Maths

Exo-type 11: Bases

Deug MIAS

Nom:

Documents:

Calculette:

1- On donne la base b =: ((1,2,0), (1,2,1), (2,1,5)) de \mathbf{R}^3 et l'application linéaire de \mathbf{R}^3 dans \mathbf{R}^3 $f := (x,y,z) \mapsto (-x+y+z, -6x+4y+2z, -2x+y+z)$.

Ecrire la matrice A de f dans la base canonique et la matrice de passage P de cette base à b. Calculer la matrice inverse de P. Calculer la matrice A' de f dans b.

A	P	P^{-1}	A'

2- On considère la base b'=:((-1,-2,0),(-1,-2,-1),(-2,-1,-5)) de \mathbf{R}^3 et la symétrie s parallèle à $< b'_3>$ et d'axe le plan $< b'_1,b'_2>$.

Ecrire la matrice S' de s dans la base b' et la matrice de passage P' de la base canonique à b'. Calculer la matrice inverse de P'. Enfin calculer la matrice S de s dans la base canonique.

S'	P'	P'^{-1}	S