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ABSTRACT. We define a naive game for cut-free multiplicative additinear
logic with constants (but without variables). In this gam® tplayers fight for
proving a formula respectively its linear negation. If tleeniula has a proof,
the player has a winning strategy. A position in our game nbugonsists of a
single set of formulas arranged by the two players in twoHogbnal” families
of sequents. An “active” move in our game closely corresgdndhe application
of an introduction rule for a positive formula, while a “pag&s move “requests”
from the other player the application of such a rule. We uggraur game as a
categorical game, which is the game-theoretic way to addouthe cut-rule.
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1. INTRODUCTION

1.1. Logic as a game.The idea that logic could be better understood as a game
goes back to Gentzen and is much alive for instance througthtories proposed
recently by Girard [7, 6] and Japaridze [11]. Our bet is timt hext notion of
logic will be based on games and we explore which kind of gamoelsl be linear
logic. Accordingly, we search for a notion of truth in (limgdogic. The rough
idea in order to have obvious (built-in) consistency, aderand excluded-middle

is to define truth through a two-player game, where Playes to prove a formula,
while Opponent tries to disprove it. Excluded-middle caihlen follow from some
“copycat” strategy, while the cut-rule could follow if ouame is sufficiently cate-
gorical (compositional).

1.2. Introduction rules as moves. The first main feature of our game corresponds
to our main objective: we want moves which reflect introductrules in the
straightforward way. For this, our positions cannot be fgiam as they are in
[2, 10, 3, 12]; they must be some kind of families of sequeritet us explain
which kind of families emerge. Suppose for instance thayd?léaces- 1 @ 1 so
that Opponent faces® L . After one or two moves (according to who starts),
Opponent will face the single sequent_L + while Player will face the two se-
guents- 1 and- L. What we see is that players share formulas, but arrange them
in two different (“orthogonal”) families of sequents. Thatwhy, roughly speak-
ing, our positions are families of formulas dispatched kayBr on the right-hand
side of her family of sequents, and dispatched “orthogghaly Opponent on the
left-hand side of her (different) family of sequents. Oupayach assigns a specific
status to the multiplicative connectors, which appear #g fasponsible for the
multiplication of formulas in sequents, and for the multiption of sequents, in
other words for the fact that we have to manage families aficets.

1.3. No matter who starts. The second main feature of our game corresponds to
the following challenge: the fact that one player has tda seems to cause trouble
by leading to two potentially conflicting notions of truthu©solution is based on
polarity: in our game, the player which faces a negative tdancan only “pass the
token” to the other player. So that who starts does not makelidierence. More
precisely, Player can only apply an introduction rule to sifpge formula or “pass

the token” along a negative formula. While dually, Opponesmh only apply an
introduction rule to a negative formula (which is on her LH8)pass the token”
along a positive formula.

1.4. The token. The third main feature of our game is the token: our positames
families of formulas arranged as explained above, whereyaese (the “token”)

is selected, meaning which player is to play, and where. Theiplayer which
holds the token may either apply an introduction rule for aifpe formula in

the selected sequent, or pass the token, along a negativeléoin the selected
sequent, selecting the corresponding sequent of the oppone
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1.5. Acyclicity. The fourth main feature of our game is acyclicity: our pasif
have natural interpretations as trees. This acyclicity thasfollowing expected
consequence: when the token leaves a sequent through aiegdarmula, it
will not come back to this sequent except by applying an duation rule to the
original formula.

1.6. Compositionality. The final main feature of our game is compositionality.
For this, we have a notion of morphism of positions. Rouglgaking, such a
morphism concerns three playef3, O andO’ dealing with two families/ and.J

of formulas: these formulas are dispatched ‘BYrespectively on the LHS and
the RHS of her sequents, while they are dispatched “respéctly O’ and byO”
among their sequents respectively on the RHS and on the Ltt$ & morphism
has a source, based on the familya target, based on the family and a total
position, based on the family II J-. These morphisms turn positions into a
category which is “one-way” in the terminology of [9] andall us to upgrade
our game into a categorical game in the sense introduced.therthis context,
the cut-rule is derived from the general statement sayiagithn : M — N and

n : N — P are two composable morphisms, and #ind¢ are winning strategies
respectively form andn, thent o s is a winning strategy fon o m. Our approach
also opens new room to express symmetries of linear logic.instance, in our
setting, linear negation upgrades into a contravariardlitive endofunctor of our
categorical game, exchanging forward and backward moves.

1.7. Related works. Game-theoretic interpretations of fragments of lineaidog
have been already given by many authors, notably [2, 10, B¢s& works aim at
a “fully complete” correspondence between a suitable natigproof (proof-nets)
and a suitable notion of winning strategy. This approacteissited in [12, 13],
where the limitations of the previous solutions are hightiégl and a new solution
is proposed. We depart radically from this line of researglobking for a game
where positions are not formulas, but suitable familie®gignts, and accordingly
where instances of the introduction rules may be undersdsadoves.

As mentioned above, the idea of understanding logic as a dem®deen al-
ready pushed (much further) by Girard (see e.qg. [7, 6]) and different track by
Japaridze (see e. g. [11]).

1.8. Organisation of the paper. Our paper is organised is follows. We start by
describing our new category of trees (section 2) and ougoayeof contests, which
are trees weighted by logical formulas with a selected xgdection 3). Then we
describe the moves of our naive game (section 4) and briedlyuds this game,
which we call the half game (section 5). In section 6, we deedhe (“full") game
where Player sits between two Opponents and accordingly toi prove sequents
with formulas on both sides, while in section 7 we presentcategorical game.
We conclude in section 8 by discussing some future work.

2. THE CATEGORY OF TREES

In this work, we use a new categafyof trees, which we present in this section.
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2.1. The O-trees. An object of 7', called a0-tree, is a tuplg1, L, R, ¢, ) where
I, L, R are finite sets, and: I — L andr : I — R are arbitrary maps, subject to
the following acyclicity condition:

The directed graph witlh 1T R as set of verticed] as set of edges, arfdandr
as source and target maps is a (non-empty) tree.

If I is empty, this means thdt 11 R is reduced to the token, while if is not
empty, this just means thétandr are surjective and define so-called orthogonal
partitions on/. Remember that two partitionsandq are orthogonal [4] when the
infimum and supremum partitionsA g andp V ¢ are respectively the coarsest and
finest partitions.

2.2. The premorphisms. A premorphismm from (I, L, R, ¢,r)to (I', L', R, /', ")
is a pair(m., m*) consisting of a map fronk to L’ and a map fronk’ to R. These
premorphisms compose in an obvious way, yielding a catefary
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2.3. The heart and the graph of a premorphism. In the first reading, the reader
may want to skip this technical subsection.

Given such a premorphism from (I, L, R, ¢,r) to (I', L', R, ¢', '), we define
the only naturalmag : 711 I’ — R x L’ as follows:

from I to R and from!’ to L' we taker and?’; while from I to L’ we takem, o/
and from!/’ to R, we takem™ or’. If IT1I" is not empty, we denote iy := H(m)
the image of;, while otherwise we takél := R x L’ (which is a singleton).

We say thatH is the heart ofn.

We then build the bipartite graphi := G(m) with

— H as set of LHS vertices,

— L1II R as set of RHS vertices,
— I 11 I’ as set of edges,

— ¢ as source map,

— (117" astarget map.

2.4. The 1-trees. A morphism, also called-tree, fromt := (I, L, R, ¢,r) tot’' :=
(I',L',R', ¢ ") is a premorphismn : ¢ — t' such thatG(m) is a tree, hence a
O-tree. In this case, we say th@{m) is the0-tree obtained by foldingx.
The fact that these morphisms tufninto a category follows from the lemma:
Lemma. The composite of two morphismsfrom (I, L, R, ¢,r) to (I', L', R, /', ")
andm’ from (I', L', R', ¢',»") to (I", L", R", 0" r"") is a morphism again.

3. THE GROUPOID OF CONTESTS

In this section, we describe the positions of our naive garnielhwve call con-
tests.

3.1. The set of formulas. We first build the set of usual/ AL L-formulas, with-
out variables [1, 5] :

F:=1|0|L|T|F®F|FQF|F®F|F&F.
We denote this set by/ ALL. The positive formulas are

P:=1|0|F®F|F&F,

the other ones being the negative ones. The linear negatien F sends
respectivelyl,0, A ® BandC @ Dto L, T, A+ % B+, C+ & D+ and vice-versa.

3.2. The groupoid of 0-contests. A 0-contest, or simply contest, istree(I, L, R, ¢, r)
equipped with a mayp from I to the setM AL L of formulas, and a selected vertex
t (thetoker). The token singles out, ih IT R, the sequent where the player has to
play. We say thaf is the set of indicesL is the set of left sequents, aritlis the
set of right sequents.

We have an obvious notion of isomorphism between contestgsoaorphism
from the contes{I, L, R, ¢, r, f,t) to the contestI’, L', R',¢',+', ', ') consists
of three bijections from/, L, R to I’, L', " commuting to/ and /', to » and’,
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to f and f/, and sending to ’. In other words, it is an isomorphism 6ftrees
compatible with weights and tokens.
These isomorphisms turn the gef contests into a groupoid.

teR
R

3.3. The sign of 0-contests. The setC' of contests is the disjoint union @fy,
where the token is on the left-hand side arig, where the token is on the right-
hand side. Isomorphisms of contests respect this sign.

4. THE MOVES

In order to describe our game, we now describe our moveshwdtonect odd
pairs of contests.

4.1. Passive moves.The simplest moves are passive ones, reflecting the idea that
a player may just pass the token along a negative formula:

Up to isomorphism, a passi&-move goes from the conte&t, L, R, f, ¢, r, (i)
to the contest!/, L, R, f,¢,r,r(i) providedf (i) is negative.

Dually, up to isomorphism, a passiZ&move goes from the contedt, L, R, f, ¢, r,r(i))
to the contest!/, L, R, f, ¢, r, £(i) providedf () is negative.

4.2. Additive moves. The reader will easily convince himself that an additRe
move as defined below corresponds exactly to the applicafione of the (right)
introduction rules for in the sequent marked by the token.

Up to isomorphism, an additive-move goes from a conte§t, L, R, ¢, r, f, (1))
wheref (i) is of the formA@® B to the contest!, L, R, ¢, r, g, r(i)), whereg equals
f except ati, where its value isi or B. Note that in the categorical game, we will
carefully distinguish the two moves in cade= B.

Dually, up to isomorphism, an additiv@-move goes from a conte§t, L, R, ¢, r, f,r(i))
wheref (i) is of the formA& B to the contest/, L, R, ¢,r, g, £(i)), whereg equals
f except ati, where its value isA or B.
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4.3. Multiplicative moves. The reader will easily convince himself that a multi-
plicative P-move as defined below corresponds exactly to the applicatidhe
(right) introduction rule forz in the sequent marked by the token.
A multiplicative P-move from the contest, L, R, ¢, r, f,t) to the contest!’, L', R’ ¢’ .+’ ', )
is as follows (up to isomorphism): we have two indi¢eand:” in I’ with the same
image byr, andI is obtained by collapsing and:” in a single index; meanwhile
f equalsf’ outsidei while f (i) is f'(i') @ f'(i”). The set of right sequents does
not change R = R’, andr is the map induced by'), while L is obtained fromL’
by collapsing?’(i") and?¢'(i”) (¢ is the map induced b¥/.
The reader will easily deduce the dual definition of a multgtive O-move.

4.4. Constant moves. The reader will easily convince himself that a constant
move as defined below corresponds exactly to the applicafidime (right) intro-
duction rule forl in the sequent marked by the token.

A constantP-move starts from an odd contest= (I, L, R, f,¢,r,t) where
¢=1(t) consists of a single elemensuch thatf (i) = 1. This move to the contest
= L,R, f ¢ t)consists of

—: an injections : I' — I identifying I’ with I — {i}

—: an injections; : L' — L identifying L' with L — {¢} and satisfying
spoll =fos

—: abijectionsp : R — R satisfyingsg o’ = sor andsg(t') = (7).

Dually, the reader will easily convince himself that a cans)-move as defined
below corresponds exactly to the application of the (leftjaduction rule forL in
the sequent marked by the token.

A constantO-move starts from an even contest= (I, L, R, f,¢,r,t) where
r~1(t) consists of a single elemensuch thatf (i) = L. This move to the contest
d:= LR, f V1 t)consists of

—: aninjections : I' — I identifying I’ with I — {i}

—: an injectionsy : R’ — R identifying R’ with R — {¢} and satisfying
sgpor' =ros

—: abijectionsy, : L' — L satisfyingsy o ¢/ = so ¢ andsy(t') = s(i).

5. SOME META-THEORY FOR THE HALF GAME

So far, we have defined a game, which we call the half game. igrs#ttion,
we explain which sort of game it is, which notion of truth itoas, and why this
notion is adequate.

5.1. Bipartite graphoids. The kind of naive game we just have built is slightly
less naive than what is associated with a signed (or bipadiaph. Indeed, here
we have to take isomorphisms into account. Moves compodeigsatnorphisms
while two moves do not compose. This is not a category bugtisis fixed by the
following trick. We have even objects, those where the takem the RHS and odd
objects, those where the token is on the LHS. The trick is tidgethat moves from
an odd position to an even one are taken backwards. So tmbads correspond
to morphisms from an even position to an odd position. InWay, we obtain a
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signed category where there is no morphism from an odd to em gesition, what
we called a one-way category [9]. So odd morphisms all go famneven to an
odd position, and they are split into two classes (forward backward). While
even morphisms are all isomorphisms. Summarising, we gadirtite graphoid
a one-way category where the subcategory of even morphsmgiioupoid, and
equipped with a splitting of odd morphisms compatible witd groupoid action.

Note that our graphoid is equipped with a contravariantluian correspond-
ing to linear negation.

5.2. Truth. In a bipartite graphoid, we have a natural notion of path:th fam
p to ¢ is an anti-composable sequence of odd morphigms: - - ,u,,) wherep is
the end ofu; which is not shared with, andgq is the end of.,, which is not shared
with «,,_1. Our graphoid is strongly noetherian in the sense that fgrpasition,
the length of paths starting at this vertex is bounded.

Given a position in such a strongly noetherian bipartitgprave have the usual
notion of (deterministic)P-strategy and of)-strategy av. We also have the notion
of winning strategy: with any path ending up at a vertex whe€ris to play, a win-
ning X -strategy contains a longer path, in other words the stydtag an answer.
It is easily checked that at each vertex, there is either aiwinP-strategy (in
which case we say that the position is winning) or a winrnihgtrategy (in which
case we say that the position is losing), and never both. Negng formula in
MALL, we have two ways to upgrade it as a position in our gamepuitting to
token either on the RHS or on the LHS. Since according to theripp of the for-
mula, on one of this position, the only possible move it tdtdbi the other one,
both positions have simultaneously either a winnitwgtrategy, in which case we
say that the formula is true, or a winnidgrstrategy, in which case we say that the
formula is false.

5.3. Adequacy of our half game. The adequacy of our half-game to MALL reads
as follows:

Theorem. Given a contestif the left sequents aof are provable, then there is a
winning P-strategy at, and similarly, if the right sequents efare provable, then
there is a winning)-strategy at.

The proof relies on the fact that if a sequehhas a proof, then any sequent
obtained fromS by applying an introduction rule for a negative formula hise &
proof.

Remark: as we already mentioned, there are some conteste ®imas a win-
ning strategy while the left sequents are not all provableis 1s the case for the
single formulal ® 1. Those who “prefer” % 1 will have to change the game by
finding a way to add for instance the MIX rule.

6. THE POINT OF VIEW OF A PLAYER

We have seen a game whévrdries to prove sequents with formulas only on the
RHS while O tries to prove sequents with (the same) formulas only on tH8.L
In fact, in the full-game which we will describe now, is the right neighbour of
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P, henceP is the left neighbour o), and P, for instance, has also formulas on
the LHS of her sequents, and a left neighbour, €ywith which she interacts
through these formulas. What happens betwBeand O’ doesn't affectO. So
we may think of a line of players handling sequents with fdiamwn both sides,
shared respectively with neighbour players on both sidesrder to understand
the game, it is sufficient to consider a small line of threg@taO’, P, O and forget
about possible LHS formulas @@ and RHS formulas 0. In this section, we
describe this “full” game, wher plays agains© andO’.

6.1. The groupoid of 1-contests. A 1-contest is a paifc, ¢’) of 0-contests equipped
with a morphismm among the underlying-trees compatible with the tokens {')
in the following sense:

— if both tokens are on the LHS, we requife= m..(t)

— if both tokens are on the RHS, we require: m*(t)

— if tis on the RHS and on the LHS, we requirét, t') to be in the heart of

m,
— finally we forbid the case whetds on the LHS while is on the RHS.
We have a obvious notion of isomorphismletontests: an isomorphism from

C'to C' is an isomorphism among the underlying morphismé-tstes compatible
with formulas and tokens.

6.2. Folding. Toal-contestC := (¢,c/,m), withc = (I, L, R, ¢,r, f,t) andd’ =
(I', L', R, 0+ f',t), we assign itfolding: it is a 0-contest denotedold(C')
obtained from the folding of the underlyingtree by pushing there the formulas
and the token in the natural way: for the formulas we t#kell f/, while for the
token, we take

— tif t andt’ are on the LHS
— t'if t andt’ are on the RHS
— (t,t') if tisin the RHS and’ in the LHS.

Note that the folding of a-contest comes equipped with a distinguished subset
of its set of right sequents (the nonfolded part).

The folding assignment upgrades obviously into a functemfthe groupoid of
1-contests to the one Ofcontests.

Conversely, if we want to “unfold” &-contest, we just have to split its set of
right sequents into those belonging@and those belonging 1©’. Roughly speak-
ing, al-contest is just &-contest wher& and her sequents has been split in two
parts. More precisely, we may build a groupoid of splitontests, where by split
0-contests, we mean a contest equipped with a distinguishleses of its set of
right sequents (the subset tofily right sequents). And the folding upgrades into
an equivalence from the groupoid bicontests to the one of splitcontests.

6.3. Upgrading our half game. Now we want to upgrade our half game as a game
where positions aré-contests. We have to define “full” moves amohgontests,
which we may view as splid-contests. We simply take, for moves fratio d,
moves among the correspondidigontestsfold(c) and fold(d) compatible in the
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natural sense with the splitting of right sequents. Moreigedy each move among
0-contests entails a map among sets of indices, and we siragljre this map to

be compatible with the splitting, sending truly right seaiseto truly right sequents
and vice-versa. In this way, we obtain a bipartite graphéit-contests which we

call the full game.

6.4. Adequacy of our full game. The adequacy of our full game is asserted by
the following statement:
Proposition. Al-contestC is true (resp. false) iff old(C) is true (resp. false).
This is because a move gvld(C) can always be lifted as a move@t

7. ASSEMBLING THE PUZZLE THE CATEGORICAL POINT OF VIEW

In this section, in order to have a game-theoretic cut-elation, we upgrade
our game into a categorical one. For this, following [9], wavé to understand
our 1-contests as morphisms in a one-way category enlargingrdghgid of0-
contests.

7.1. A quick review of categorical game theory. In this subsection we briefly
review what we need from categorical game theory [8, 9].

A one-way category is a category where objects, also calbets phave signs,
and there is no morphism from an odd to an even object. A ceAtej@ame
G = (¢, M, M©) consists of a one-way catego€yequipped with two sets
MP and M@ of odd morphisms, calle®-moves and)-moves respectively. The
parity extends in the obvious way to morphisms, which areedalositions. If the
position is even( has to play, otherwis® has to play. In an even positign O
may either post-compogewith an O-move, that is to say choose &rmovem
and replacen by m o p, or pre-compose with a P-move, that is to say choose a
P-movem and replace by p o m. In an odd positiorp, P has to decompose
either in the formm o ¢ with m a P-move, or in the forny o m with m anO-move,
and replace» by ¢. There is one more rule, the so-called switching rule, which
says thatD cannot switch neither from the source to the target nor theraway
around. Winning positions are those whérdas no more move available. There
is a categoryS of strategies, the objects of which are even ports, and a s
froma to b in S is a morphisnp in C' equipped with a strategy saying hdwwill
play against) starting form this positiop. For details, see [8]

7.2. Occurrences of a contest.In the construction of our category of contests,
we will need the set of occurrences of a contest which we ndimeleThe set of
occurrences of the contest (I, L, R, ¢, r, f,t) depends only on the familyZ, f):

it is the setOcc(c) of pairs (i,0) whereo is an occurrence irf (i) (here we see
formulas in MALL as trees). The sélcc(c) comes equipped with a map, called
index to I, and a map, calledubformulato MALL.
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7.3. The category of contests.We are now ready to define our categdry of
contests. The objects @f'o are 0-contests. We now have to define the set of
morphisms frome := (I, L, R, ¢,r, f,t)toc := (I', L', R', ¢/, v, ', ).

We start by defining a premorphism fromto ¢’ to be a pair of a morphism
m between the underlying-trees and a relatiop betweenOcc(c) and Oce(c).
There is an obvious composition of premorphisms yieldingtagoryPCo.

We then define a morphism fromto ¢’ to be a premorphisnim, p) satisfying
the following three compatibility conditions:

— the morphismn should be compatible with the tokens in the

following sense:

— if both tokens are on the LHS, we requife= m..(t)
if both tokens are on the RHS, we require: m*(t')
if ¢ is on the RHS and’ on the LHS, andl or I’ is not empty, we
require(¢,t') to be in the heart of x I’
finally we forbid the case whereis on the LHS whilet’ is on the
RHS.

— the relationp should be compatible with formulas, namely it should be
contained in the locus of paif®, o) where the subformula far and the
subformula foro’ agree

— the relationp should be compatible with the heart, in the sense that its
projection intol x I’ should be made of paifg, i') of indices where and
7 have the same image (lgy in the heart ofn.

Since identities are obviously morphisms, in order to pitbee these morphisms
define a subcategoyo of PCo, we only have to check the following :

Lemma: The composite (as premorphisms) of two morphismgasmaa mor-
phism.

7.4. Upgrading the half moves. Here we show by some examples how the moves
of our half game can be upgraded as odd morphismS'dn These moves are
defined up to isomorphism: we declare some morphisms as raodgsshould be
understood that morphisms which are isomorphic to theseemaxe themselves
moves.

We describe for instance the passianoves. This concerns an odecontest
C:=(I,L,R,¢,r ¢,t) where we have an indexwvith ¢(i) negative and(i) = ¢.
After the passive move, we get (up to isomorphism) the éxeontestC’ :=
(I,L,Re,r ¢,7(i)). Since we are speaking of a backward move, we have to de-
scribe a morphism fromy” to C': for this, we have to specify

— an application frond. to L: we take the identity;
— an application fronR to R: we take again the identity;
— arelation orOcc(¢) x Occ(¢): we take the identity again.

Now we turn to moves corresponding to the introduction ratemultiplicative
conjunction. In order to build such a move, we start from agné+contestC' :=
(I,L,R,¢,r, f,t) with two distinct indices andj in I with the same imagein
R, and we build a new-contestD = (J, M, S, m, s, g,u) as follows :
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— J is obtained from/ by identifyingi andy;
— Fork different fromi andj, g(k) is f(k), while g({7, j}) is f(i) ® f(j);
— M is obtained fromL by identifying the images of and j, andm is the
map induced by,
— S'is R ands is the map induced by.
— Finally, u is the image inV of the class of andj.
Our moveN is the morphism front to D represented as follows:
— N, : L — M is the quotient map;
— N*: S — Ris the identity;
— py is the union of the set of diagonal paifg, o), (j, 0)) for j # 1, j, with
the set of pair$(i, 0), ({7, 7}, 1.0)) and the set of pair§j, o), ({7, j }, 2.0)).
We leave to the reader the description of the other moves.

7.5. The connection with the full game. The adequacy of our categorical game
is ensured by the following:

Proposition. Each move among positions in our categorieaheyinduces a
move in the full game between the underlyihgcontests. Conversely, given a
positionp in the categorical game, each full move at the underlylirapntest lifts
as a categorical move at

As a consequence, a position in the categorical game isffrtreeiunderlying
1-contest is true in the full game.

8. CONCLUSION AND FUTURE WORK

We have presented a categorical game\fod L. L. Our solution has some strong
points which we enumerate:

— In playing, P can follow exactly the proof he had in mind, each move
"is" the application of an introduction rule, or forces ifgpéication by
O. This is probably the main progress we wanted to reach wihaet
to the previous solutions [10, 2]. Furthermo¥e may insist on the order
on moves as far as they concern the same sequent; wWhalentrols the
interleaving of the proofs of different sequents.

— The linear negation is a categorical involution of our game

— As far as a single formula is concerned, who starts has nsecuence,
since the player facing a negative formula may only passakent

— There is no infinite play; this feature is not so surprisimgtioe M ALL
fragment. One extremely serious task is to extend it to expoals. (Ex-
tending the game to exponentials without this feature is @diate).

One drawback of our solution (and of all other existing doh#) is that the
game is for cut-free logic. In a future contribution, we wilbgrade the present
game into a game with cut moves.
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