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ABSTRACT. We define a naive game for cut-free multiplicative additivelinear
logic with constants (but without variables). In this game two players fight for
proving a formula respectively its linear negation. If the formula has a proof,
the player has a winning strategy. A position in our game roughly consists of a
single set of formulas arranged by the two players in two “orthogonal” families
of sequents. An “active” move in our game closely corresponds to the application
of an introduction rule for a positive formula, while a “passive” move “requests”
from the other player the application of such a rule. We upgrade our game as a
categorical game, which is the game-theoretic way to account for the cut-rule.
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1. INTRODUCTION

1.1. Logic as a game.The idea that logic could be better understood as a game
goes back to Gentzen and is much alive for instance through the theories proposed
recently by Girard [7, 6] and Japaridze [11]. Our bet is that the next notion of
logic will be based on games and we explore which kind of game should be linear
logic. Accordingly, we search for a notion of truth in (linear) logic. The rough
idea in order to have obvious (built-in) consistency, cut-rule and excluded-middle
is to define truth through a two-player game, where Player tries to prove a formula,
while Opponent tries to disprove it. Excluded-middle couldthen follow from some
“copycat” strategy, while the cut-rule could follow if our game is sufficiently cate-
gorical (compositional).

1.2. Introduction rules as moves. The first main feature of our game corresponds
to our main objective: we want moves which reflect introduction rules in the
straightforward way. For this, our positions cannot be formulas as they are in
[2, 10, 3, 12]; they must be some kind of families of sequents.Let us explain
which kind of families emerge. Suppose for instance that Player faces⊢ 1 ⊗⊥ so
that Opponent faces1 ⊗ ⊥ ⊢. After one or two moves (according to who starts),
Opponent will face the single sequent1, ⊥ ⊢ while Player will face the two se-
quents⊢ 1 and⊢ ⊥. What we see is that players share formulas, but arrange them
in two different (“orthogonal”) families of sequents. Thatis why, roughly speak-
ing, our positions are families of formulas dispatched by Player on the right-hand
side of her family of sequents, and dispatched “orthogonally” by Opponent on the
left-hand side of her (different) family of sequents. Our approach assigns a specific
status to the multiplicative connectors, which appear as fully responsible for the
multiplication of formulas in sequents, and for the multiplication of sequents, in
other words for the fact that we have to manage families of sequents.

1.3. No matter who starts. The second main feature of our game corresponds to
the following challenge: the fact that one player has to start seems to cause trouble
by leading to two potentially conflicting notions of truth. Our solution is based on
polarity: in our game, the player which faces a negative formula can only “pass the
token” to the other player. So that who starts does not make any difference. More
precisely, Player can only apply an introduction rule to a positive formula or “pass
the token” along a negative formula. While dually, Opponentcan only apply an
introduction rule to a negative formula (which is on her LHS)or “pass the token”
along a positive formula.

1.4. The token. The third main feature of our game is the token: our positionsare
families of formulas arranged as explained above, where a sequent (the “token”)
is selected, meaning which player is to play, and where. Thusthe player which
holds the token may either apply an introduction rule for a positive formula in
the selected sequent, or pass the token, along a negative formula in the selected
sequent, selecting the corresponding sequent of the opponent.
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1.5. Acyclicity. The fourth main feature of our game is acyclicity: our positions
have natural interpretations as trees. This acyclicity hasthe following expected
consequence: when the token leaves a sequent through a (negative) formula, it
will not come back to this sequent except by applying an introduction rule to the
original formula.

1.6. Compositionality. The final main feature of our game is compositionality.
For this, we have a notion of morphism of positions. Roughly speaking, such a
morphism concerns three players,P , O andO′ dealing with two familiesI andJ

of formulas: these formulas are dispatched “byP ” respectively on the LHS and
the RHS of her sequents, while they are dispatched “respectively byO′ and byO”
among their sequents respectively on the RHS and on the LHS. Such a morphism
has a source, based on the familyI, a target, based on the familyJ and a total
position, based on the familyI ∐ J⊥. These morphisms turn positions into a
category which is “one-way” in the terminology of [9] and allow us to upgrade
our game into a categorical game in the sense introduced there. In this context,
the cut-rule is derived from the general statement saying that if m : M → N and
n : N → P are two composable morphisms, and ifs andt are winning strategies
respectively form andn, thent ◦ s is a winning strategy forn ◦ m. Our approach
also opens new room to express symmetries of linear logic. For instance, in our
setting, linear negation upgrades into a contravariant involutive endofunctor of our
categorical game, exchanging forward and backward moves.

1.7. Related works. Game-theoretic interpretations of fragments of linear logic
have been already given by many authors, notably [2, 10, 3]. These works aim at
a “fully complete” correspondence between a suitable notion of proof (proof-nets)
and a suitable notion of winning strategy. This approach is revisited in [12, 13],
where the limitations of the previous solutions are highlighted and a new solution
is proposed. We depart radically from this line of research by looking for a game
where positions are not formulas, but suitable families of sequents, and accordingly
where instances of the introduction rules may be understoodas moves.

As mentioned above, the idea of understanding logic as a gamehas been al-
ready pushed (much further) by Girard (see e.g. [7, 6]) and ona different track by
Japaridze (see e. g. [11]).

1.8. Organisation of the paper. Our paper is organised is follows. We start by
describing our new category of trees (section 2) and our category of contests, which
are trees weighted by logical formulas with a selected vertex (section 3). Then we
describe the moves of our naive game (section 4) and briefly discuss this game,
which we call the half game (section 5). In section 6, we describe the ("full") game
where Player sits between two Opponents and accordingly tries to prove sequents
with formulas on both sides, while in section 7 we present ourcategorical game.
We conclude in section 8 by discussing some future work.

2. THE CATEGORY OF TREES

In this work, we use a new categoryT of trees, which we present in this section.



4 ANDRÉ HIRSCHOWITZ AND MICHEL HIRSCHOWITZ

2.1. The 0-trees. An object ofT , called a0-tree, is a tuple(I, L,R, ℓ, r) where
I, L,R are finite sets, andℓ : I → L andr : I → R are arbitrary maps, subject to
the following acyclicity condition:

The directed graph withL ∐ R as set of vertices,I as set of edges, andℓ andr

as source and target maps is a (non-empty) tree.
If I is empty, this means thatL ∐ R is reduced to the token, while ifI is not

empty, this just means thatℓ andr are surjective and define so-called orthogonal
partitions onI. Remember that two partitionsp andq are orthogonal [4] when the
infimum and supremum partitionsp∧ q andp∨ q are respectively the coarsest and
finest partitions.

I
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L
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l

2.2. The premorphisms. A premorphismm from (I, L,R, ℓ, r) to (I ′, L′, R′, ℓ′, r′)
is a pair(m∗,m

∗) consisting of a map fromL to L′ and a map fromR′ to R. These
premorphisms compose in an obvious way, yielding a categoryPT .
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2.3. The heart and the graph of a premorphism. In the first reading, the reader
may want to skip this technical subsection.

Given such a premorphismm from (I, L,R, ℓ, r) to (I ′, L′, R′, ℓ′, r′), we define
the only natural mapq : I ∐ I ′ → R × L′ as follows:

from I to R and fromI ′ to L′ we taker andℓ′; while fromI to L′ we takem∗◦ℓ

and fromI ′ to R, we takem∗ ◦r′. If I∐I ′ is not empty, we denote byH := H(m)
the image ofq, while otherwise we takeH := R × L′ (which is a singleton).

We say thatH is the heart ofm.
We then build the bipartite graphG := G(m) with

– H as set of LHS vertices,
– L ∐ R′ as set of RHS vertices,
– I ∐ I ′ as set of edges,
– q as source map,
– ℓ ∐ r′ astarget map.

2.4. The1-trees. A morphism, also called1-tree, fromt := (I, L,R, ℓ, r) to t′ :=
(I ′, L′, R′, ℓ′, r′) is a premorphismm : t → t′ such thatG(m) is a tree, hence a
0-tree. In this case, we say thatG(m) is the0-tree obtained by foldingm.

The fact that these morphisms turnT into a category follows from the lemma:
Lemma. The composite of two morphismsm from (I, L,R, ℓ, r) to (I ′, L′, R′, ℓ′, r′)

andm′ from (I ′, L′, R′, ℓ′, r′) to (I ′′, L′′, R′′, ℓ′′, r′′) is a morphism again.

3. THE GROUPOID OF CONTESTS

In this section, we describe the positions of our naive game which we call con-
tests.

3.1. The set of formulas. We first build the set of usualMALL-formulas, with-
out variables [1, 5] :

F := 1 | 0 | ⊥ | ⊤ | F ` F | F ⊗ F | F ⊕ F | F & F .

We denote this set byMALL. The positive formulas are

P := 1 | 0 | F ⊗ F | F ⊕ F,

the other ones being the negative ones. The linear negationF 7→ F⊥ sends
respectively1, 0, A⊗B andC ⊕D to⊥,⊤, A⊥ `B⊥, C⊥ & D⊥ and vice-versa.

3.2. The groupoid of0-contests. A 0-contest, or simply contest, is0-tree(I, L,R, ℓ, r)
equipped with a mapf from I to the setMALL of formulas, and a selected vertex
t (the token). The token singles out, inL ∐ R, the sequent where the player has to
play. We say thatI is the set of indices,L is the set of left sequents, andR is the
set of right sequents.

We have an obvious notion of isomorphism between contests: an isomorphism
from the contest(I, L,R, ℓ, r, f, t) to the contest(I ′, L′, R′, ℓ′, r′, f ′, t′) consists
of three bijections fromI, L,R to I ′, L′, R′ commuting toℓ andℓ′, to r andr′,
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to f andf ′, and sendingt to t′. In other words, it is an isomorphism of0-trees
compatible with weights and tokens.

These isomorphisms turn the setC of contests into a groupoid.

t ∈ R
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3.3. The sign of 0-contests. The setC of contests is the disjoint union ofCL,
where the token is on the left-hand side andCR, where the token is on the right-
hand side. Isomorphisms of contests respect this sign.

4. THE MOVES

In order to describe our game, we now describe our moves, which connect odd
pairs of contests.

4.1. Passive moves.The simplest moves are passive ones, reflecting the idea that
a player may just pass the token along a negative formula:

Up to isomorphism, a passiveP-move goes from the contest(I, L,R, f, ℓ, r, ℓ(i))
to the contest(I, L,R, f, ℓ, r, r(i) providedf(i) is negative.

Dually, up to isomorphism, a passiveO-move goes from the contest(I, L,R, f, ℓ, r, r(i))
to the contest(I, L,R, f, ℓ, r, ℓ(i) providedf(i) is negative.

4.2. Additive moves. The reader will easily convince himself that an additiveP-
move as defined below corresponds exactly to the applicationof one of the (right)
introduction rules for⊕ in the sequent marked by the token.

Up to isomorphism, an additiveP-move goes from a contest(I, L,R, ℓ, r, f, ℓ(i))
wheref(i) is of the formA⊕B to the contest(I, L,R, ℓ, r, g, r(i)), whereg equals
f except ati, where its value isA or B. Note that in the categorical game, we will
carefully distinguish the two moves in caseA = B.

Dually, up to isomorphism, an additiveO-move goes from a contest(I, L,R, ℓ, r, f, r(i))
wheref(i) is of the formA&B to the contest(I, L,R, ℓ, r, g, ℓ(i)), whereg equals
f except ati, where its value isA or B.
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4.3. Multiplicative moves. The reader will easily convince himself that a multi-
plicativeP-move as defined below corresponds exactly to the application of the
(right) introduction rule for⊗ in the sequent marked by the token.

A multiplicativeP-move from the contest(I, L,R, ℓ, r, f, t) to the contest(I ′, L′, R′, ℓ′, r′, f ′, t′)
is as follows (up to isomorphism): we have two indicesi′ andi” in I ′ with the same
image byr, andI is obtained by collapsingi′ andi” in a single indexi; meanwhile
f equalsf ′ outsidei while f(i) is f ′(i′) ⊗ f ′(i”). The set of right sequents does
not change (R = R′, andr is the map induced byr′), while L is obtained fromL′

by collapsingℓ′(i′) andℓ′(i”) (ℓ is the map induced byℓ′.
The reader will easily deduce the dual definition of a multiplicativeO-move.

4.4. Constant moves.The reader will easily convince himself that a constantP-
move as defined below corresponds exactly to the applicationof the (right) intro-
duction rule for1 in the sequent marked by the token.

A constantP-move starts from an odd contestc := (I, L,R, f, ℓ, r, t) where
ℓ−1(t) consists of a single elementi such thatf(i) = 1. This move to the contest
c′ := (I ′, L′, R′, f ′, ℓ′, r′, t′) consists of

–: an injections : I ′ → I identifying I ′ with I − {i}
–: an injectionsL : L′ → L identifying L′ with L − {t} and satisfying

sL ◦ ℓ′ = ℓ ◦ s

–: a bijectionsR : R′ → R satisfyingsR ◦ r′ = s ◦ r andsR(t′) = r(i).

Dually, the reader will easily convince himself that a constantO-move as defined
below corresponds exactly to the application of the (left) introduction rule for⊥ in
the sequent marked by the token.

A constantO-move starts from an even contestc := (I, L,R, f, ℓ, r, t) where
r−1(t) consists of a single elementi such thatf(i) = ⊥. This move to the contest
c′ := (I ′, L′, R′, f ′, ℓ′, r′, t′) consists of

–: an injections : I ′ → I identifying I ′ with I − {i}
–: an injectionsR : R′ → R identifying R′ with R − {t} and satisfying

sR ◦ r′ = r ◦ s

–: a bijectionsL : L′ → L satisfyingsL ◦ ℓ′ = s ◦ ℓ andsL(t′) = s(i).

5. SOME META-THEORY FOR THE HALF GAME

So far, we have defined a game, which we call the half game. In this section,
we explain which sort of game it is, which notion of truth it allows, and why this
notion is adequate.

5.1. Bipartite graphoids. The kind of naive game we just have built is slightly
less naive than what is associated with a signed (or bipartite) graph. Indeed, here
we have to take isomorphisms into account. Moves compose with isomorphisms
while two moves do not compose. This is not a category but thisgap is fixed by the
following trick. We have even objects, those where the tokenis on the RHS and odd
objects, those where the token is on the LHS. The trick is to decide that moves from
an odd position to an even one are taken backwards. So that allmoves correspond
to morphisms from an even position to an odd position. In thisway, we obtain a



8 ANDRÉ HIRSCHOWITZ AND MICHEL HIRSCHOWITZ

signed category where there is no morphism from an odd to an even position, what
we called a one-way category [9]. So odd morphisms all go froman even to an
odd position, and they are split into two classes (forward and backward). While
even morphisms are all isomorphisms. Summarising, we call bipartite graphoid
a one-way category where the subcategory of even morphisms is a groupoid, and
equipped with a splitting of odd morphisms compatible with the groupoid action.

Note that our graphoid is equipped with a contravariant involution correspond-
ing to linear negation.

5.2. Truth. In a bipartite graphoid, we have a natural notion of path: a path from
p to q is an anti-composable sequence of odd morphisms(u1, · · · , un) wherep is
the end ofu1 which is not shared withu2 andq is the end ofun which is not shared
with un−1. Our graphoid is strongly noetherian in the sense that for any position,
the length of paths starting at this vertex is bounded.

Given a position in such a strongly noetherian bipartite graph, we have the usual
notion of (deterministic)P -strategy and ofO-strategy atv. We also have the notion
of winning strategy: with any path ending up at a vertex whereX is to play, a win-
ning X-strategy contains a longer path, in other words the strategy has an answer.
It is easily checked that at each vertex, there is either a winning P -strategy (in
which case we say that the position is winning) or a winningO-strategy (in which
case we say that the position is losing), and never both. Now given a formula in
MALL, we have two ways to upgrade it as a position in our game, by putting to
token either on the RHS or on the LHS. Since according to the polarity of the for-
mula, on one of this position, the only possible move it to shift to the other one,
both positions have simultaneously either a winningP -strategy, in which case we
say that the formula is true, or a winningO-strategy, in which case we say that the
formula is false.

5.3. Adequacy of our half game. The adequacy of our half-game to MALL reads
as follows:

Theorem. Given a contestc, if the left sequents ofc are provable, then there is a
winning P -strategy atc, and similarly, if the right sequents ofc are provable, then
there is a winningO-strategy atc.

The proof relies on the fact that if a sequentS has a proof, then any sequent
obtained fromS by applying an introduction rule for a negative formula has also a
proof.

Remark: as we already mentioned, there are some contests where P has a win-
ning strategy while the left sequents are not all provable. This is the case for the
single formula⊥⊗⊥. Those who “prefer”1` 1 will have to change the game by
finding a way to add for instance the MIX rule.

6. THE POINT OF VIEW OF A PLAYER

We have seen a game whereP tries to prove sequents with formulas only on the
RHS whileO tries to prove sequents with (the same) formulas only on the LHS.
In fact, in the full-game which we will describe now,O is the right neighbour of
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P , henceP is the left neighbour ofO, andP , for instance, has also formulas on
the LHS of her sequents, and a left neighbour, sayO′, with which she interacts
through these formulas. What happens betweenP andO′ doesn’t affectO. So
we may think of a line of players handling sequents with formulas on both sides,
shared respectively with neighbour players on both sides. In order to understand
the game, it is sufficient to consider a small line of three playersO′, P,O and forget
about possible LHS formulas ofO′ and RHS formulas ofO. In this section, we
describe this “full” game, whereP plays againstO andO′.

6.1. The groupoid of1-contests. A 1-contest is a pair(c, c′) of 0-contests equipped
with a morphismm among the underlying0-trees compatible with the tokens (t, t′)
in the following sense:

– if both tokens are on the LHS, we requiret′ = m∗(t)
– if both tokens are on the RHS, we requiret = m∗(t′)
– if t is on the RHS andt′ on the LHS, we require(t, t′) to be in the heart of

m,
– finally we forbid the case wheret is on the LHS whilet′ is on the RHS.

We have a obvious notion of isomorphism of1-contests: an isomorphism from
C to C ′ is an isomorphism among the underlying morphisms of0-trees compatible
with formulas and tokens.

6.2. Folding. To a1-contestC := (c, c′,m), with c = (I, L,R, ℓ, r, f, t) andc′ =
(I ′, L′, R′, ℓ′, r′, f ′, t′), we assign itsfolding: it is a 0-contest denotedfold(C)
obtained from the folding of the underlying1-tree by pushing there the formulas
and the token in the natural way: for the formulas we takef⊥ ∐ f ′, while for the
token, we take

– t if t andt′ are on the LHS
– t′ if t andt′ are on the RHS
– (t, t′) if t is in the RHS andt′ in the LHS.

Note that the folding of a1-contest comes equipped with a distinguished subset
of its set of right sequents (the nonfolded part).

The folding assignment upgrades obviously into a functor from the groupoid of
1-contests to the one of0-contests.

Conversely, if we want to “unfold” a0-contest, we just have to split its set of
right sequents into those belonging toO and those belonging toO′. Roughly speak-
ing, a1-contest is just a0-contest whereO and her sequents has been split in two
parts. More precisely, we may build a groupoid of split0-contests, where by split
0-contests, we mean a contest equipped with a distinguished subset of its set of
right sequents (the subset oftruly right sequents). And the folding upgrades into
an equivalence from the groupoid of1-contests to the one of split0-contests.

6.3. Upgrading our half game. Now we want to upgrade our half game as a game
where positions are1-contests. We have to define “full” moves among1-contests,
which we may view as split0-contests. We simply take, for moves fromc to d,
moves among the corresponding0-contestsfold(c) andfold(d) compatible in the
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natural sense with the splitting of right sequents. More precisely each move among
0-contests entails a map among sets of indices, and we simply require this map to
be compatible with the splitting, sending truly right sequents to truly right sequents
and vice-versa. In this way, we obtain a bipartite graphoid of 1-contests which we
call the full game.

6.4. Adequacy of our full game. The adequacy of our full game is asserted by
the following statement:

Proposition. A1-contestC is true (resp. false) ifffold(C) is true (resp. false).
This is because a move atfold(C) can always be lifted as a move atC.

7. ASSEMBLING THE PUZZLE: THE CATEGORICAL POINT OF VIEW

In this section, in order to have a game-theoretic cut-elimination, we upgrade
our game into a categorical one. For this, following [9], we have to understand
our 1-contests as morphisms in a one-way category enlarging the graphoid of0-
contests.

7.1. A quick review of categorical game theory. In this subsection we briefly
review what we need from categorical game theory [8, 9].

A one-way category is a category where objects, also called ports, have signs,
and there is no morphism from an odd to an even object. A categorical game
G := (C,MP ,MO) consists of a one-way categoryC equipped with two sets
MP andMO of odd morphisms, calledP -moves andO-moves respectively. The
parity extends in the obvious way to morphisms, which are called positions. If the
position is even,O has to play, otherwiseP has to play. In an even positionp, O

may either post-composep with anO-move, that is to say choose anO-movem

and replacep by m ◦ p, or pre-composep with a P -move, that is to say choose a
P -movem and replacep by p ◦ m. In an odd positionp, P has to decomposep
either in the formm◦q with m aP -move, or in the formq ◦m with m anO-move,
and replacep by q. There is one more rule, the so-called switching rule, which
says thatO cannot switch neither from the source to the target nor the other way
around. Winning positions are those whereO has no more move available. There
is a categoryS of strategies, the objects of which are even ports, and a morphism
from a to b in S is a morphismp in C equipped with a strategy saying howP will
play againstO starting form this positionp. For details, see [8]

7.2. Occurrences of a contest.In the construction of our category of contests,
we will need the set of occurrences of a contest which we now define. The set of
occurrences of the contestc : (I, L,R, ℓ, r, f, t) depends only on the family(I, f):
it is the setOcc(c) of pairs (i, o) whereo is an occurrence inf(i) (here we see
formulas in MALL as trees). The setOcc(c) comes equipped with a map, called
index, to I, and a map, calledsubformula, to MALL.
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7.3. The category of contests.We are now ready to define our categoryCo of
contests. The objects ofCo are 0-contests. We now have to define the set of
morphisms fromc := (I, L,R, ℓ, r, f, t) to c′ := (I ′, L′, R′, ℓ′, r′, f ′, t′).

We start by defining a premorphism fromc to c′ to be a pair of a morphism
m between the underlying0-trees and a relationρ betweenOcc(c) andOcc(c′).
There is an obvious composition of premorphisms yielding a categoryPCo.

We then define a morphism fromc to c′ to be a premorphism(m,ρ) satisfying
the following three compatibility conditions:

– the morphismm should be compatible with the tokens in the
following sense:
– if both tokens are on the LHS, we requiret′ = m∗(t)
– if both tokens are on the RHS, we requiret = m∗(t′)
– if t is on the RHS andt′ on the LHS, andI or I ′ is not empty, we

require(t, t′) to be in the heart ofI × I ′

– finally we forbid the case wheret is on the LHS whilet′ is on the
RHS.

– the relationρ should be compatible with formulas, namely it should be
contained in the locus of pairs(o, o′) where the subformula foro and the
subformula foro′ agree

– the relationρ should be compatible with the heart, in the sense that its
projection intoI × I ′ should be made of pairs(i, i′) of indices wherei and
i′ have the same image (byq) in the heart ofm.

Since identities are obviously morphisms, in order to provethat these morphisms
define a subcategoryCo of PCo, we only have to check the following :

Lemma: The composite (as premorphisms) of two morphisms is again a mor-
phism.

7.4. Upgrading the half moves. Here we show by some examples how the moves
of our half game can be upgraded as odd morphisms inCo. These moves are
defined up to isomorphism: we declare some morphisms as movesand it should be
understood that morphisms which are isomorphic to these moves are themselves
moves.

We describe for instance the passiveP -moves. This concerns an odd0-contest
C := (I, L,R, ℓ, r, φ, t) where we have an indexi with φ(i) negative andℓ(i) = t.
After the passive move, we get (up to isomorphism) the even0-contestC ′ :=
(I, L,Rℓ, r, φ, r(i)). Since we are speaking of a backward move, we have to de-
scribe a morphism fromC ′ to C: for this, we have to specify

– an application fromL to L: we take the identity;
– an application fromR to R: we take again the identity;
– a relation onOcc(φ) × Occ(φ): we take the identity again.

Now we turn to moves corresponding to the introduction rule for multiplicative
conjunction. In order to build such a move, we start from an even0-contestC :=
(I, L,R, ℓ, r, f, t) with two distinct indicesi andj in I with the same imaget in
R, and we build a new0-contestD = (J,M,S,m, s, g, u) as follows :
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– J is obtained fromI by identifying i andj;
– Fork different fromi andj, g(k) is f(k), while g({i, j}) is f(i) ⊗ f(j);
– M is obtained fromL by identifying the images ofi andj, andm is the

map induced byℓ;
– S is R ands is the map induced byr.
– Finally,u is the image inM of the class ofi andj.

Our moveN is the morphism fromC to D represented as follows:

– N∗ : L → M is the quotient map;
– N∗ : S → R is the identity;
– ρN is the union of the set of diagonal pairs((j, o), (j, o)) for j 6= i, j, with

the set of pairs((i, o), ({i, j}, 1.o)) and the set of pairs((j, o), ({i, j}, 2.o)).

We leave to the reader the description of the other moves.

7.5. The connection with the full game. The adequacy of our categorical game
is ensured by the following:

Proposition. Each move among positions in our categorical game induces a
move in the full game between the underlying1-contests. Conversely, given a
positionp in the categorical game, each full move at the underlying1-contest lifts
as a categorical move atp.

As a consequence, a position in the categorical game is true iff the underlying
1-contest is true in the full game.

8. CONCLUSION AND FUTURE WORK

We have presented a categorical game forMALL. Our solution has some strong
points which we enumerate:

– In playing, P can follow exactly the proof he had in mind, each move
"is" the application of an introduction rule, or forces its application by
O. This is probably the main progress we wanted to reach with respect
to the previous solutions [10, 2]. Furthermore,P may insist on the order
on moves as far as they concern the same sequent; whileO controls the
interleaving of the proofs of different sequents.

– The linear negation is a categorical involution of our game.
– As far as a single formula is concerned, who starts has no consequence,

since the player facing a negative formula may only pass the token.
– There is no infinite play; this feature is not so surprising on theMALL

fragment. One extremely serious task is to extend it to exponentials. (Ex-
tending the game to exponentials without this feature is immediate).

One drawback of our solution (and of all other existing solutions) is that the
game is for cut-free logic. In a future contribution, we willupgrade the present
game into a game with cut moves.
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