The Lüroth problem and the Cremona group

Arnaud Beauville

Université de Nice

Tokyo, January 2013
The Lüroth problem

Definitions

A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \to V$.

Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

V is rational if \exists birational map $\mathbb{P}^n \sim \mathbb{P}^1 \to V$.

Equivalently, $\mathbb{C}(V) \sim \mathbb{C}(t_1, \ldots, t_n)$.

Lüroth problem: unirational \Rightarrow rational?

Lüroth (1875): yes for curves.

Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.

Arnaud Beauville

The Lüroth problem and the Cremona group
The Lüroth problem

Definitions

A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \to V$.
Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1,\ldots,t_n)$.

V is rational if \exists birational map $\mathbb{P}^n \sim V$.
Equivalently, $\mathbb{C}(V) \sim \mathbb{C}(t_1,\ldots,t_n)$.

Lüroth problem: unirational \Rightarrow rational?

Lüroth (1875): yes for curves.
(Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.)
The Lüroth problem

Definitions

• A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$.

Definition continued...

• V is rational if \exists birational map $\mathbb{P}^n \sim \dashrightarrow V$.

Lüroth problem: unirational \Rightarrow rational?

Lüroth (1875): yes for curves.

(Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.)
The Lüroth problem

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \rightarrow V$. Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

- V is rational if \exists birational map $\mathbb{P}^n \sim V$. Equivalently, $\mathbb{C}(V) \sim \mathbb{C}(t_1, \ldots, t_n)$.

Lüroth problem: unirational \Rightarrow rational?

Lüroth (1875): yes for curves. (Quite easy with Riemann surface theory; but Lüroth’s proof is algebraic.)
Definitions

- A variety V is **unirational** if \exists generically surjective rational map $\mathbb{P}^n \rightarrow V$. Equivalently, $\mathcal{C}(V) \hookrightarrow \mathcal{C}(t_1, \ldots, t_n)$.
- V is **rational** if \exists birational map $\mathbb{P}^n \sim \rightarrow V$.

Lueroth problem: unirational \Rightarrow rational?
Lueroth (1875): yes for curves. (Quite easy with Riemann surface theory; but Lüroth’s proof is algebraic.)
The Lüroth problem

Definitions

- A variety V is **unirational** if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$. Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

- V is **rational** if \exists birational map $\mathbb{P}^n \sim \dashrightarrow V$.
 Equivalently, $\mathbb{C}(V) \sim \dashrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

Lüroth problem: unirational \Rightarrow rational?

Lüroth (1875): yes for curves. (Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.)

Arnaud Beauville

The Lüroth problem and the Cremona group
The Lüroth problem

Definitions

- A variety \(V \) is **unirational** if \(\exists \) generically surjective rational map \(\mathbb{P}^n \dasharrow V \). Equivalently, \(\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n) \).

- \(V \) is **rational** if \(\exists \) birational map \(\mathbb{P}^n \sim \rightarrow V \).
 Equivalently, \(\mathbb{C}(V) \sim \rightarrow \mathbb{C}(t_1, \ldots, t_n) \).

- Lüroth problem: unirational \(\implies \) rational?

Lüroth (1875): yes for curves. (Quite easy with Riemann surface theory; but Lüroth’s proof is algebraic.)
The Lüroth problem

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^n \dasharrow V$. Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

- V is rational if \exists birational map $\mathbb{P}^n \overset{\sim}{\dasharrow} V$.
 Equivalently, $\mathbb{C}(V) \overset{\sim}{\dasharrow} \mathbb{C}(t_1, \ldots, t_n)$.

- Lüroth problem: unirational \implies rational?

Lüroth (1875): yes for curves.
The Lüroth problem

Definitions

• A variety V is **unirational** if \exists generically surjective rational map $\mathbb{P}^n \dashrightarrow V$. Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

• V is **rational** if \exists birational map $\mathbb{P}^n \sim\rightarrow V$.
 Equivalently, $\mathbb{C}(V) \sim\rightarrow \mathbb{C}(t_1, \ldots, t_n)$.

• Lüroth problem: unirational \implies rational?

Lüroth (1875): yes for curves.

(Quite easy with Riemann surface theory; but Lüroth’s proof is algebraic.)
Castelnuovo (1894): a unirational surface is rational.
Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example: $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality. But Fano's analysis is incomplete. Fano made further attempts (1915, 1947), but not acceptable by modern standards.

Around 1971 three "modern" counter-examples appeared:
Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example: $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality,
Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example: $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.
Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano’s analysis is incomplete.
Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example: $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano’s analysis is incomplete.

Fano made further attempts (1915, 1947), but not acceptable by modern standards.
Castelnuovo (1894): a unirational surface is rational.
Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.
Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.
But Fano’s analysis is incomplete.
Fano made further attempts (1915, 1947), but not acceptable by modern standards.

Around 1971 three “modern” counter-examples appeared:
The counter-examples

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>$V^3 \subset P^4$</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>$V^4 \subset P^4$</td>
<td>$Bir(V)$</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific $Tors$</td>
<td>$H^3(V, \mathbb{Z})$</td>
</tr>
</tbody>
</table>

Arnaud Beauville: The Lüroth problem and the Cremona group
<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>$V^3 \subset P^4$</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>$V^4 \subset P^4$</td>
<td>$B(V)$</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td></td>
<td>$\text{Tors} H_3(V, \mathbb{Z})$</td>
</tr>
<tr>
<td>Arnaud Beauville</td>
<td></td>
<td>The Lüroth problem and the Cremona group</td>
</tr>
</tbody>
</table>
The counter-examples

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>(V_3 \subset \mathbb{P}^4)</td>
<td>(J(V))</td>
</tr>
</tbody>
</table>
The counter-examples

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>$V_3 \subset \mathbb{P}^4$</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some $V_4 \subset \mathbb{P}^4$</td>
<td>$\text{Bir}(V)$</td>
</tr>
</tbody>
</table>
The counter-examples

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>$V_3 \subset \mathbb{P}^4$</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some $V_4 \subset \mathbb{P}^4$</td>
<td>$\text{Bir}(V)$</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>$\text{Tors } H^3(V, \mathbb{Z})$</td>
</tr>
</tbody>
</table>
The 3 papers have been very influential: many other examples worked out. They are still (essentially) the only methods known to prove non-rationality. Each method has its advantages and its drawbacks. The 3 methods use in an essential way Hironaka’s results (elimination of indeterminacies). Let us test them on the threefolds studied by Fano:

Threefolds V with $-K_V$ very ample, $\text{Pic}(V) = \mathbb{Z}[K_V]$. (Fano threefolds of the first species: modern classification due to Iskovskikh.)
• The 3 papers have been very influential: many other examples worked out.
The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.
The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

Each method has its advantages and its drawbacks.
The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

Each method has its advantages and its drawbacks.

The 3 methods use in an essential way Hironaka’s results (elimination of indeterminacies).
The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

Each method has its advantages and its drawbacks.

The 3 methods use in an essential way Hironaka’s results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:
The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

Each method has its advantages and its drawbacks.

The 3 methods use in an essential way Hironaka’s results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:

Threefolds \(V \) with \(-K_V \) very ample, \(\text{Pic}(V) = \mathbb{Z}[K_V] \).
The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

Each method has its advantages and its drawbacks.

The 3 methods use in an essential way Hironaka’s results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:

Threefolds V with $-K_V$ very ample, $\text{Pic}(V) = \mathbb{Z}[K_V]$.

(*Fano threefolds of the first species*: modern classification due to Iskovskikh).
Rationality of Fano threefolds

Arnaud Beauville

The Lüroth problem and the Cremona group
<table>
<thead>
<tr>
<th>variety</th>
<th>unirational</th>
<th>rational</th>
<th>method</th>
</tr>
</thead>
</table>

The Lüroth problem and the Cremona group
Rationality of Fano threefolds

<table>
<thead>
<tr>
<th>variety</th>
<th>unirational</th>
<th>rational</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_4 \subset \mathbb{P}^4$</td>
<td>some</td>
<td>no</td>
<td>Bir(V)</td>
</tr>
</tbody>
</table>
Rationality of Fano threefolds

<table>
<thead>
<tr>
<th>variety</th>
<th>unirational</th>
<th>rational</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_4 \subset \mathbb{P}^4$</td>
<td>some</td>
<td>no</td>
<td>Bir(V)</td>
</tr>
<tr>
<td>$V_{2,3} \subset \mathbb{P}^5$</td>
<td>yes</td>
<td>gen. no</td>
<td>J(V) , Bir(V)</td>
</tr>
</tbody>
</table>
Rationality of Fano threefolds

<table>
<thead>
<tr>
<th>variety</th>
<th>unirational</th>
<th>rational</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_4 \subset \mathbb{P}^4$</td>
<td>some</td>
<td>no</td>
<td>Bir(V)</td>
</tr>
<tr>
<td>$V_{2,3} \subset \mathbb{P}^5$</td>
<td>yes</td>
<td>gen. no</td>
<td>J(V), Bir(V)</td>
</tr>
<tr>
<td>$V_{2,2,2} \subset \mathbb{P}^6$</td>
<td>”</td>
<td>no</td>
<td>J(V)</td>
</tr>
</tbody>
</table>
Rationality of Fano threefolds

<table>
<thead>
<tr>
<th>variety</th>
<th>unirational</th>
<th>rational</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_4 \subset \mathbb{P}^4$</td>
<td>some</td>
<td>no</td>
<td>Bir(V)</td>
</tr>
<tr>
<td>$V_{2,3} \subset \mathbb{P}^5$</td>
<td>yes</td>
<td>gen. no</td>
<td>$J(V)$, Bir(V)</td>
</tr>
<tr>
<td>$V_{2,2,2} \subset \mathbb{P}^6$</td>
<td>”</td>
<td>no</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>$V_{10} \subset \mathbb{P}^7$</td>
<td>”</td>
<td>gen. no</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>variety</td>
<td>unirational</td>
<td>rational</td>
<td>method</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>$V_4 \subset \mathbb{P}^4$</td>
<td>some</td>
<td>no</td>
<td>Bir(V)</td>
</tr>
<tr>
<td>$V_{2,3} \subset \mathbb{P}^5$</td>
<td>yes</td>
<td>gen. no</td>
<td>J(V), Bir(V)</td>
</tr>
<tr>
<td>$V_{2,2,2} \subset \mathbb{P}^6$</td>
<td>"</td>
<td>no</td>
<td>J(V)</td>
</tr>
<tr>
<td>$V_{10} \subset \mathbb{P}^7$</td>
<td>"</td>
<td>gen. no</td>
<td>J(V)</td>
</tr>
<tr>
<td>$V_{12}, V_{16}, V_{18}, V_{22}$</td>
<td>"</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>
Rationality of Fano threefolds

<table>
<thead>
<tr>
<th>variety</th>
<th>unirational</th>
<th>rational</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_4 \subset \mathbb{P}^4$</td>
<td>some</td>
<td>no</td>
<td>$\text{Bir}(V)$</td>
</tr>
<tr>
<td>$V_{2,3} \subset \mathbb{P}^5$</td>
<td>yes</td>
<td>gen. no</td>
<td>$J(V), \text{Bir}(V)$</td>
</tr>
<tr>
<td>$V_{2,2,2} \subset \mathbb{P}^6$</td>
<td>”</td>
<td>no</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>$V_{10} \subset \mathbb{P}^7$</td>
<td>”</td>
<td>gen. no</td>
<td>$J(V)$</td>
</tr>
<tr>
<td>$V_{12}, V_{16}, V_{18}, V_{22}$</td>
<td>”</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>$V_{14} \subset \mathbb{P}^9$</td>
<td>”</td>
<td>no</td>
<td>$J(V)$</td>
</tr>
</tbody>
</table>
The main result

Theorem

The threefold \(\sum X_i = \sum X_2 \sum X_3 \) in \(\mathbb{P}_6 \) is not rational.

What is the point of giving one more counter-example? This gives one specific example of a non-rational \(V_2, V_3 \).

The proof is very simple – maybe the simplest non-rationality proof available.

Real motivation: it completes the work of Prokhorov on the finite simple subgroups of \(\text{Cr}_3 \).

Arnaud Beauville

The Lüroth problem and the Cremona group
The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Theorem

The threefold $\sum X_i = \sum X_{2i} = \sum X_{3i} = 0$ in P^6 is not rational.

What is the point of giving one more counter-example?

This gives one specific example of a non-rational $V_{2,3}, V_{3}$. The proof is very simple – maybe the simplest non-rationality proof available.

Real motivation: it completes the work of Prokhorov on the finite simple subgroups of Cr_3.

Arnaud Beauville

The Lüroth problem and the Cremona group
The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Note that in both cases, “generic” means “in an (unspecified) Zariski open subset of the moduli space”. So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_{2i} = \sum X_{3i} = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

This gives one specific example of a non-rational $V_{2,3}$.

The proof is very simple – maybe the simplest non-rationality proof available.

Real motivation: it completes the work of Prokhorov on the finite simple subgroups of Cr_3.

Arnaud Beauville

The Lüroth problem and the Cremona group
The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Note that in both cases, “generic” means “in an (unspecified) Zariski open subset of the moduli space”. So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.
The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Note that in both cases, “generic” means “in an (unspecified) Zariski open subset of the moduli space”. So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?
So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Note that in both cases, “generic” means “in an (unspecified) Zariski open subset of the moduli space”. So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Note that in both cases, “generic” means “in an (unspecified) Zariski open subset of the moduli space”. So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
- The proof is very simple – maybe the simplest non-rationality proof available.
The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.

Note that in both cases, “generic” means “in an (unspecified) Zariski open subset of the moduli space”. So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
- The proof is very simple – maybe the simplest non-rationality proof available.
- Real motivation: it completes the work of Prokhorov on the finite simple subgroups of Cr_3.

Recall the definition of the Jacobian of a curve C:

$$H^1(C, Z) \subset H^1(C, C) = H^{1,0} \oplus H^{0,1},$$

The image of $H^1(C, Z)$ in $H^{0,1}$ is a lattice, so get complex torus $JC := H^{0,1}/H^1(C, Z)$.

The cup-product defines a unimodular skew-symmetric form $E: H^1(C, Z) \times H^1(C, Z) \to \mathbb{Z}$ such that $E(x, iy) = E(x, y)$, $E(x, ix) > 0$ for $x \neq 0$.

$\Rightarrow \ \theta \in H^2(JC, Z) \cap H^1,1$, hence $\theta = c_1(L)$, ample, $h^0(L) = 1$:

This is a principal polarization on JC: we say that JC is a p.p.a.v. Defines unique divisor on JC (up to translation), the theta divisor.
Recall the definition of the Jacobian of a curve C:

$$H^1(C,Z) \subset H^1(C) = H^1,0 \oplus H^0,1.$$

The image of $H^1(C,Z)$ in $H^0,1$ is a lattice, so get complex torus $JC := H^0,1 / H^1(C,Z)$.

The cup-product defines a unimodular skew-symmetric form $E : H^1(C,Z) \times H^1(C,Z) \to \mathbb{Z}$ such that $E_R(ix, iy) = E_R(x, y)$, $E_R(x, ix) > 0$ for $x \neq 0$.

$\Rightarrow \theta \in H^2(JC,Z) \cap H^1,1$, hence $\theta = c_1(L)$, L ample, $h^0(L) = 1$:

This is a principal polarization on JC: we say that JC is a p.p.a.v. Defines unique divisor on JC (up to translation), the theta divisor.
Recall the definition of the Jacobian of a curve C:

$$H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$$
Recall the definition of the Jacobian of a curve C:

$$H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$$

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC := H^{0,1} / H^1(C, \mathbb{Z})$$.
Recall the definition of the Jacobian of a curve \(C \):

\[H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1} \]

The image of \(H^1(C, \mathbb{Z}) \) in \(H^{0,1} \) is a lattice, so get complex torus

\[JC := H^{0,1} / H^1(C, \mathbb{Z}) \].

The cup-product defines a unimodular skew-symmetric form

\[E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z} \]
The intermediate Jacobian

Recall the definition of the Jacobian of a curve C:

$$H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$$

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC := H^{0,1}/H^1(C, \mathbb{Z}) .$$

The cup-product defines a unimodular skew-symmetric form

$$E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z}$$

such that $E_R(ix, iy) = E_R(x, y)$, $E_R(x, ix) > 0$ for $x \neq 0$.
The intermediate Jacobian

Recall the definition of the Jacobian of a curve C:

$$H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$$

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC := H^{0,1} / H^1(C, \mathbb{Z}).$$

The cup-product defines a unimodular skew-symmetric form

$$E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y), E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

$$\exists \theta \in H^2(JC, \mathbb{Z}) \cap H^{1,1},$$
The intermediate Jacobian

Recall the definition of the Jacobian of a curve C: $H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus $JC := H^{0,1} / H^1(C, \mathbb{Z})$.

The cup-product defines a unimodular skew-symmetric form $E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z}$ such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

$\exists \theta \in H^2(JC, \mathbb{Z}) \cap H^{1,1}$, hence $\theta = c_1(L)$,
Recall the definition of the Jacobian of a curve C:

\[H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1} \]

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

\[JC := H^{0,1} / H^1(C, \mathbb{Z}) . \]

The cup-product defines a unimodular skew-symmetric form

\[E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z} \]

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

$\sim \theta \in H^2(JC, \mathbb{Z}) \cap H^{1,1}$, hence $\theta = c_1(L)$, L ample, $h^0(L) = 1$:

Arnaud Beauville

The Lüroth problem and the Cremona group
Recall the definition of the Jacobian of a curve C:

$$H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$$

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC := H^{0,1}/H^1(C, \mathbb{Z}).$$

The cup-product defines a unimodular skew-symmetric form

$$E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y), E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

$$\sim \theta \in H^2(JC, \mathbb{Z}) \cap H^{1,1}, \text{ hence } \theta = c_1(L), L \text{ ample, } h^0(L) = 1:\n$$

This is a principal polarization on JC: we say that JC is a p.p.a.v.
Recall the definition of the Jacobian of a curve C:

$$H^1(C, \mathbb{Z}) \subset H^1(C, \mathbb{C}) = H^{1,0} \oplus H^{0,1}$$

The image of $H^1(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC := H^{0,1}/H^1(C, \mathbb{Z}).$$

The cup-product defines a unimodular skew-symmetric form

$$E : H^1(C, \mathbb{Z}) \times H^1(C, \mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

$$\leadsto \theta \in H^2(JC, \mathbb{Z}) \cap H^{1,1}, \text{ hence } \theta = c_1(L), \text{ } L \text{ ample, } h^0(L) = 1:$$

This is a principal polarization on JC: we say that JC is a p.p.a.v.

Defines unique divisor on JC (up to translation), the theta divisor.
The Clemens-Griffiths criterion

If V is rational, J^V is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u: P^3 \sim \mathcal{K}_V$. Hironaka gives

$\begin{array}{c}
\text{composition of blow-ups of points and smooth curves } C_1, \ldots, C_p; \\
\text{v birational morphism. Then:}
\end{array}$

Arnaud Beauville

The Lüroth problem and the Cremona group
The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

\[H^3(V, \mathbb{Z}) \subset H^3(V, \mathbb{C}) = H^{2,1} \oplus H^{1,2} \]
The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V, \mathbb{Z}) \subset H^3(V, \mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

$JV = H^{1,2} / H^3(V, \mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.
The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V, \mathbb{Z}) \subset H^3(V, \mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

$JV = H^{1,2}/H^3(V, \mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.
The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V, \mathbb{Z}) \subset H^3(V, \mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

$JV = H^{1,2}/H^3(V, \mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists \ u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives
The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives

![Diagram](attachment:image.png)
The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V, \mathbb{Z}) \subset H^3(V, \mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

$JV = H^{1,2}/H^3(V, \mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists \ u : \mathbb{P}^3 \sim V$. Hironaka gives

$$\begin{array}{c}
P \\
\downarrow \ b \quad \downarrow \ v \quad \\
\mathbb{P}^3 \quad \sim \quad u \quad \sim \quad V
\end{array}$$

b: composition of blow-ups of points and smooth curves C_1, \ldots, C_p;
The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V, \mathbb{Z}) \subset H^3(V, \mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

$JV = H^{1,2}/H^3(V, \mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u : \mathbb{P}^3 \overset{\sim}{\to} V$. Hironaka gives

$$\begin{align*}
P & \xrightarrow{b} \mathbb{P}^3 \xrightarrow{v} \mathbb{P}^3 \\
& \xrightarrow{u} V
\end{align*}$$

b: composition of blow-ups of points and smooth curves C_1, \ldots, C_p;

v: birational morphism. Then:
The Clemens-Griffiths criterion (continued)

\[P \rightarrow P \text{ blow up} \Rightarrow J_P = J_{1} \times \ldots \times J_{p}, \text{with} J_i := J \mathcal{C}_i; \]

\[P \rightarrow V \text{ morphism} \Rightarrow H^*(P, Z) \xrightarrow{v^*} H^*(V, Z) \xleftarrow{v^*} \text{with} v^* v^* = \text{Id}, \]

so \[H^*(P, Z) = H^*(V, Z) \oplus M \Rightarrow J_P \sim = J_V \times A \]

for some p.p.a.v. \(A \).

Miracle The decomposition \(J_P = J_1 \times \ldots \times J_p \) is unique (up to permutation).

This is because \(\Theta_{J_P} = \Theta_{J_1} \times \ldots \times \Theta_{J_p} + \ldots + \Theta_{J_1} \times \ldots \times \Theta_{J_p} - 1 \times \Theta_{J_{p-1}} \) and the theta divisor of a Jacobian is irreducible.

So \(J_P \sim = J_1 \times \ldots \times J_p \sim = J_V \times A = \Rightarrow J_V \sim = J_{k_1} \times \ldots \times J_{k_m} \).

Arnaud Beauville

The Lüroth problem and the Cremona group
\[b : P \to \mathbb{P}^3 \text{ blow up} \Rightarrow JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i ; \]
The Clemens-Griffiths criterion (continued)

\[b : P \to \mathbb{P}^3 \text{ blow up} \implies JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i \; ; \]

\[\nu : P \to V \text{ morphism} \implies H^*(P, \mathbb{Z}) \xrightarrow{\nu_*} H^*(V, \mathbb{Z}) \text{ with } \nu_* \nu^* = \text{Id}, \]

Miracle

The decomposition \(JP = J_1 \times \ldots \times J_p \) is unique (up to permutation).

This is because \(\Theta_{JP} = \Theta_{J_1 \times \ldots \times J_p} + \ldots + \Theta_{J_1 \times \ldots \times J_{p-1} \times J_p} \) and the theta divisor of a Jacobian is irreducible. So \(JP \sim = J_1 \times \ldots \times J_p \sim = JV \times A \Rightarrow JV \sim = J_k^1 \times \ldots \times J_k^m \).
\[b : P \rightarrow \mathbb{P}^3 \text{ blow up} \Rightarrow JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i; \]
\[v : P \rightarrow V \text{ morphism} \Rightarrow H^*(P, \mathbb{Z}) \overset{v^*}{\longrightarrow} H^*(V, \mathbb{Z}) \text{ with } v_*v^* = \text{Id}, \]
so \[H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M. \]
The Clemens-Griffiths criterion (continued)

\[b : P \rightarrow \mathbb{P}^3 \text{ blow up} \Rightarrow JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i; \]

\[\nu : P \rightarrow V \text{ morphism} \Rightarrow H^*(P, \mathbb{Z}) \xrightarrow{\nu^*} H^*(V, \mathbb{Z}) \text{ with } \nu_\ast \nu^* = \text{Id}, \]

so \[H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M \Rightarrow JP \cong JV \times A \text{ for some p.p.a.v. } A. \]
The Clemens-Griffiths criterion (continued)

\[b : P \to \mathbb{P}^3 \text{ blow up} \Rightarrow JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i; \]

\[\nu : P \to V \text{ morphism} \Rightarrow H^*(P, \mathbb{Z}) \overset{\nu^*}{\to} H^*(V, \mathbb{Z}) \text{ with } \nu_* \nu^* = \text{Id}, \]

so \(H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M \Rightarrow JP \cong JV \times A \) for some p.p.a.v. \(A \).

Miracle

The decomposition \(JP = J_1 \times \ldots \times J_p \) is **unique** (up to permutation).
The Clemens-Griffiths criterion (continued)

\[b : P \rightarrow \mathbb{P}^3 \text{ blow up } \Rightarrow \quad JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i \ ; \]

\[v : P \rightarrow V \text{ morphism } \Rightarrow H^*(P, \mathbb{Z}) \xleftarrow{v^*} H^*(V, \mathbb{Z}) \text{ with } v_*v^* = \text{Id}, \]

so \(H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M \Rightarrow JP \cong JV \times A \) for some p.p.a.v. A.

Miracle

The decomposition \(JP = J_1 \times \ldots \times J_p \) is unique (up to permutation).

This is because

\[\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p} \]
The Clemens-Griffiths criterion (continued)

\(b : P \to \mathbb{P}^3\) blow up \(\Rightarrow\) \(JP = J_1 \times \ldots \times J_p\), with \(J_i := JC_i\);

\(\nu : P \to V\) morphism \(\Rightarrow H^*(P, \mathbb{Z}) \xrightarrow{\nu^*} H^*(V, \mathbb{Z})\) with \(\nu_*\nu^* = \text{Id}\), so \(H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M \Rightarrow JP \cong JV \times A\) for some p.p.a.v. \(A\).

Miracle

The decomposition \(JP = J_1 \times \ldots \times J_p\) is unique (up to permutation).

This is because

\[\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p}\]

and the theta divisor of a Jacobian is irreducible.
The Clemens-Griffiths criterion (continued)

\[b : P \to \mathbb{P}^3 \text{ blow up } \Rightarrow JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i ; \]

\[v : P \to V \text{ morphism } \Rightarrow H^*(P, \mathbb{Z}) \xrightarrow{v*} H^*(V, \mathbb{Z}) \text{ with } v_*v^* = \text{Id}, \]

so \(H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M \Rightarrow JP \cong JV \times A \text{ for some p.p.a.v. } A. \)

Miracle

The decomposition \(JP = J_1 \times \ldots \times J_p \) is unique (up to permutation).

This is because

\[\Theta_{JP} = \Theta_{J_1} \times \Theta_{J_2} \times \ldots \times \Theta_{J_p} + \ldots + \Theta_{J_1} \times \ldots \times \Theta_{J_{p-1}} \times \Theta_{J_p} \]

and the theta divisor of a Jacobian is irreducible.

So \(JP \cong J_1 \times \ldots \times J_p \cong JV \times A \).
The Clemens-Griffiths criterion (continued)

\[b : P \to \mathbb{P}^3 \text{ blow up} \implies JP = J_1 \times \ldots \times J_p, \text{ with } J_i := JC_i ; \]

\[\nu : P \to V \text{ morphism} \implies H^*(P, \mathbb{Z}) \xrightarrow{\nu^*} H^*(V, \mathbb{Z}) \text{ with } \nu_* \nu^* = \text{Id}, \]

so \[H^*(P, \mathbb{Z}) = H^*(V, \mathbb{Z}) \oplus M \implies JP \cong JV \times A \text{ for some p.p.a.v. } A. \]

Miracle

The decomposition \(JP = J_1 \times \ldots \times J_p \) is unique (up to permutation).

This is because

\[\Theta_{JP} = \Theta_{J_1} \times J_2 \times \ldots \times J_p + \ldots + J_1 \times \ldots \times J_{p-1} \times \Theta_{J_p} \]

and the theta divisor of a Jacobian is irreducible.

So \(JP \cong J_1 \times \ldots \times J_p \cong JV \times A \implies JV \cong J_{k_1} \times \ldots \times J_{k_m}. \)
Proof of the theorem

How can one prove that $J^V \not\sim J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...).

I will use instead the action of A_7.

Proof of the theorem: V defined by

\[\sum X_i = \sum X_{2i} = \sum X_{3i} = 0 \text{ in } P_6 : \]

action of S_7, hence of A_7.

Thus A_7 acts on J^V. Non-trivially?

Lemma J^V contains no abelian subvariety fixed by A_7.

Proof: analyze the action of A_7 on $T_0(J^V) = \mathcal{H}^1, 2 \sim \mathcal{H}^2(V, \Omega^1_V)$.

Find: $T_0(J^V) = V_6 \oplus V_{14}$, both faithful.
Proof of the theorem

How can one prove that $J^V \ncong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...).

I will use instead the action of A_7.

Proof of the theorem:

V defined by $\sum X_i = \sum X_{2i} = \sum X_{3i} = 0$ in P_6.

action of S_7, hence of A_7.

Thus A_7 acts on J^V. Non-trivially?

Lemma J^V contains no abelian subvariety fixed by A_7.

Proof: analyze the action of A_7 on $T_0(J^V) = H_1, 2 \cong H_2(V, \Omega^1_V)$.

Find: $T_0(J^V) = V_6 \oplus V_{14}$, both faithful.

Arnaud Beauville The Lüroth problem and the Cremona group
Proof of the theorem

How can one prove that \(JV \not\sim J_1 \times \ldots \times J_p \)?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...).

Proof of the theorem:

\[V \text{ defined by } \sum X_i = \sum X_{i+2} = \sum X_{i+3} = 0 \text{ in } \mathbb{P}^6; \]

action of \(S_7 \), hence of \(A_7 \).

Thus \(A_7 \) acts on \(JV \). Non-trivially?

Lemma \(JV \) contains no abelian subvariety fixed by \(A_7 \).

Proof: analyze the action of \(A_7 \) on \(T_0(JV) = H_1, 2 \sim H_2(V, \Omega_1^1) \).

Find: \(T_0(JV) = V_6 \oplus V_{14} \), both faithful.
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of \mathcal{A}_7.

Proof of the theorem:

Let V be defined by $\sum X_i = \sum X_{2i} = \sum X_{3i} = 0$ in P^6.

The action of S_7, hence of \mathcal{A}_7.

Thus \mathcal{A}_7 acts on JV. Non-trivially?

Lemma JV contains no abelian subvariety fixed by \mathcal{A}_7.

Proof: analyze the action of \mathcal{A}_7 on $T_0(JV) = H^1$, $\sim = H^2(V, \Omega^1_V)$. Find:

$T_0(JV) = V_6 \oplus V_{14}$, both faithful.
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of \mathcal{A}_7.

Proof of the theorem:
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of A_7.

Proof of the theorem:

V defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6:
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of A_7.

Proof of the theorem :

V defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of S_7, hence of A_7.

Arnaud Beauville

The Lüroth problem and the Cremona group
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of A_7.

Proof of the theorem:

V defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6:

action of S_7, hence of A_7.

Thus A_7 acts on JV. Non-trivially?
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of \mathcal{A}_7.

Proof of the theorem:

V defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6:

action of \mathcal{S}_7, hence of \mathcal{A}_7.

Thus \mathcal{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathcal{A}_7.

Arnaud Beauville
The Lüroth problem and the Cremona group
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of A_7.

Proof of the theorem:

V defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6:

action of S_7, hence of A_7.

Thus A_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by A_7.

Proof : analyze the action of A_7 on $T_0(JV) = H^{1,2} \cong H^2(V, \Omega^1_V)$.

Arnaud Beauville

The Lüroth problem and the Cremona group
Proof of the theorem

How can one prove that $JV \not\cong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of \mathcal{A}_7.

Proof of the theorem :

V defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6:

action of \mathcal{S}_7, hence of \mathcal{A}_7.

Thus \mathcal{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathcal{A}_7.

Proof : analyze the action of \mathcal{A}_7 on $T_0(JV) = H^{1,2} \cong H^2(V, \Omega^1_V)$.

Find: $T_0(JV) = V_6 \oplus V_{14}$, both faithful.
In particular, $\mathfrak{A}_7 \subset \text{Aut}(JV)$. Note: $\dim JV = 20$.

Step 2: Assume $JV = J_1 \times \ldots \times J_n$.

(more subtle: e.g. $\text{Aut}(E_{20}) \supset S_{20}$).
In particular, $\mathcal{A}_7 \subset \text{Aut}(J\!V)$. Note: $\dim J\!V = 20$.

Step 1: If $\mathcal{A}_7 \subset \text{Aut}(J\!C)$, $g(C) \geq 31$
Step 1: \(JV \neq JC \)

In particular, \(\mathcal{A}_7 \subset \text{Aut}(JV) \). Note: \(\dim JV = 20 \).

Step 1: If \(\mathcal{A}_7 \subset \text{Aut}(JC) \), \(g(C) \geq 31 \) (hence \(JV \neq JC \)).
In particular, $\mathcal{A}_7 \subset \text{Aut}(JV)$. Note: $\dim JV = 20$.

Step 1: If $\mathcal{A}_7 \subset \text{Aut}(JC)$, $g(C) \geq 31$ (hence $JV \neq JC$).

Torelli:

$$\text{Aut}(JC) = \begin{cases}
\text{Aut}(C) & \text{if } C \text{ hyperelliptic} \\
\text{Aut}(C) \times \mathbb{Z}/2 & \text{otherwise.}
\end{cases}$$
In particular, $\mathcal{A}_7 \subset \text{Aut}(J_V)$. Note: $\dim J_V = 20$.

Step 1: If $\mathcal{A}_7 \subset \text{Aut}(J_C)$, $g(C) \geq 31$ (hence $J_V \neq J_C$).

Torelli: $\text{Aut}(J_C) = \begin{cases}
\text{Aut}(C) \text{ if } C \text{ hyperelliptic} \\
\text{Aut}(C) \times \mathbb{Z}/2 \text{ otherwise.}
\end{cases}$

Thus $\mathcal{A}_7 \hookrightarrow \text{Aut}(C) \implies \frac{1}{2} 7! \leq 84(g - 1)$,
Step 1: $JV \neq JC$

In particular, $A_7 \subset \text{Aut}(JV)$. Note: $\dim JV = 20$.

Step 1: If $A_7 \subset \text{Aut}(JC)$, $g(C) \geq 31$ (hence $JV \neq JC$).

Torelli: $\text{Aut}(JC) = \begin{cases}
\text{Aut}(C) & \text{if } C \text{ hyperelliptic} \\
\text{Aut}(C) \times \mathbb{Z}/2 & \text{otherwise.}
\end{cases}$

Thus $A_7 \hookrightarrow \text{Aut}(C) \implies \frac{1}{2}7! \leq 84(g - 1)$, gives $g \geq 31$.

Arnaud Beauville
The Lüroth problem and the Cremona group
Step 1: $JV \neq JC$

In particular, $A_7 \subset \text{Aut}(JV)$. Note: $\dim JV = 20$.

Step 1: If $A_7 \subset \text{Aut}(JC)$, $g(C) \geq 31$ (hence $JV \neq JC$).

Torelli: $\text{Aut}(JC) = \begin{cases}
\text{Aut}(C) & \text{if } C \text{ hyperelliptic} \\
\text{Aut}(C) \times \mathbb{Z}/2 & \text{otherwise.}
\end{cases}$

Thus $A_7 \hookrightarrow \text{Aut}(C) \implies \frac{1}{2}7! \leq 84(g - 1)$, gives $g \geq 31$.

Step 2: Assume $JV = J_1 \times \ldots \times J_n$.
Step 1 : \(JV \neq JC \)

In particular, \(\mathcal{A}_7 \subset \text{Aut}(JV) \). Note: \(\dim JV = 20 \).

Step 1: If \(\mathcal{A}_7 \subset \text{Aut}(JC) \), \(g(C) \geq 31 \) (hence \(JV \neq JC \)).

Torelli: \[
\text{Aut}(JC) = \begin{cases}
\text{Aut}(C) & \text{if } C \text{ hyperelliptic} \\
\text{Aut}(C) \times \mathbb{Z}/2 & \text{otherwise.}
\end{cases}
\]

Thus \(\mathcal{A}_7 \hookrightarrow \text{Aut}(C) \Longrightarrow \frac{1}{2}7! \leq 84(g - 1) \), gives \(g \geq 31 \).

Step 2: Assume \(JV = J_1 \times \ldots \times J_n \).

(more subtle: e.g. \(\text{Aut}(E^{20}) \supset \mathfrak{S}_{20} \)).
Assume \(JV \cong J_1 \times \ldots \times J_n \)

Unicity of the decomposition \(\Rightarrow A_7 \) permutes the \(J_i \)'s:

\[
JV \cong J_1 \times \ldots \times J_n
\]
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i's:

$\sim \Rightarrow$ action of \mathfrak{A}_7 on $[1, n]$.
Assume $J^V \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i’s:

$\sim\sim$ action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]$:
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i's:

\leadsto action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]:$

$$JV \cong J_1 \times \ldots \times J_p$$

orbit $[1, p]$
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i's:

\leadsto action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]$:

$$JV \cong J_1 \times \ldots \times J_p \times J_{p+1} \times \ldots \times J_{p+q} \times \ldots$$

orbit $[1, p]$ \hspace{3cm} orbit $[p+1, p+q]$
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i’s:

\sim action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]$:

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{\text{orbit } [1,p]} \times \underbrace{J_{p+1} \times \ldots \times J_{p+q}}_{\text{orbit } [p+1,p+q]} \times \ldots$$

that is, $JV \cong J_1^p \times J_{p+1}^q \times \ldots$ Hence
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i’s:

$\sim\sim$ action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]$:

$JV \cong J_1 \times \ldots \times J_p \times J_{p+1} \times \ldots \times J_{p+q} \times \ldots$

that is, $JV \cong J_1^p \times J_{p+1}^q \times \ldots$

Hence

$20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \cdots$
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i's:

\sim action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]:$

$JV \cong J_1 \times \ldots \times J_p \times J_{p+1} \times \ldots \times J_{p+q} \times \ldots$

that is, $JV \cong J_1^p \times J_{p+1}^q \times \ldots \quad$ Hence

$20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \ldots$

Lemma (classical)

*If \mathfrak{A}_7 acts transitively on a set S, then $\# S = 1, 7, 15$ or ≥ 21.***
Assume \(JV \cong J_1 \times \ldots \times J_n \)

Unicity of the decomposition \(\Rightarrow \) \(\mathfrak{A}_7 \) permutes the \(J_i \)'s:

\(\sim \) action of \(\mathfrak{A}_7 \) on \([1, n]\). Reorder \([1, n]\) :

\[
JV \cong J_1 \times \ldots \times J_p \times \underbrace{J_{p+1} \times \ldots \times J_{p+q}}_{\text{orbit } [p+1, p+q]} \times \ldots
\]

that is, \(JV \cong J_1^p \times J_{p+1}^q \times \ldots \) Hence

\[
20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \ldots
\]

Lemma (classical)

If \(\mathfrak{A}_7 \) acts transitively on a set \(S \), then \(\#S = 1, 7, 15 \) or \(\geq 21 \).

But \(p = 1 \) \(\Rightarrow \) \(\mathfrak{A}_7 \) acts on \(J_1 \): either trivially,
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i's:

\sim action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n]:$

$$JV \cong J_1 \times \ldots \times J_p \times \underbrace{J_{p+1} \times \ldots \times J_{p+q}}_{\text{orbit } [p+1, p+q]} \times \ldots$$

that is, $JV \cong J_1^p \times J_{p+1}^q \times \ldots$ Hence

$$20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \ldots$$

Lemma (classical)

*If \mathfrak{A}_7 acts transitively on a set S, then $\# S = 1, 7, 15$ or ≥ 21.**

But $p = 1 \implies \mathfrak{A}_7$ acts on J_1: either trivially, (no by lemma)
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow A_7$ permutes the J_i's:
\leadsto action of A_7 on $[1, n]$. Reorder $[1, n] :$

$JV \cong J_1 \times \ldots \times J_p \times J_{p+1} \times \ldots \times J_{p+q} \times \ldots$

that is, $JV \cong J_1^p \times J_{p+1}^q \times \ldots$ Hence

$20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \ldots$

Lemma (classical)

If A_7 acts transitively on a set S, then $\#S = 1, 7, 15$ or ≥ 21.

But $p = 1 \implies A_7$ acts on J_1: either trivially, (no by lemma)
or $A_7 \subset \text{Aut}(J_1)$
Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i's:

\sim action of \mathfrak{A}_7 on $[1, n]$. Reorder $[1, n] :$

$$JV \cong J_1 \times \ldots \times J_p \times J_{p+1} \times \ldots \times J_{p+q} \times \ldots$$

that is, $JV \cong J_1^p \times J_{p+1}^q \times \ldots$ Hence

$$20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set S, then $\#S = 1, 7, 15$ or ≥ 21.

But $p = 1 \implies \mathfrak{A}_7$ acts on J_1: either trivially, *(no by lemma)*
or $\mathfrak{A}_7 \subset \text{Aut}(J_1) \implies \dim J_1 \geq 31 :$ impossible.
Unicity of the decomposition $\Rightarrow A_7$ permutes the J_i’s:

\rightsquigarrow action of A_7 on $[1, n]$. Reorder $[1, n] :$

$$J^V \cong J_1 \times \ldots \times J_p \times J_{p+1} \times \ldots \times J_{p+q} \times \ldots$$

that is, $J^V \cong J_1^p \times J_{p+1}^q \times \ldots$ Hence

$$20 = \dim J^V = p \dim J_1 + q \dim J_{p+1} + \cdots$$

Lemma (classical)

*If A_7 acts transitively on a set S, then $\#S = 1, 7, 15$ or ≥ 21."

But $p = 1 \implies A_7$ acts on J_1: either trivially, *(no by lemma)*

or $A_7 \subset \text{Aut}(J_1) \implies \dim J_1 \geq 31$: impossible.

Thus $p, q, \cdots = 7$ or 15; contradiction!
The method applies to other threefolds:

• $V_2, 3$:
 \[\sum X^2_i = \sum X^3_i = 0 \text{ in } \mathbb{P}^5, \text{ with group } S_6; \text{ more difficult.} \]

• Klein cubic:
 \[\sum_{i \in \mathbb{Z}/5} X^2_i X_i^4 + 1 = 0 \text{ in } \mathbb{P}^4, \text{ with group } \text{PSL}(2, F_{11}). \]

• The S_6-invariant quartic threefolds X_t:
 \[\sum x_i = 0, t \sum x_i^4 - (\sum x_i^2)^2 = 0 \text{ in } \mathbb{P}^5, t \in \mathbb{P}^1. \]

X_2 is the Burkhardt quartic, X_4 the Igusa quartic.

For $t \neq 0$, $2, 4, 6, 10, 7$, X_t has 30 nodes:

\[\text{Sing}(X_t) = S_6\text{-orbit of } (1, 1, \rho, \rho, \rho_2, \rho_2), \quad \rho = e^{2\pi i/3}. \]

\[\dim J^{\hat{}}X_t = 5, \text{ action of } S_6 \text{ nontrivial} \Rightarrow X_t \text{ not rational.} \]

Is it unirational?
The method applies to other threefolds:

- $V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5, with group S_6; more difficult.
The method applies to other threefolds:

- $V_{2,3}: \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5, with group \mathfrak{S}_6; more difficult.

- Klein cubic $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$ in \mathbb{P}^4.

X_2 is the Burkhardt quartic, X_4 the Igusa quartic. For $t \neq 0, 2, 4, 6, 10, 17$, X_t has 30 nodes: $\text{Sing}(X_t) = \mathfrak{S}_6$-orbit of $(1, 1, \rho, \rho, \rho^2, \rho^2)$, $\rho = e^{2\pi i/3}$.

$\dim \hat{J} X_t = 5$, action of \mathfrak{S}_6 nontrivial $\Rightarrow X_t$ not rational. Is it unirational?
The method applies to other threefolds:

- $V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5, with group S_6; more difficult.
- Klein cubic $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$ in \mathbb{P}^4, with group $PSL(2, \mathbb{F}_{11})$.

X_2 is the Burkhardt quartic, X_4 the Igusa quartic. For $t \neq 0$, 2, 4, 6, 10, 7, X_t has 30 nodes: $\text{Sing}(X_t) = S_6$-orbit of $(1, 1, \rho, \rho, \rho, \rho^2)$, $\rho = e^{2\pi i/3}$.

$\dim J_t \hat{X} = 5$, action of S_6 nontrivial $\Rightarrow X_t$ not rational.

Is it unirational?
The method applies to other threefolds:

- \(V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0 \) in \(\mathbb{P}^5 \), with group \(\mathbb{S}_6 \); more difficult.

- Klein cubic \(\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0 \) in \(\mathbb{P}^4 \), with group \(PSL(2, \mathbb{F}_{11}) \).

- The \(\mathbb{S}_6 \)-invariant quartic threefolds \(X_t : \sum x_i = 0 \), \(t \sum x_i^4 - (\sum x_i^2)^2 = 0 \) in \(\mathbb{P}^5 \), \(t \in \mathbb{P}^1 \).

\(X_2 \) is the Burkhardt quartic, \(X_4 \) the Igusa quartic. For \(t \neq 0, 2, 4, 6, 10, 17 \), \(X_t \) has 30 nodes: \(\text{Sing}(X_t) = \mathbb{S}_6 \)-orbit of \((1, 1, \rho, \rho, \rho_2, \rho_2^2)\), \(\rho = e^{2\pi i/3} \).

\(\dim \hat{J}^X_t = 5 \), action of \(\mathbb{S}_6 \) nontrivial \(\Rightarrow X_t \) not rational. Is it unirational?
The method applies to other threefolds:

- $V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5, with group S_6; more difficult.

- Klein cubic $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$ in \mathbb{P}^4, with group $PSL(2, F_{11})$.

- The S_6-invariant quartic threefolds

 $$X_t : \sum x_i = 0, \quad t \sum x_i^4 - (\sum x_i^2)^2 = 0 \quad \text{in} \quad \mathbb{P}^5, \quad t \in \mathbb{P}^1.$$

 X_2 is the Burkhardt quartic, X_4 the Igusa quartic.
The method applies to other threefolds:

- $V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5, with group \mathfrak{S}_6; more difficult.

- Klein cubic $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$ in \mathbb{P}^4, with group $PSL(2, \mathbb{F}_{11})$.

- The \mathfrak{S}_6-invariant quartic threefolds

$$X_t : \sum x_i = 0 \ , \ t \sum x_i^4 - (\sum x_i^2)^2 = 0 \ \text{in} \ \mathbb{P}^5 \ , \ t \in \mathbb{P}^1.$$

X_2 is the Burkhardt quartic, X_4 the Igusa quartic.

For $t \neq 0, 2, 4, 6, \frac{10}{7}$, X_t has 30 nodes:

$\text{Sing}(X_t) = \mathfrak{S}_6$-orbit of $(1, 1, \rho, \rho, \rho^2, \rho^2), \ \rho = e^{\frac{2\pi i}{3}}$.

Arnaud Beauville

The Lüroth problem and the Cremona group
The method applies to other threefolds:

- \(V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0 \) in \(\mathbb{P}^5 \), with group \(S_6 \); more difficult.

- **Klein cubic** \(\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0 \) in \(\mathbb{P}^4 \), with group \(PSL(2, \mathbb{F}_{11}) \).

- The \(S_6 \)-invariant quartic threefolds

\[
X_t : \sum x_i = 0, \quad t \sum x_i^4 - (\sum x_i^2)^2 = 0 \quad \text{in} \; \mathbb{P}^5, \quad t \in \mathbb{P}^1.
\]

\(X_2 \) is the Burkhardt quartic, \(X_4 \) the Igusa quartic.

For \(t \neq 0, 2, 4, 6, \frac{10}{7} \), \(X_t \) has 30 nodes:

\[
\text{Sing}(X_t) = S_6\text{-orbit of } (1, 1, \rho, \rho, \rho^2, \rho^2), \quad \rho = e^{\frac{2\pi i}{3}}.
\]

\(\text{dim } J\hat{X}_t = 5 \), action of \(S_6 \) nontrivial \(\Rightarrow X_t \) not rational.
The method applies to other threefolds:

- $V_{2,3} : \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^5, with group S_6; more difficult.

- Klein cubic $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$ in \mathbb{P}^4, with group $PSL(2, \mathbb{F}_{11})$.

- The S_6-invariant quartic threefolds

 $$X_t : \sum x_i = 0, \quad t \sum x_i^4 - (\sum x_i^2)^2 = 0 \quad \text{in} \quad \mathbb{P}^5, \quad t \in \mathbb{P}^1.$$

 X_2 is the Burkhardt quartic, X_4 the Igusa quartic.

For $t \neq 0, 2, 4, 6, \frac{10}{7}$, X_t has 30 nodes:

$$\text{Sing}(X_t) = S_6\text{-orbit of } (1, 1, \rho, \rho, \rho^2, \rho^2), \quad \rho = e^{\frac{2\pi i}{3}}.$$

$$\dim J\hat{X}_t = 5, \text{ action of } S_6 \text{ nontrivial } \Rightarrow X_t \text{ not rational}.$$

Is it unirational?
The Cremona group

The Cremona group

$\text{Cr} := \{\text{birational automorphisms of } \mathbb{P}^n\}.$

The finite subgroups of Cr_2 are known (Kantor, Wiman, Dolgachev-Iskovskikh); very long list.

The simple (non-cyclic) finite subgroups of Cr_2 are much easier to classify: A_5, A_6 and $\text{PSL}(2, F_7)$.

Theorem (Prokhorov)
The simple finite subgroups of Cr_3 not contained in Cr_2 are $A_7, \text{SL}(2, F_8)$ and $\text{PSp}(4, F_3)$.

Up to conjugacy, $\text{SL}(2, F_8)$ admits only one embedding in Cr_3, and $\text{PSp}(4, F_3)$ two.
The Cremona group

\[Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}. \]
The Cremona group

\[Cr_n := \{\text{birational automorphisms of } \mathbb{P}^n\}. \]

The finite subgroups of \(Cr_2 \) are known (Kantor, Wiman, Dolgachev-Iskovskikh); very long list.

Theorem (Prokhorov)
The simple finite subgroups of \(Cr_3 \) not contained in \(Cr_2 \) are \(A_7 \), \(\text{SL}(2, F_8) \) and \(\text{PSp}(4, F_3) \).

Up to conjugacy, \(\text{SL}(2, F_8) \) admits only one embedding in \(Cr_3 \), and \(\text{PSp}(4, F_3) \) two.
The Cremona group

$Cr_n := \{\text{birational automorphisms of } \mathbb{P}^n\}.$

The finite subgroups of Cr_2 are known (Kantor, Wiman, Dolgachev-Iskovskikh); very long list.

The simple (non-cyclic) finite subgroups of Cr_2 are much easier to
The Cremona group

\[Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}. \]

The finite subgroups of \(Cr_2 \) are known (Kantor, Wiman, Dolgachev-Iskovskikh); very long list.

The \textbf{simple} (non-cyclic) finite subgroups of \(Cr_2 \) are much easier to classify: \(\mathfrak{A}_5, \mathfrak{A}_6 \) and \(PSL(2, \mathbb{F}_7) \).
The Cremona group

$Cr_n := \{\text{birationale automorphisms of } \mathbb{P}^n\}$.

The finite subgroups of Cr_2 are known (Kantor, Wiman, Dolgachev-Iskovskikh); very long list.

The simple (non-cyclic) finite subgroups of Cr_2 are much easier to classify: \mathfrak{A}_5, \mathfrak{A}_6 and $PSL(2, \mathbb{F}_7)$.

Theorem (Prokhorov)

The simple finite subgroups of Cr_3 not contained in Cr_2 are \mathfrak{A}_7, $SL(2, \mathbb{F}_8)$ and $PSp(4, \mathbb{F}_3)$.
The Cremona group

\[Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}. \]

The finite subgroups of \(Cr_2 \) are known (Kantor, Wiman, Dolgachev-Iskovskikh); very long list.

The **simple** (non-cyclic) finite subgroups of \(Cr_2 \) are much easier to classify: \(\mathbb{A}_5, \mathbb{A}_6 \) and \(PSL(2, \mathbb{F}_7) \).

Theorem (Prokhorov)

The simple finite subgroups of \(Cr_3 \) not contained in \(Cr_2 \) are \(\mathbb{A}_7, SL(2, \mathbb{F}_8) \) and \(PSp(4, \mathbb{F}_3) \).

Up to conjugacy, \(SL(2, \mathbb{F}_8) \) admits only one embedding in \(Cr_3 \), and \(PSp(4, \mathbb{F}_3) \) two.
A complement

Proposition

Up to conjugacy, A_7 admits only one embedding in Cr_3.

A complement

Proposition

Up to conjugacy, A_7 admits only one embedding in Cr_3.

It is given by $A_7 \hookrightarrow SO(6, \mathbb{C})$ (standard representation), plus double covering $SO(6, \mathbb{C}) \to PGL(4, \mathbb{C})$.
Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3.

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6, \mathbb{C})$ (standard representation), plus double covering $SO(6, \mathbb{C}) \rightarrow PGL(4, \mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all $G \subset Aut(V)$, G finite simple, V rationally connected 3-fold.
Proposition

Up to conjugacy, A_7 admits only one embedding in Cr_3.

It is given by $A_7 \hookrightarrow SO(6, \mathbb{C})$ (standard representation), plus double covering $SO(6, \mathbb{C}) \rightarrow PGL(4, \mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all

$G \subset Aut(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational.
A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3.

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6, \mathbb{C})$ (standard representation), plus double covering $SO(6, \mathbb{C}) \to PGL(4, \mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all $G \subset Aut(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational.

\mathfrak{A}_7 appears twice: action on \mathbb{P}^3 above, and action on V:

$$\sum X_i = \sum X_i^2 = \sum X_i^3 = 0 \quad \text{in} \quad \mathbb{P}^6.$$
A complement

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3.

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6, \mathbb{C})$ (standard representation), plus double covering $SO(6, \mathbb{C}) \to PGL(4, \mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all $G \subset Aut(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational. \mathfrak{A}_7 appears twice: action on \mathbb{P}^3 above, and action on V:

$$\sum X_i = \sum X_i^2 = \sum X_i^3 = 0 \text{ in } \mathbb{P}^6.$$

Since V is not rational, only one embedding $\mathfrak{A}_7 \subset Cr_3$.

Arnaud Beauville
The Lüroth problem and the Cremona group
Another corollary

Proposition

The group S_7 does not embed in Cr_3.

Definition:

$$crdim(G) := \min\{n | \exists G \to Cr^n\}.$$

Proposition

For $n \geq 4$, $crdim(S_n) \leq n - 3$, with equality for $4 \leq n \leq 7$.

Proof:

S_n acts on the quadric Q_{n-3}: $\sum X_i = \sum X_i^2 = 0$ in P_{n-1}.

$S_5 \not\subset Cr_1$, $S_6 \not\subset Cr_2$, $S_7 \not\subset Cr_3$.

Question: Is it true that $crdim(S_n) = n - 3$?
Proposition

The group S_7 does not embed in Cr_3.

Another corollary

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3.

Idea of the proof: extend Prokhorov’s method to $\mathfrak{S}_7 \hookrightarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.
Another corollary

Proposition

The group \mathcal{S}_7 does not embed in Cr_3.

Idea of the proof: extend Prokhorov’s method to $\mathcal{S}_7 \sim\rightarrow$ any rationally connected 3-fold with an action of \mathcal{S}_7 is birational to V, hence not rational.

Definition: $cr\dim(G) := \min\{n \mid \exists \ G \hookrightarrow Cr_n\}$.
Another corollary

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3.

Idea of the proof: extend Prokhorov’s method to $\mathfrak{S}_7 \hookrightarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Definition: $crdim(G) := \min\{n \mid \exists G \hookrightarrow Cr_n\}$.

Proposition

For $n \geq 4$, $crdim(\mathfrak{S}_n) \leq n - 3$, with equality for $4 \leq n \leq 7$.

Arnaud Beauville

The Lüroth problem and the Cremona group
Another corollary

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3.

Idea of the proof : extend Prokhorov’s method to $\mathfrak{S}_7 \hookrightarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Definition : $\text{crdim}(G) := \min\{n \mid \exists \ G \hookrightarrow Cr_n\}$.

Proposition

For $n \geq 4$, $\text{crdim}(\mathfrak{S}_n) \leq n - 3$, with equality for $4 \leq n \leq 7$.

Proof : \mathfrak{S}_n acts on the quadric $Q^{n-3} : \sum X_i = \sum X_i^2 = 0$ in \mathbb{P}^{n-1}.
Another corollary

Proposition

The group \(\mathfrak{S}_7 \) does not embed in \(Cr_3 \).

Idea of the proof: extend Prokhorov’s method to \(\mathfrak{S}_7 \) \(\hookrightarrow \) any rationally connected 3-fold with an action of \(\mathfrak{S}_7 \) is birational to \(V \), hence not rational.

Definition: \(\text{crdim}(G) := \min\{n \mid \exists \ G \hookrightarrow Cr_n\} \).

Proposition

For \(n \geq 4 \), \(\text{crdim}(\mathfrak{S}_n) \leq n - 3 \), with equality for \(4 \leq n \leq 7 \).

Proof: \(\mathfrak{S}_n \) acts on the quadric \(Q^{n-3} : \sum X_i = \sum X_i^2 = 0 \) in \(\mathbb{P}^{n-1} \).

\(\mathfrak{S}_5 \not\subset Cr_1, \mathfrak{S}_6 \not\subset Cr_2, \mathfrak{S}_7 \not\subset Cr_3 \).
Another corollary

Proposition
The group \(S_7 \) does not embed in \(Cr_3 \).

Idea of the proof: extend Prokhorov’s method to \(S_7 \) \(\hookrightarrow \) any rationally connected 3-fold with an action of \(S_7 \) is birational to \(V \), hence not rational.

Definition: \(\text{crdim}(G) := \min\{n \mid \exists \ G \hookrightarrow Cr_n\} \).

Proposition
For \(n \geq 4 \), \(\text{crdim}(S_n) \leq n - 3 \), with equality for \(4 \leq n \leq 7 \).

Proof: \(S_n \) acts on the quadric \(Q^{n-3} : \sum X_i = \sum X_i^2 = 0 \) in \(\mathbb{P}^{n-1} \).
\(S_5 \nsubseteq Cr_1 \), \(S_6 \nsubseteq Cr_2 \), \(S_7 \nsubseteq Cr_3 \).

Question: Is it true that \(\text{crdim}(S_n) = n - 3 \)?
The end
THE END