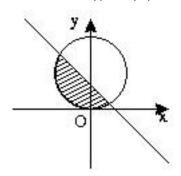
Exo 1. Dessiner l'ensemble des nombres complexes z vérifiant Re((1-i)z) < 2 et $|iz+3| \le 3$ en précisant par les moyens de votre choix ce qui se passe "au bord".

On note $S = \{z \in \mathbb{C}; \operatorname{Re}((1-i)z) < 2 \text{ et } | iz+3 | \leq 3\}, S_1 = \{z \in \mathbb{C}; \operatorname{Re}((1-i)z) < 2\} \text{ et } S_2 = \{z \in \mathbb{C}; | iz+3 | \leq 3\}. \text{ On a } S = S_1 \cap S_2.$

Soit $z \in \mathbb{C}$, avec x = Re(z) et y = Im(z). On a donc z = x + iy.

Alors $|iz + 3| \le 3 \iff |z - 3i| \le 3$ et donc S_1 est le disque fermé de centre 3i et de rayon 3,

D'autre part $\operatorname{Re}((1-i)z) < 2 \iff \operatorname{Re}((1-i)(x+iy)) < 2 \iff \operatorname{Re}(x-ix+iy+y) < 2 \iff x+y < 2$



et donc S_2 est le demi-plan ouvert sous la droite d'équation x + y = 2.

L'intersection $S = S_1 \cap S_2$ est la partie hachurée du dessin ci-contre. Au bord, les points du cercle sont dans S mais pas les points de la droite (ni les deux points d'intersection du cercle et de la droite).

Exo 2. Montrer que la fonction f définie sur \mathbb{R} par $f(x) = x \mathbb{E}(x)$ (où $\mathbb{E}(x)$ est l'entier caractérisé par $\mathbb{E}(x) < x < \mathbb{E}(x) + 1$) est discontinue.

Pour $0 \le x < 1$, on a E(x) = 0 donc f(x) = 0.

Pour $1 \le x < 2$, on a E(x) = 1 donc f(x) = x.

On peut tracer le graphe de la fonction f sur [0,2[et constater qu'elle semble discontinue en 1. On a: f discontinue en 1 ssi $\exists u \in \mathbb{R}^{\mathbb{N}}, u \to 1$ et $f(u) \not\to f(1)$.

Exhibons la suite réelle u définie par $u_n = 1 - \frac{1}{2^n}$.

On a bien $u \to 1$ et on constate que $f(u_n)$ est nul pour tout n, donc $f(u) \to 0 \neq f(1) = 1$.

Exo 3. Pour quelles valeurs du réel m la fonction f définie sur l'intervalle $]1,+\infty[$ par $f(x)=mx^3+x+m$ admet-elle une fonction réciproque? Pour lesquelles de ces valeurs cette fonction réciproque est-elle dérivable? Pour 1 < m < 2, calculer au choix, sa dérivée en 5 ou en 9m+2. Expliquer votre choix.

Pour que la fonction f, qui est dérivable, admette une réciproque sur $]1, +\infty[$, il faut et il suffit qu'elle soit strictement monotone. Etudions donc sur $]1, +\infty[$ le signe de $f'(x) = 3mx^2 + 1$. On distingue deux cas.

- $1^{er} cas : m \ge 0$. On a $\forall x \in \mathbb{R}$, $3mx^2 + 1 > 0$. La fonction f est donc strictement croissante sur $]1, +\infty[$ et donc admet une réciproque sur $]1, +\infty[$.
- $\bullet 2^{nd} cas : m < 0$. Alors $f'(x) = 3mx^2 + 1$ est un polynôme du second degré en x qui admet deux racines

réelles distinctes $x_1 = -\frac{1}{\sqrt{-3m}}$ et $x_2 = \frac{1}{\sqrt{-3m}}$. On distingue alors deux sous-cas.

 $\diamond \underline{1^{er}sous - cas} : x_2 \leq 1 \text{ autrement dit } m \leq -\frac{1}{3} :$

x	$-\infty$		x_1		x_2		1		$+\infty$
f'(x)		-	0	+	0	-		-	
							2m + 1		
f(x)	•••							\searrow	
									$-\infty$

f est strictement décroissante, et admet donc une réciproque.

x	$-\infty$		x_1		1		x_2		$+\infty$
f'(x)		-	0	+		+	0	-	
							$f(x_2)$		
f(x)						7		\searrow	
					2m + 1				$-\infty$

Alors f n'est même pas monotone, donc n'admet pas de réciproque.

On a donc montré que f admet une réciproque sur $]1, +\infty[$ si et seulement si $m \ge 0$ ou $m \le -\frac{1}{3}$.

On sait que f^{-1} est dérivable à condition que l'on ait: $\forall x \in]1, +\infty[, f'(x) \neq 0, \text{ ce qui est bien le cas quand } m \geq 0$ et quand $m \leq -\frac{1}{3}$.

Reste à calculer pour 1 < m < 2, $(f^{-1})'(5)$ ou $(f^{-1})'(9m+2)$. Remarquons que si 1 < m < 2, alors f admet bien une réciproque. Ensuite, il faut résoudre une des deux équations d'inconnue x: f(x) = 5 (*) ou f(x) = 9m+2 (**). L'équation (**) a pour solution évidente x = 2. On calcule alors f'(2) = 12m+1 d'où $(f^{-1})'(9m+2) = \frac{1}{12m+1}$. Tandis qu'on ne sait pas résoudre (*).

Exo 4. Etudier la branche infinie (avec la position par rapport à l'asymptote éventuelle) du graphe de la fonction f définie sur $[0, +\infty[$ par $f(x) = \pi - x - 2\sqrt{x^2 + 3x + 5}$.

On a $\lim_{x\to+\infty} f(x) = -\infty$.

Tout d'abord, on calcule $\lim_{x\to+\infty}\frac{f(x)}{x}$.

Comme x est positif, on a $\frac{f(x)}{x} = -1 - 2\sqrt{1 + \frac{3}{x} + \frac{5}{x^2}} + \frac{\pi}{x} \quad \text{d'où} \quad \lim_{x \to +\infty} \frac{f(x)}{x} = -3.$

Ensuite, on calcule $\lim_{x\to+\infty}(f(x)-(-3x))=\lim_{x\to+\infty}(f(x)+3x)=\lim_{x\to+\infty}(\pi+2(x-\sqrt{x^2+3x+5}))$.

En faisant apparaître la quantité conjuguée, puis en simplifiant par x (qui est ici égal à $\sqrt{x^2}$), on obtient

$$x - \sqrt{x^2 + 3x + 5} = \frac{x^2 - (x^2 + 3x + 5)}{x + \sqrt{x^2 + 3x + 5}} = \frac{-3 - \frac{5}{x}}{1 + \sqrt{1 + \frac{3}{x} + \frac{5}{x^2}}}.$$

On en déduit

$$\lim_{x \to +\infty} (x - \sqrt{x^2 + 3x + 5}) = -\frac{3}{2}$$

 et

$$\lim_{x \to +\infty} (f(x) + 3x) = \pi + 2(-\frac{3}{2}) = \pi - 3.$$

Donc la droite d'équation $y = -3x + \pi - 3$ est asymptote à f en $+\infty$.

Pour étudier la position par rapport à l'asymptote, il faut étudier, pour x grand, le signe de

$$f(x) - (-3x + \pi - 3) = f(x) + 3x - \pi + 3 = 2x + 3 - 2\sqrt{x^2 + 3x + 5},$$

autrement dit il faut comparer les deux nombres positifs 2x + 3 et $2\sqrt{x^2 + 3x + 5}$. En élevant au carré, puis en simplifiant, on obtient:

$$2x + 3 < 2\sqrt{x^2 + 3x + 5} \iff (2x + 3)^2 < 4(x^2 + 3x + 5) \iff 9 < 20.$$

On en conclut $f(x) + 3x - \pi + 3 < 0$ en $+\infty$,

c'est-à-dire que la courbe représentative de f se trouve en-dessous de son asymptote.