = (O,α) in the D-set M , consists of, for each o in O, a represen-
tation of the arity α(o) in M .

Definition 9 (The category of representations). Given a signature Σ =
(O,α), we build the category GradΣ

D of representations of Σ in D-sets as fol-
lows. Its objects are D-sets equipped with a representation of Σ. A morphism
from (M, r) to (N, s) is a D-morphism from M to N compatible with the rep-
resentations in the sense that, for each o in O, with α(o) = (b : a1, . . . , an), the
following diagram commutes:∏n

i=1 Mai −−−−→ Mby y∏n
i=1 Nai

−−−−→ Nb

(1)

where the horizontal arrows come from the representations and the vertical ar-
rows come from f .

Proposition 3. These morphisms, together with the obvious composition, turn
GradΣ

D into a category.

Proposition 4. The category GradΣ
D has an initial object which we call the

inductive D-set generated by Σ, and denote by Σ̂.

As usual, our “syntactic” object GradΣ
D comes with a corresponding recursion

and induction principle which we avoid to state explicitly.

4 Higher-order untyped syntax

In the previous section we have considered constructions without bindings. Here
we take N-arities in order to manage constructions with bindings.



Definition 10 (Arity). We define an arity to be a N-arity, namely a non-
empty list of integers. We say the arity is raw when the first element of the
list is zero. Given an arity (b : a1, . . . , an), we denote by raw(a) the (raw) arity
(0 : a1, . . . , an, 0b), where 0b stands for a list of b zeros.

The difference with the definition in [FPT99] is that our arity provides one
more integer whose intended meaning is the number of extra formal arguments
of the output of the operation.

Example 2. From this point of view, we can imagine three different arities for
the application of the lambda-calculus: the classical arity is (0 : 0, 0), and the
other two are (1 : 0) and (2 :).

Definition 11 (Signatures). We define a (binding) signature Σ = (O,α) to
be a family of arities α : O → N × N∗. Here N∗ stands for the set of lists of
integers. A signature is said to be raw if it consists of raw arities. For a signature
Σ = (O,α), we denote by raw(Σ) the raw signature (O, o 7→ raw(α(o))).

Definition 12 (Representation of an arity). Given a monad M over Set,
we define a representation of the arity α = (b : a1, . . . , an) in M to be a module
morphism

r :
n∏

i=1

M (ai) −→ M (b).

We also say that r is a construction of arity α in M . In case b = 0 we say that
r is a raw construction in M .

Definition 13 (Flattening a representation of an arity). Given a monad
M and a representation r of the arity α = (b : a1, . . . , an) in M , we define the
natural transformation

raw(r) :
∏

M (ai) ×M b −→ M

as the composition ∏
M (ai) ×M b r×Mb

−→ M (b) ×M b eval−→ M

It is easily checked that raw(r) is a representation of raw(α).

Proposition 5 (Flattening is bijective for arities). Given a monad M and
an arity α = (b : a1, . . . , an) the raw map defined above defines a bijection from
the set of representations of α in M to the set of representations of raw(α) in
M .

Example 3. A representation of (2 :) in LC is given by the app0 : LC(2) construc-
tion. The associated representation of raw(2 :) = (0 : 0, 0) is the usual app.

Definition 14 (Representation of a signature). A representation of the sig-
nature Σ = (O,α) in the monad M , consists of, for each o in O, a representation
of α(o) in M .



Definition 15 (Flattening a representation of a signature). Given a monad
M and a representation r of the signature Σ = (O,α) we define raw(r) to be the
family o 7→ raw(r(o)) which is a representation of raw(Σ).

Proposition 6 (Flattening is bijective for signatures). Given a monad M
and a signature Σ = (O,α) the raw map defined above defines a bijection from
the set of representations of Σ in M to the set of representations of raw(Σ) in
M .

Definition 16 (The category of representations). Given a signature Σ =
(O,α), we build the category MonΣ of representations of Σ as follows. Its ob-
jects are monads equipped with a representation of Σ. A morphism from (M, r)
to (N, s) is a morphism from M to N compatible with the representations in
the sense that, for each o in O, α(o) = (b : a1, . . . , an), the following diagram
commutes: ∏n

i=1 M (ai) −−−−→ M (b)y y∏n
i=1 f∗N (ai) −−−−→ f∗N (b)

(2)

where the horizontal arrows come from the representations and the vertical ar-
rows come from f (it is used here that f∗ commutes with derivation and prod-
ucts).

Proposition 7. These morphisms, together with the obvious composition, turn
MonΣ into a category which comes equipped with a forgetful functor to the cat-
egory of monads.

Proposition 8. Given a signature Σ, the raw construction extends as a functor

MonΣ −→ Monraw Σ

from the category or representations of Σ to the category of representations of
raw(Σ). Furthermore, this functor is an isomorphism of categories.

Definition 17 (Deriving arities and signatures). Given an arity α := (b :
a), we define its derivative α′ by adding one to each element of the list. By iter-
ation, we define similarly the n-th derivative (n ≥ 0) of an arity and accordingly
of a signature.

Remark 1. Since derivation is a functor, to every construction c of arity α in a
monad M , there is an induced construction c′ of arity α′ and, more generally, a
construction c(n) for each n ≥ 0. Similarly, a representation of the signature Σ,
induces a family of representations in N-sets of the signatures Σ(n).

Let M be a monad, r a Σ-representation in M with Σ := (O,α). The Σ-
representation r induces a family of representation of N-sets as follows. First
consider, for each set X, the associated N-set MX := i 7→ M (i)(X). Then, for
each X, we have several constructions induced on MX by r and the structure



of M (i). First of all, remark 1 gives us a construction of arity α(o)(n) for each
o ∈ O and n ≥ 0. Next, the i inclusions ∗ → M (i) provide a construction for
all i ≥ 0 and j ∈ [1, . . . , i] of arity (i :). Finally, the unity η of M , with all
its derivatives, gives a construction of arity (n :) for each x ∈ X and n ∈ N.
Putting all these constructions together, we are led to consider, for every set
X, the (raw) N-signature Σ̃X associated to Σ consisting of the following three
families of arities:

1. for each non-negative integer n, Σ(n);
2. for each integer n, a family indexed by X of arities equal to (n :);
3. for each integer n, a family indexed [1, . . . , n] of arities (n :).

Theorem 1. The category MonΣ has an initial object, which we call the syn-
tactic monad generated by Σ, and denote by Σ̂. Furthermore, for each set X,
the N-set n 7→ Σ̂(n)(X) is the inductive N-set generated by the N-signature Σ̃X .

Proof. By the previous proposition, we may suppose that Σ is raw. For each set
X, let TX be the inductive N-set generated by Σ̃X . The statement gives us for
Σ̂ the formula

Σ̂ : X 7→ TX

which has a natural structure of monad and admits an obvious representation
of Σ. The remaining verifications are not difficult.

5 The category of half-equations

In this section, we are given a signature Σ, with associated syntax Σ̂, and we
build the category where will live our (algebraic) equations.

Definition 18 (The category of half-equations). We define a Σ-module U
to be a functor from the category of representations of Σ to the category LMod
commuting to the forgetful functors to the category Mon of monads.

MonΣ U //

$$HH
HH

HH
HH

H LMod

zzvvvvvvvvv

Mon

We define a morphism of Σ-modules to be a natural transformation which be-
comes the identity when composed with the forgetful functor. We call these mor-
phisms “half-equations”.

These definitions yield a category which we call the category of half-equations
(for Σ).

Example 4. We denote by T the tautological Σ-module, which assigns to a rep-
resentation in M the tautological module over M . Since derivation is an endo-
functor in LMod, it acts on Σ-modules. So we also have a family of Σ-modules
T (n).



Example 5. To each construction c ∈ Σ with arity (b : a1, . . . , an) is associated
a morphism rep(c) :

∏n
i=1 T (ai) −→ T (b) in the obvious way.

Proposition 9. The category of half-equations is cartesian.

Example 6. To each application f : [1, . . . , p] −→ [1, . . . , q] is associated a half-
equation: f∗ : T (p) −→ T (q) (which could be called renaming along f).

Definition 19 (Equations). We define an equation for Σ to be a pair of half-
equations with common source and target. We also write e1 = e2 for the equation
(e1, e2).

Example 7. In case Σ consists of the two constructions abs and app1 with re-
spective arities (0 : 1) and (1 : 0), the β equation is app1 ◦ abs = IdT (1) , while
the η equation is abs ◦ app1 = IdT .

Definition 20 (Satisfying equations). We say that a representation r of Σ
in a monad M satisfies the equation e1 = e2 if e1(r) = e2(r). If E is a set of
equations for Σ, we say that a representation r of Σ in a monad M satisfies E
(or is a representation of (Σ,E)) if it satisfies each equation in E. We define the
category of representations of (Σ,E) to be the full subcategory in the category of
representations of Σ whose objects are representations of (Σ,E).

Theorem 2 (Initial representation of (Σ,E)). Given a set E of equations
for Σ, the category of representations of (Σ,E) has an initial object.

Proof. We build the monad S for our initial representation as a quotient of Σ̂
(see theorem 1). For each set X, we define an equivalence relation rX on Σ̂(X)
as follows: rX(a, b) means that for any representation ρ of (Σ,E) in a monad
M , iX(a) equals iX(b), where i : Σ̂ −→ M is the initial functor associated to
ρ. We check easily that this is an equivalence relation, that the corresponding
collection of quotients inherits the structure of monad, and that this quotient
monad has the required universal property.

Definition 21 (Algebraic half-equations). We define the category of al-
gebraic half-equations to be the cartesian subcategory in the category of half-
equations generated by

1. the tautological Σ-module,
2. derivation,
3. renamings,
4. half-equations associated to constructions in Σ.

Definition 22 (Algebraic equations). We say that an equation for Σ is al-
gebraic if its two halves are.

Definition 23 (Algebraic theories). We call algebraic theory any initial rep-
resentation of a pair (Σ,E), where E is a set of algebraic equations for Σ.

Example 8. The untyped lambda-calculus is an algebraic theory.



6 Related works

The idea that the notion of monad is suited for modelling substitution con-
cerning syntax (and semantics) has been retained by many recent contributions
concerned with syntax (see e.g. [BP99] [GU03] [MU04]) although some other
settings have been considered. Notably in [FPT99] the authors work within a
setting roughly based on operads (although they do not write this word down;
the definition of operad is on Wikipedia; operads and monads are not too far
from each other). Our main specificity here is the systematic use of the obser-
vation that the natural transformations we deal with are linear with respect to
natural structures of module (a form of linearity had already been observed, in
the operadic setting, see [FT01], section 4) .

The signatures we consider here are slightly more general than the signatures
in [FPT99], which allows us to give a signature to our app1. Even the very general
and abstract notion of signature coined in [MU04] can encompass can encompass
our notion only in a tricky way. On the other hand, our signatures ”reduce”, in
the sense we have explained, to those in [FPT99].

An other way to establish the algebricity of lambda-calculus has been pro-
posed in [Sel96] through a detour via combinators. One advantage of our ap-
proach is that it prospects a general picture for the treatment of algebraic equa-
tions.
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