The stable Lüroth problem

Arnaud Beauville

Université de Nice

New York, May 2015
The classical Lüroth problem

3 counter-examples (1971), with 3 different methods:

- **Clemens-Griffiths**
 - Example: cubic
 - Method: Hodge theory

- **Iskovskikh-Manin**
 - Example: some quartics
 - Method: Fano's idea

- **Artin-Mumford**
 - Example: specific
 - Method: Algebra (Brauer group)

Arnaud Beauville
The stable Lüroth problem
The classical Lüroth problem

X complex variety

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic</td>
<td>\mathbb{P}^4</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics</td>
<td>\mathbb{P}^4</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>Algebra (Brauer group)</td>
</tr>
</tbody>
</table>

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

X complex variety

$(\mathbb{P}^n \simto X)$

X rational

3 counter-examples (1971), with 3 different methods:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic \mathbb{P}^4</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics \mathbb{P}^4</td>
<td>Fano's idea</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>Algebra (Brauer group)</td>
</tr>
</tbody>
</table>

Arnaud Beauville The stable Lüroth problem
The classical Lüroth problem

X complex variety

\[(\mathbb{P}^n \simrightarrow X) \quad \text{and} \quad (\mathbb{P}^n \twoheadrightarrow X)\]

- X rational
- X unirational

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic \mathbb{P}^4</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics \mathbb{P}^4</td>
<td>Fano's idea</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific Algebra (Brauer group)</td>
<td></td>
</tr>
</tbody>
</table>

Arnaud Beauville The stable Lüroth problem
The classical Lüroth problem

X complex variety

\[(\mathbb{P}^n \simrightarrow X) \quad (\mathbb{P}^n \dashrightarrow X) \]

X rational $\quad \rightarrow \quad X$ unirational

3 counter-examples (1971), with 3 different methods:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic $\subseteq \mathbb{P}^4$</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics $\subseteq \mathbb{P}^4$</td>
<td>Fano's idea</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>Algebra (Brauer group)</td>
</tr>
</tbody>
</table>

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

X complex variety

$\left(\mathbb{P}^n \simarrow X \right) \quad \left(\mathbb{P}^n \dasharrow X \right)$

X rational $\quad \Rightarrow \quad X$ unirational

(Lüroth problem)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic \mathbb{P}^4</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics \mathbb{P}^4</td>
<td>Fano's idea</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>Algebra (Brauer group)</td>
</tr>
</tbody>
</table>

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

\[X \] complex variety

\[(\mathbb{P}^n \xrightarrow{\sim} X) \quad \text{ (\mathbb{P}^n \dashrightarrow X) } \]

\[X \text{ rational} \quad \xrightarrow{\sim} \quad X \text{ unirational} \]

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

\mathcal{X} complex variety

$\mathbb{P}^n \dasharrow \mathcal{X}$

\mathcal{X} rational \iff \mathcal{X} unirational

3 counter-examples (1971), with 3 different methods:
The classical Lüroth problem

X complex variety

$\begin{align*}
(\mathbb{P}^n &\sim X) \quad (\mathbb{P}^n &\rightarrow X) \\
X \text{ rational} &\quad \iff \quad X \text{ unirational}
\end{align*}$

3 counter-examples (1971), with 3 different methods:
The classical Lüroth problem

\(\mathbb{P}^n \sim \rightarrow X \) \(\mathbb{P}^n \rightarrow \rightarrow X \)

3 counter-examples (1971), with 3 different methods:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>quartics</td>
<td>Fano's idea</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>Algebra (Brauer group)</td>
</tr>
</tbody>
</table>
The classical Lürroth problem

\[X \text{ complex variety} \]

\[
\begin{align*}
\mathbb{P}^n \xrightarrow{\sim} X & \quad \text{and} \quad \mathbb{P}^n \dashrightarrow X \\
X \text{ rational} & \quad \iff \quad X \text{ unirational}
\end{align*}
\]

3 counter-examples (1971), with 3 different methods:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic (\subset\mathbb{P}^4)</td>
<td>Hodge theory</td>
</tr>
</tbody>
</table>
The classical Lüroth problem

X complex variety

$\mathbb{P}^n \sim \rightarrow X$ \hspace{1cm} \hspace{1cm} \hspace{1cm} $\mathbb{P}^n \dashrightarrow X$

X rational \hspace{1cm} \hspace{1cm} \hspace{1cm} \rightarrow \hspace{1cm} \rightarrow \hspace{1cm} \rightarrow

X unirational

3 counter-examples (1971), with 3 different methods:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic $\subset \mathbb{P}^4$</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics $\subset \mathbb{P}^4$</td>
<td>Fano’s idea</td>
</tr>
</tbody>
</table>
The classical Lüroth problem

X complex variety

$\left(\mathbb{P}^n \dashrightarrow X \right)$

X rational $\quad \leftrightarrow \quad X$ unirational

3 counter-examples (1971), with 3 different methods:

<table>
<thead>
<tr>
<th>Authors</th>
<th>Example</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clemens-Griffiths</td>
<td>cubic $\subset \mathbb{P}^4$</td>
<td>Hodge theory</td>
</tr>
<tr>
<td>Iskovskikh-Manin</td>
<td>some quartics $\subset \mathbb{P}^4$</td>
<td>Fano’s idea</td>
</tr>
<tr>
<td>Artin-Mumford</td>
<td>specific</td>
<td>Algebra (Brauer group)</td>
</tr>
</tbody>
</table>
Many examples, at least in dimension 3 (for instance, among Iskovskikh's list of Fano threefolds). Only the Artin-Mumford method gives examples in dimension ≤ 3, and quite particular.
many examples, at least in dimension 3 (for instance, among Iskovskikh’s list of Fano threefolds).

Arnaud Beauville
The stable Lüroth problem
many examples, at least \textbf{in dimension 3} (for instance, among Iskovskikh’s list of Fano threefolds).

Only the Artin-Mumford method gives examples in dimension > 3, and quite particular.
The stable Lüroth problem

Hence, search for intermediate notion:

X stably rational

if $X \in P^m$ rational for some m.

\[\Downarrow \]

$\Downarrow \rightarrow \uparrow \leftarrow \Uparrow$

\[\Uparrow \rightarrow \downarrow \rightarrow \leftarrow \Uparrow \]

$X \in [A-M] \in [B-C-S-S]$.

Artin-Mumford: stably rational

$\check{\text{Tors}} H_3 p X, Z q^0$.

Construct quartic double solid $X_{2:1} \check{\text{Ý ÝÝ Ñ}} P^3$ with $\check{\text{Tors}} H_3 p X, Z q^0$:

branched along Δ quartic symmetroid: defined by $\text{det} p L_{ij} q^0, p L_{ij} q$ symmetric 4 $\hat{\text{4}}$ matrix of linear forms.

Arnaud Beauville
Hence, search for intermediate notion:

\[
\text{rational} \quad \rightarrow \quad \text{unirational} \quad \rightarrow \quad \text{stably rational} \quad \rightarrow \quad \uparrow
\]

\[X \subseteq \text{[A-M]} \quad X \subseteq \text{[B-C-S-S]} \quad \text{Tors} H^3 p, Z q \neq 0 \]

Construct quartic double solid \(X\) of index 2:1 \(\mathbb{P}^3\) with Tors \(H^3 p, Z q \neq 0\):

branched along \(\Delta\) quartic symmetroid: defined by \(\det p_{ij} q \neq 0\), \(p_{ij}\) symmetric 4 \(\times\) 4 matrix of linear forms.
Hence, search for intermediate notion:

\[X \text{ stably rational if } X \times \mathbb{P}^m \text{ rational for some } m. \]
Hence, search for intermediate notion:

\(X \text{ stably rational} \) if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[
\text{rational} \quad \xrightarrow{\text{unirational}} \quad \text{stably rational}
\]
Hence, search for intermediate notion:

\[X \text{ stably rational if } X \times \mathbb{P}^m \text{ rational for some } m. \]
Hence, search for intermediate notion:

\(X \) stably rational if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[
\text{rational} \quad \overset{\text{\textbullet}}{\leftrightarrow} \quad \text{unirational} \quad \overset{\text{\textbullet}}{\leftrightarrow} \quad \text{stably rational}
\]

\[[B-C-S-S] \quad \overset{\text{\textbullet}}{\leftrightarrow} \quad X \quad \overset{\text{\textbullet}}{\leftrightarrow} \quad \text{Artin-Mumford: stably rational} \]

Construct quartic double solid \(X \) :

quotient by \(\mathbb{P}^3 \) with \(\text{Tors} H_3 \),

branched along \(\Delta \) quartic symmetroid: defined by \(\det \mathbf{L} \),

\(\mathbf{L} \) symmetric \(4 \times 4 \) matrix of linear forms.
The stable Lüroth problem

Hence, search for intermediate notion:

X stably rational if $X \times \mathbb{P}^m$ rational for some m.

\[\text{rational} \rightarrow \text{unirational} \rightarrow \text{stably rational} \rightarrow \text{rational} \]

\[[B-C-S-S] \leftrightarrow X \leftrightarrow [A-M] \]
The stable Lüroth problem

Hence, search for intermediate notion:

\(X \) stably rational if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[
\begin{array}{ccc}
\text{rational} & \longrightarrow & \text{unirational} \\
\downarrow & & \downarrow \\
\text{stably rational} & \leftarrow & \text{stably rational} \\
\end{array}
\]

\([B-C-S-S]\) \[\longleftrightarrow\] \[X\] \[\longleftrightarrow\] \[A-M]\]

Artin-Mumford: stably rational \[\Longleftrightarrow\] \(\text{Tors } H^3(X, \mathbb{Z}) = 0 \)
Hence, search for intermediate notion:

\(X \text{ stably rational} \) if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[
\begin{array}{ccc}
\text{rational} & \longrightarrow & \text{unirational} \\
\downarrow & & \uparrow \\
\text{stably rational} & & \\
\end{array}
\]

Artin-Mumford: stably rational \(\implies \) \(\text{Tors } H^3(X, \mathbb{Z}) = 0 \)

Construct \textit{quartic double solid} \(X \to^{2:1} \mathbb{P}^3 \) with \(\text{Tors } H^3(X, \mathbb{Z}) \neq 0 \):
The stable Lüroth problem

Hence, search for intermediate notion:

\(X \) stably rational if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[
\text{rational} \quad \xrightarrow{\sim} \quad \text{unirational} \\
\Downarrow \Downarrow \Downarrow \Downarrow \quad \Downarrow \Downarrow \Downarrow \Downarrow \quad \Downarrow \Downarrow \Downarrow \Downarrow
\]

\(\text{stably rational} \)

\[
\text{[B-C-S-S]} \quad \longleftrightarrow \quad X \quad \longleftrightarrow \quad [A-M]
\]

Artin-Mumford: stably rational \(\iff \) Tors \(H^3(X, \mathbb{Z}) = 0 \)

Construct \emph{quartic double solid} \(X \xrightarrow{2:1} \mathbb{P}^3 \) with Tors \(H^3(X, \mathbb{Z}) \neq 0 \):

branched along \(\Delta = \text{quartic symmetroid} \): defined by \(\det(L_{ij}) = 0 \),

\((L_{ij}) \) symmetric \(4 \times 4 \) matrix of linear forms.
New results

Theorem (Voisin)
A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

Very general := outside countable union of strict subvarieties of the moduli space

Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)
A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

Unirational; rationality was not known.

First example of a prime Fano manifold (b_2^1) of dimension ≥ 3, unirational but not rational.
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

Unirational; rationality was not known.

First example of a prime Fano manifold (b_2^1) of dimension ≥ 3, unirational but not rational.
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
New results

Theorem (Voisin)

* A double covering of \mathbb{P}^3 branched along a very general quartic surface is **not** stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is **not** stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is **not** stably rational.
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

- Unirational; rationality was not known.
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

- Unirational; rationality was not known.
- First example of a prime Fano manifold ($b_2 = 1$) of dimension > 3, unirational but not rational.
Elaborations of Voisin's idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $e^2 R^n_2 V_{P^n_1}$ (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over P^2 with discriminant curve of degree e^6 (Hassett-Kresch-Tschinkel, with a more general statement).

But:

'Not expected to be unirational, except some cases in 4.'

'Already known to be non-rational, except hypersurfaces of degree 2p and 2$^{p-1}$ in P^3_p in 3.'

'All of dimension 3 except in 3.'

Arnaud Beauville

The stable Lüroth problem
Elaborations of Voisin’s idea give the non-stable rationality of the very general (\textit{in chronological order}):

1. Quartic threefold (Colliot-Thélen–Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $\ell^2 R_{n^2}$ in P_n (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over P_2 with discriminant curve of degree ℓ^6 (Hassett–Kresch–Tschinkel, with a more general statement).

But: ‘Not expected to be unirational, except some cases in 4.’

Already known to be non-rational, except hypersurfaces of degree 2^p and $2^p - 1$ in P_3.

All of dimension 3 except in 3."
Other results

Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).

But:

- Not expected to be unirational, except some cases in 4.
- Already known to be non-rational, except hypersurfaces of degree 2 and 2 \(p \) \(x \) in \(P^3 \).
- All of dimension 3 except in 3.

Arnaud Beauville

The stable Lüroth problem
Other results

Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).

But:

'Not expected to be unirational, except some cases in 4.'

'Already known to be non-rational, except hypersurfaces of degree 2^p and 2^{p-1} in \mathbb{P}^{3p-1} in particular, quartic threefold and fourfold.'

All of dimension 3 except in 3.
Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $\geq 2 \left\lceil \frac{n + 2}{3} \right\rceil$ in \mathbb{P}^{n+1} (Totaro); in particular, quartic threefold and fourfold.
Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $\geq 2 \left\lceil \frac{n + 2}{3} \right\rceil$ in \mathbb{P}^{n+1} (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over \mathbb{P}^2 with discriminant curve of degree ≥ 6
Elaborations of Voisin’s idea give the non-stable rationality of the very general \textit{(in chronological order)}:

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $\geq 2 \left\lceil \frac{n + 2}{3} \right\rceil$ in \mathbb{P}^{n+1} (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over \mathbb{P}^{2} with discriminant curve of degree ≥ 6 (Hassett-Kresch-Tschinkel, with a more general statement).
Other results

Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree \(\geq 2 \left\lfloor \frac{n + 2}{3} \right\rfloor \) in \(\mathbb{P}^{n+1} \) (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over \(\mathbb{P}^2 \) with discriminant curve of degree \(\geq 6 \) (Hassett-Kresch-Tschinkel, with a more general statement).

But: • Not expected to be unirational, except some cases in 4.
Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $\geq 2 \left\lfloor \frac{n+2}{3} \right\rfloor$ in \mathbb{P}^{n+1} (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over \mathbb{P}^2 with discriminant curve of degree ≥ 6 (Hassett-Kresch-Tschinkel, with a more general statement).

But:
- Not expected to be unirational, except some cases in 4.
- Already known to be non-rational, except hypersurfaces of degree $2p$ and $2p+1$ in \mathbb{P}^{3p-1} in 3.
Elaborations of Voisin’s idea give the non-stable rationality of the very general (in chronological order):

1. Quartic threefold (Colliot-Thélène-Pirutka).
2. Double sextic solid (AB).
3. Hypersurface of degree $\geq 2 \left\lceil \frac{n + 2}{3} \right\rceil$ in \mathbb{P}^{n+1} (Totaro); in particular, quartic threefold and fourfold.
4. Conic bundle over \mathbb{P}^2 with discriminant curve of degree ≥ 6 (Hassett-Kresch-Tschinkel, with a more general statement).

But:
- Not expected to be unirational, except some cases in 4.
- Already known to be non-rational, except hypersurfaces of degree $2p$ and $2p + 1$ in \mathbb{P}^{3p-1} in 3.
- All of dimension 3 except in 3.
The degeneration argument

Idea: degenerate general quartic into symmetroid. But

\[Tors H_3^p X, Z^q \neq 0 \] for a smooth double cover of \(\mathbb{P}^n \).

Proposition (Voisin, Colliot-Thélène-Pirutka)

\[X \rightarrow B \] flat projective, \(B \) smooth, general fiber smooth, \(o \mathbb{P}^B \).

Assume \(X \) admits a desingularization \(\sigma: \tilde{X} \rightarrow X \) with:

- \(a \): \(Tors H_3^p \tilde{X}, Z^q \neq 0 \);
- \(b \): \(\sigma \) is \(1 \)-rational over \(\kappa_x \) for all \(x \in X \).

Then \(X \) is not stably rational for very general \(b \).

For Voisin’s theorem:

\(X \) is a double \(\mathbb{P}^3 \) branched along symmetroid. \(X \) has 10 ordinary double points.

Arnaud Beauville

The stable Lüroth problem
The degeneration argument

Idea: degenerate general quartic into symmetroid.

Proposition (Voisin, Colliot-Thélène-Pirutka)

Assume $X \to B$ flat projective, B smooth, general fiber smooth, $o \to B$.

Then X not stably rational for very general b.

For Voisin's theorem: X, $double \ P^3$ branched along symmetroid.

X has 10 ordinary double points η, Artin-Mumford η.

Arnaud Beauville

The stable Lüroth problem
Idea: degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $o \in B$.
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: \(\text{Tors } H^3(X, \mathbb{Z}) = 0 \) for a smooth double cover of \(\mathbb{P}^n \).

Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \rightarrow B \) flat projective, \(B \) smooth, general fiber smooth, \(\circ \in B \).

Assume \(X := \mathcal{X}_\circ \) admits a desingularization \(\sigma : \tilde{X} \rightarrow X \) with:

Idea: degenerate general quartic into symmetroid.

But: \(\text{Tors } H^3(X, \mathbb{Z}) = 0 \) for a smooth double cover of \(\mathbb{P}^n \).

Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).

Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with :

a) \(\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0 \);
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \rightarrow B$ flat projective, B smooth, general fiber smooth, $\mathfrak{o} \in B$.

Assume $X := \mathcal{X}_\mathfrak{o}$ admits a desingularization $\sigma : \tilde{X} \rightarrow X$ with:

a) $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;

b) $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Arnaud Beauville

The stable Lüroth problem
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: \(\text{Tors } H^3(X, \mathbb{Z}) = 0 \) for a smooth double cover of \(\mathbb{P}^n \).

Proposition (Voisin, Colliot-Thélène-Pirutka)

\[\mathcal{X} \to B \text{ flat projective, } B \text{ smooth, general fiber smooth, } o \in B. \]

Assume \(\mathcal{X} := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{\mathcal{X}} \to \mathcal{X} \) with :

a) \(\text{Tors } H^3(\tilde{\mathcal{X}}, \mathbb{Z}) \neq 0; \)

b) \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X. \)

Then \(\mathcal{X}_b \) not stably rational for very general \(b. \)
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But : $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $b \in B$.

Assume $X := \mathcal{X}_b$ admits a desingularization $\sigma : \tilde{X} \to X$ with :

a) $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;

b) $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

For Voisin’s theorem: $X = \text{double } \mathbb{P}^3$ branched along symmetroid.
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Proposition (Voisin, Colliot-Thélène-Pirutka)

$X \rightarrow B$ flat projective, B smooth, general fiber smooth, $\circ \in B$.

Assume $X := X_\circ$ admits a desingularization $\sigma : \tilde{X} \rightarrow X$ with:

a) $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;

b) $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then X_b not stably rational for very general b.

For Voisin’s theorem: $X = \text{double } \mathbb{P}^3$ branched along symmetroid. X has 10 ordinary double points $\Rightarrow b$,
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $o \in B$.

Assume $X := \mathcal{X}_o$ admits a desingularization $\sigma : \tilde{X} \to X$ with:

1. $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;
2. $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

For Voisin’s theorem: $X =$ double \mathbb{P}^3 branched along symmetroid. X has 10 ordinary double points $\Rightarrow b)$, Artin-Mumford $\Rightarrow a$).
The degeneration argument

Idea: degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $o \in B$.

Assume $X := \mathcal{X}_o$ admits a desingularization $\sigma : \tilde{X} \to X$ with:

- **a)** $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;
- **b)** $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

For Voisin’s theorem: $X = \text{double } \mathbb{P}^3$ branched along symmetroid. X has 10 ordinary double points $\Rightarrow b)$, Artin-Mumford $\Rightarrow a)$. ■
How to prove the degeneration argument?

Idea: use \(CH_0 \) of 0-cycles on \(X \).

Proposition (Colliot-Thélène)

\[CH_0(X) \rightarrow \text{K-thy for all extensions } C \rightarrow K \]

\[\Delta \rightarrow X^{\tilde{t}} \]

Supp \(Z \subset D^{\tilde{X}} \)

If this holds, we say that \(X \) is \(CH_0 \)-trivial.

This is relevant because of:

Proposition

\[X \text{ stably rational } \Leftrightarrow X \text{ CH}_0 \text{-trivial} \]

\[\text{Tors} H^3(X, \mathbb{Z}) = 0. \]

Proof:

a) \(CH_0 \) birational invariant, and

\[CH_0(X^{\tilde{t}}) = CH_0(X). \]

Arnaud Beauville

The stable Lüroth problem
How to prove the degeneration argument?

Idea: use $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}}$.
How to prove the degeneration argument?

Idea: use $\text{CH}_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}}$.

Proposition (Colliot-Thélène)

X smooth projective of dimension n.

Arnaud Beauville
The stable Lüroth problem
How to prove the degeneration argument?

Idea: use $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}}$.

Proposition (Colliot-Thélène)

X smooth projective of dimension n.

(i) $CH_0(X_K) = \mathbb{Z}$ for all extensions $\mathbb{C} \to K$.
How to prove the degeneration argument?

Idea: use $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X) / \sim_{\text{rat}}$.

Proposition (Colliot-Thélène)

X smooth projective of dimension n.

\Leftrightarrow

(i) $CH_0(X_K) = \mathbb{Z}$ for all extensions $\mathbb{C} \to K$;

(ii) $\Delta = X \times \{p\} + Z$ in $CH^n(X \times X)$, $\text{Supp}(Z) \subset D \times X$.
How to prove the degeneration argument?

Idea: use $\text{CH}_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}}$.

Proposition (Colliot-Thélène)

X smooth projective of dimension n.

\begin{align*}
(i) \quad & \text{CH}_0(X_K) = \mathbb{Z} \quad \text{for all extensions } \mathbb{C} \to K ; \\
(ii) \quad & \Delta = X \times \{p\} + Z \text{ in } \text{CH}^n(X \times X), \text{Supp}(Z) \subset D \times X
\end{align*}

If this holds, we say that X is CH_0-trivial.
How to prove the degeneration argument?

Idea: use \(CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}} \).

Proposition (Colliot-Thélène)

\(X \) smooth projective of dimension \(n \).

- (i) \(CH_0(X_K) = \mathbb{Z} \) for all extensions \(\mathbb{C} \to K \);
- (ii) \(\Delta = X \times \{p\} + Z \) in \(CH^n(X \times X) \), \(\text{Supp}(Z) \subset D \times X \)

If this holds, we say that \(X \) is \(CH_0\)-trivial.

This is relevant because of:
How to prove the degeneration argument?

Idea: use $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}^n(X)/\sim_{\text{rat}}$.

Proposition (Colliot-Thélène)

X smooth projective of dimension n.

\begin{align*}
(i) & \quad CH_0(X_K) = \mathbb{Z} \quad \text{for all extensions } \mathbb{C} \to K; \\
(ii) & \quad \Delta = X \times \{p\} + Z \text{ in } CH^n(X \times X), \text{Supp}(Z) \subset D \times X
\end{align*}

If this holds, we say that X is CH_0-trivial.

This is relevant because of:

Proposition

X stably rational \implies X CH_0-trivial \implies $\text{Tors } H^3(X, \mathbb{Z}) = 0.$
How to prove the degeneration argument?

Idea: use $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}}$.

Proposition (Colliot-Thélène)

X smooth projective of dimension n.

\(\begin{align*}
(i) & \quad CH_0(X_K) = \mathbb{Z} \quad \text{for all extensions } \mathbb{C} \to K; \\
(ii) & \quad \Delta = X \times \{p\} + Z \text{ in } CH^n(X \times X), \text{Supp}(Z) \subset D \times X
\end{align*}\)

If this holds, we say that X is CH_0-trivial.

This is relevant because of:

Proposition

X stably rational $\implies X$ CH_0-trivial \implies Tors $H^3(X, \mathbb{Z}) = 0$.

Proof: a) CH_0 birational invariant, and $CH_0(X \times \mathbb{P}^m) = CH_0(X)$.

Arnaud Beauville The stable Lüroth problem
CH_0 trivial $\implies H^3(X,\mathbb{Z}) = 0$
CH_0 trivial $\Rightarrow H^3(X, \mathbb{Z}) = 0$

b) X CH_0-trivial : $\Delta \sim_{\text{rat}} X \times \{p\} + Z$, $\text{Supp}(Z) \subset D \times X$;
b) X CH$_0$-trivial: $\Delta \sim_{\text{rat}} X \times \{p\} + Z$, $\text{Supp}(Z) \subset D \times X$; assume D smooth for simplicity.
b) X CH_0-trivial: $\Delta \sim_{\text{rat}} X \times \{p\} + Z$, $\text{Supp}(Z) \subset D \times X$; assume D smooth for simplicity.
CH_0 trivial $\implies H^3(X, \mathbb{Z}) = 0$

b) X CH_0-trivial: $\Delta \sim_{\text{rat}} X \times \{p\} + Z$, $\text{Supp}(Z) \subset D \times X$; assume D smooth for simplicity.

For $\mathfrak{z} \in CH^n(X \times X)$, endomorphism $\mathfrak{z}^*: \alpha \mapsto p_*(q^* \alpha \cdot \mathfrak{z})$ of $H^r(X, \mathbb{Z})$.
CH_0 trivial $\Rightarrow H^3(X, \mathbb{Z}) = 0$

b) X CH_0-trivial: $\Delta \sim_{\text{rat}} X \times \{p\} + Z$, $\text{Supp}(Z) \subset D \times X$; assume D smooth for simplicity.

\[
\begin{array}{ccc}
X \times X & \xrightarrow{p} & X \\
\downarrow & & \downarrow \\
X & \xrightarrow{q} & X
\end{array}
\]

For $\mathcal{Z} \in CH^n(X \times X)$, endomorphism $\mathcal{Z}^* : \alpha \mapsto p_*(q^* \alpha \cdot \mathcal{Z})$ of $H^r(X, \mathbb{Z})$.

$\Delta^* = \text{Id}$, $[X \times \{p\}]^* = 0$ for $r \neq 0$, and
b) X CH_0-trivial: $\Delta \sim_{\text{rat}} X \times \{p\} + Z$, $\text{Supp}(Z) \subset D \times X$; assume D smooth for simplicity.

For $\beta \in CH^n(X \times X)$, endomorphism $\beta^*: \alpha \mapsto p_*(q^*\alpha \cdot \beta)$ of $H^r(X, \mathbb{Z})$.

$\Delta^* = \text{Id}$, $[X \times \{p\}]^* = 0$ for $r \neq 0$, and

$\text{Id} = Z^*: H^r(X, \mathbb{Z}) \to H^{r-2}(D, \mathbb{Z}) \xrightarrow{i_*} H^r(X, \mathbb{Z})$.
\(CH_0 \text{ trivial } \Rightarrow H^3(X, \mathbb{Z}) = 0 \)

b) \(X \) \(CH_0 \)-trivial : \(\Delta \sim_{\text{rat}} X \times \{p\} + Z \), \(\text{Supp}(Z) \subset D \times X \); assume \(D \) smooth for simplicity.

For \(\delta \in CH^n(X \times X) \), endomorphism \(\delta^* : \alpha \mapsto p_*(q^* \alpha \cdot \delta) \) of \(H^r(X, \mathbb{Z}) \).

\[\Delta^* = \text{Id}, \ [X \times \{p\}]^* = 0 \text{ for } r \neq 0, \text{ and} \]

\[\text{Id} = Z^* : H^r(X, \mathbb{Z}) \to H^{r-2}(D, \mathbb{Z}) \xrightarrow{i_*} H^r(X, \mathbb{Z}). \]

For \(r = 3 \), \(H^1(D, \mathbb{Z}) \) torsion free \(\Rightarrow \) \(\blacksquare \).
Idea of proof of the degeneration argument

Proposition X is flat projective, B is smooth, the general fiber is smooth, σ_p.

Assume X admits a desingularization $\sigma: \tilde{X} \to X$ with:

- $a_q \cdot H_3(\tilde{X}), Z_q \not\equiv 0$;
- $\sigma \cdot 1_p$ is rational over κ_p for all $x \in X$.

Then X is not stably rational for very general b.

Ingredients:
- If not, Baire η the generic fiber X_η is CH_0-trivial.
- Specialization homomorphism $s: CH_0(\tilde{X}), \sigma \to CH_0(X)$.
- Replace B by $\text{Spec} \hat{O}_B$, $\sigma \cdot \text{CH}_0(\tilde{X})$.
- Hensel lemma $\sigma \cdot \text{CH}_0(\tilde{X}) = Z_q$.
- $b_q \cdot \tilde{X}$ is CH_0-trivial \iff $Tors H_3(\tilde{X}), Z_q \equiv 0$.

Arnaud Beauville

The stable Lüroth problem
Proposition

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).

Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with:

1. \(\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0 \);
2. \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).

Then \(\mathcal{X}_b \) not stably rational for very general \(b \).
Idea of proof of the degeneration argument

Proposition

$\mathcal{X} \rightarrow B$ flat projective, B smooth, general fiber smooth, $\mathfrak{o} \in B$.

Assume $X := \mathcal{X}_\mathfrak{o}$ admits a desingularization $\sigma : \tilde{X} \rightarrow X$ with:

a) $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;

b) $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

Ingredients: If not, $\xrightarrow{\text{Baire}}$ the generic fiber \mathcal{X}_η is CH_0-trivial.
Idea of proof of the degeneration argument

Proposition

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(\circ \in B \).

Assume \(X := \mathcal{X}_\circ \) admits a desingularization \(\sigma : \tilde{X} \to X \) with:

1. \(\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0 \);
2. \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).

Then \(\mathcal{X}_b \) not stably rational for very general \(b \).

Ingredients: If not, \(\overset{\text{Baire}}{\implies} \) the generic fiber \(X_\eta \) is \(CH_0 \)-trivial.

Specialization homomorphism \(s : CH_0(X_\eta) \to CH_0(X) \).
Idea of proof of the degeneration argument

Proposition

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $o \in B$.

Assume $X := \mathcal{X}_o$ admits a desingularization $\sigma : \tilde{X} \to X$ with:

a) $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;

b) $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

Ingredients: If not, Baire the generic fiber \mathcal{X}_η is CH_0-trivial.

Specialization homomorphism $s : CH_0(\mathcal{X}_\eta) \to CH_0(X)$.

Replace B by $\text{Spec } (\hat{O}_{B,o})$. Hensel lemma $\Rightarrow \sigma_* CH_0(\tilde{X}) = \mathbb{Z}$.

Arnaud Beauville

The stable Lüroth problem
Idea of proof of the degeneration argument

Proposition

$X \rightarrow B$ flat projective, B smooth, general fiber smooth, $o \in B$.

Assume $X := X_o$ admits a desingularization $\sigma : \tilde{X} \rightarrow X$ with:

1. $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;
2. $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then X_b not stably rational for very general b.

Ingredients: If not, the generic fiber X_η is CH_0-trivial.

Specialization homomorphism $s : CH_0(X_\eta) \rightarrow CH_0(X)$.

Replace B by $\text{Spec}(\hat{O}_{B,o})$. Hensel lemma $\Rightarrow \sigma_* CH_0(\tilde{X}) = \mathbb{Z}$.

$\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

$\Rightarrow \tilde{X}$ CH_0-trivial $\Rightarrow \text{Tors } H^3(\tilde{X}, \mathbb{Z}) = 0$.

Arnaud Beauville

The stable Lüroth problem
The Brauer group

Thus to prove the theorem, we need a double covering $X \to \mathbb{P}^n(n \geq 3, 4, 5)$ with a desingularization $\tilde{X} \to X$ satisfying a_q and b_q.

How to find torsion elements in H^3_p, \mathbb{Z}^q?

Observation

For V smooth projective with $H^2_p, O^p \not\sim 0$, $Tors H^3_p, \mathbb{Z}^q = Tors H^2_p, O^\ast$: Br_p, O^\ast (Brauer group)

where O^\ast: sheaf of holomorphic functions on V.

Proof: The exponential exact sequence gives an exact sequence $H^2_p, O_q \not\sim 0 \to H^2_p, O^\ast \to H^3_p, \mathbb{Z}^q \to H^3_p, O_q$.
Thus to prove the theorem, we need a double covering $X \to \mathbb{P}^n$.
Thus to prove the theorem, we need a double covering $X \to \mathbb{P}^n$ ($n = 3, 4, 5$) with a desingularization $\tilde{X} \to X$ satisfying $a)$ and $b)$.

Arnaud Beauville

The stable Lüroth problem
Thus to prove the theorem, we need a double covering $X \to \mathbb{P}^n$ ($n = 3, 4, 5$) with a desingularization $\tilde{X} \to X$ satisfying a) and b). How to find torsion elements in $H^3(\mathbb{P}^n, \mathbb{Z})$?
The Brauer group

Thus to prove the theorem, we need a double covering $X \to \mathbb{P}^n$ $(n = 3, 4, 5)$ with a desingularization $\tilde{X} \to X$ satisfying $a)$ and $b)$. How to find torsion elements in $H^3(\cdot, \mathbb{Z})$?

Observation

For V smooth projective with $H^2(V, \mathcal{O}_V) = 0$,
Thus to prove the theorem, we need a double covering \(X \to \mathbb{P}^n \) (\(n = 3, 4, 5 \)) with a desingularization \(\tilde{X} \to X \) satisfying \(a \) and \(b \). How to find torsion elements in \(H^3(\cdot, \mathbb{Z}) \)?

Observation

For \(V \) smooth projective with \(H^2(V, \mathcal{O}_V) = 0 \),

\[
\text{Tors } H^3(V, \mathbb{Z}) = \text{Tors } H^2(V, \mathcal{O}_h^*) := \text{Br}(V) \quad \text{(Brauer group)}
\]

where \(\mathcal{O}_h := \) sheaf of holomorphic functions on \(V \).
Thus to prove the theorem, we need a double covering $X \to \mathbb{P}^n$ ($n = 3, 4, 5$) with a desingularization $\tilde{X} \to X$ satisfying a) and b).

How to find torsion elements in $H^3(\cdot, \mathbb{Z})$?

Observation

For V smooth projective with $H^2(V, \mathcal{O}_V) = 0$,

$$\text{Tors } H^3(V, \mathbb{Z}) = \text{Tors } H^2(V, \mathcal{O}_h^*) := \text{Br}(V)$$

(Brauer group)

where $\mathcal{O}_h :=$ sheaf of holomorphic functions on V.

Proof : The exponential exact sequence gives an exact sequence

$$H^2(V, \mathcal{O}_h) = 0 \longrightarrow H^2(V, \mathcal{O}_h^*) \longrightarrow H^3(V, \mathbb{Z}) \longrightarrow H^3(V, \mathcal{O}_h).$$
One way to get classes in the Brauer group Br_V is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $\mathbb{P}^m \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).

Reminder: A \mathbb{P}^n-bundle $\mathbb{P} \to V$ defines a n-torsion class $r_{\mathbb{P}} \in \text{Br}_V$, which is trivial if and only if \mathbb{P} is a projective bundle $\mathbb{P}_V^n \to \mathbb{P}^n$.

The exact sequence $1 \to \mathbb{C}^* \to \text{GL}_n \to \text{PGL}_n \to 1$ gives a cohomology exact sequence $H^1(V, \text{GL}_n) \to H^1(V, \text{PGL}_n) \to H^2(V, \mathbb{C}^*)$.

- Arnaud Beauville

The stable Lüroth problem
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V,
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).
One way to get classes in the **Brauer group** \(Br(V) \) is to consider \(\mathbb{P}^m \)-bundles on \(V \), that is, smooth fibrations \(P \to V \) with fibers isomorphic to \(\mathbb{P}^m \) (a.k.a. **Severi-Brauer** schemes over \(V \)).

Reminder

A \(\mathbb{P}^{n-1} \)-bundle \(P \to V \) defines a \(n \)-torsion class \([P] \in Br(V)\),
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).

Reminder

A \mathbb{P}^{n-1}-bundle $P \to V$ defines a n-torsion class $[P] \in \text{Br}(V)$, which is trivial if and only if P is a projective bundle $\mathbb{P}_V(E)$.
One way to get classes in the **Brauer group** $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).

Reminder

A \mathbb{P}^{n-1}-bundle $P \to V$ defines a n-torsion class $[P] \in \text{Br}(V)$, which is trivial if and only if P is a projective bundle $\mathbb{P}_V(E)$.

\[
\left(\text{the exact sequence } 1 \to \mathbb{C}^* \to \text{GL}_n(\mathbb{C}) \to \text{PGL}_n(\mathbb{C}) \to 1 \text{ gives a cohomology exact sequence} \right.
\]

\[
H^1(V, \text{GL}_n(\mathcal{O}_h)) \to H^1(V, \text{PGL}_n(\mathcal{O}_h)) \to H^2(V, \mathcal{O}_h^*)
\]
The construction

...
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9)$.

Proposition

The \mathbb{P}^1-bundle $p: \mathbb{P} \to X_{\text{sm}}$ is not a projective bundle.

Proof: Suppose p has a rational section \(\sigma \), \(\pi_q : \mathbb{P} \to L \setminus Q \).

For general q, 2 systems $\sigma, \sigma_1 \to \mathbb{P}$, parametrized by \mathbb{P}^1.

Get rational section of quadric family $Q \to L$.

Arnaud Beauville
The stable Lüroth problem
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9).$

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \]

\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9)$. \\
$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$ \\
rk ≤ 2 \quad \text{rk} \leq 3 \\

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\text{dim}(\Sigma) = n - 3$. \\

Arnaud Beauville

The stable Lüroth problem
$L =$ general linear system of quadrics in \mathbb{P}^3 of dimension n ($n \leq 9$).

$$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$$

$\text{rk} \leq 2$ \hspace{1cm} $\text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\text{dim}(\Sigma) = n - 3$.

$\pi : X \to L :=$ double cover branched along Δ. $X_{sm} = \pi^{-1}(L \setminus \Sigma)$
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9)\).$

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \]
\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]

\(\Delta\) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma, \dim(\Sigma) = n - 3\).

\(\pi : X \to L := \text{double cover branched along } \Delta. \quad X_{sm} = \pi^{-1}(L \setminus \Sigma)\)
\[= \{(q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}.\]
$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9)$.

$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$rk \leq 2 \quad rk \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

$\pi : X \to L := \text{double cover branched along } \Delta$. $X_{sm} = \pi^{-1}(L \setminus \Sigma)$

$= \{(q, \sigma) \mid q \in L, \quad rk(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}$.

σ parametrized by $\mathbb{P}^1 \rightsquigarrow \mathbb{P}^1$-bundle $p : P \to X_{sm}$.
The construction

$L =$ general linear system of quadrics in \mathbb{P}^3 of dimension $n \ (n \leq 9)$.

$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

$\pi : X \to L :=$ double cover branched along Δ. $X_{sm} = \pi^{-1}(L \setminus \Sigma)$

$= \{(q, \sigma) \mid q \in L, \ \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}$.

σ parametrized by $\mathbb{P}^1 \leadsto \mathbb{P}^1$-bundle $p : P \to X_{sm}$.

Proposition

The \mathbb{P}^1-bundle $p : P \to X_{sm}$ is not a projective bundle.
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9)$.

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \]

\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

$\pi : X \to L := \text{double cover branched along } \Delta$. $X_{sm} = \pi^{-1}(L \setminus \Sigma)$

$= \{ (q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q \}$.

σ parametrized by $\mathbb{P}^1 \rightsquigarrow \mathbb{P}^1$-bundle $p : P \to X_{sm}$.

Proposition

The \mathbb{P}^1-bundle $p : P \to X_{sm}$ is not a projective bundle.

Proof : Suppose p has a rational section : $(q, \sigma) \mapsto \ell(q, \sigma) \in \sigma$.

The construction

\[L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9). \]

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \]

\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma, \dim(\Sigma) = n - 3. \)

\(\pi : X \to L := \text{double cover branched along } \Delta. \)

\[X_{sm} = \pi^{-1}(L \setminus \Sigma) = \{(q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}. \]

\(\sigma \) parametrized by \(\mathbb{P}^1 \hookrightarrow \mathbb{P}^1\text{-bundle } p : P \to X_{sm}. \)

Proposition

The \(\mathbb{P}^1\text{-bundle } p : P \to X_{sm} \) is not a projective bundle.

Proof: Suppose \(p \) has a rational section : \((q, \sigma) \dashrightarrow \mathcal{L}(q, \sigma) \in \sigma. \)

For general \(q, 2 \) systems \(\sigma, \sigma' \hookrightarrow \mathcal{L}(q, \sigma) \cap \mathcal{L}(q, \sigma') = s(q) \in q. \)
The construction

\[L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n \ (n \leq 9). \]

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n, \quad \text{rk} \leq 2 \quad \text{rk} \leq 3 \]

\(\Delta \) quartic hypersurface, Sing(\(\Delta \)) = \(\Sigma \), \(\text{dim}(\Sigma) = n - 3 \).

\(\pi : X \to L := \text{double cover branched along } \Delta. \)
\[X_{\text{sm}} = \pi^{-1}(L \setminus \Sigma) = \{(q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}. \]
\(\sigma \) parametrized by \(\mathbb{P}^1 \leadsto \mathbb{P}^1\)-bundle \(p : P \to X_{\text{sm}} \).

Proposition

The \(\mathbb{P}^1\)-bundle \(p : P \to X_{\text{sm}} \) is not a projective bundle.

Proof: Suppose \(p \) has a rational section: \((q, \sigma) \mapsto \ell(q, \sigma) \in \sigma \).

For general \(q \), 2 systems \(\sigma, \sigma' \leadsto \ell(q, \sigma) \cap \ell(q, \sigma') = s(q) \in q. \)

Get rational section of quadric family \(Q \to L. \)
Universal family of hypersurfaces

Lemma
$L \mid O_{P^n}$

The universal family $p : H \to L$ has no rational section.

Proof: rational section $u \in L_{P^n} \to H$

By Lefschetz, $H_{2n-2} p \mid \hat{P^n}$

Easy calculation gives $p \cdot \alpha_{H_{2n-2} H, \hat{P^n}} \in \alpha_{Z, \hat{P^n}}$, contradiction.

Conclusion: get a nontrivial 2-torsion class in $H_3 p \mid X_{sm}, Z$.
Lemma

\[L \subseteq |O_{\mathbb{P}^n}(d)| \text{ base point free linear system, } d \geq 2. \]
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.
The universal family $p : \mathcal{H} \to L$ has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in $L \times \mathbb{P}^n$.

\[\begin{xy}
 0;/r1cm/: 0;/r2cm/: *++[F.](H) / (p) / (q) / \mathbb{P}^n \ar@{->}[dl] \ar@{->}[dr] \\
 L \ar@{->}[r] & \mathcal{H}
\end{xy} \]
Lemma

Let \(L \subset |\mathcal{O}_{\mathbb{P}^n}(d)| \) be a base point free linear system, \(d \geq 2 \).

The universal family \(p : \mathcal{H} \to L \) has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]
smooth hypersurface in \(L \times \mathbb{P}^n \).

Proof: rational section \(z \in H^{2n-2}(\mathcal{H}, \mathbb{Z}) \) with \(p_*z = 1 \).
Lemma

\[L \subset |O_{\mathbb{P}^n}(d)| \text{ base point free linear system, } d \geq 2. \]

The universal family \(p : \mathcal{H} \to L \) has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in \(L \times \mathbb{P}^n \).

Proof: rational section \(\sim \) \(z \in H^{2n-2}(\mathcal{H}, \mathbb{Z}) \) with \(p_* z = 1 \).

By Lefschetz, \(H^{2n-2}(L \times \mathbb{P}^n, \mathbb{Z}) \sim H^{2n-2}(\mathcal{H}, \mathbb{Z}) \).
Universal family of hypersurfaces

Lemma

\[L \subset |\mathcal{O}_{\mathbb{P}^n}(d)| \text{ base point free linear system, } d \geq 2. \]

The universal family \(p : \mathcal{H} \to L \) has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in \(L \times \mathbb{P}^n \).

Proof: rational section \(z \in H^{2n-2}(\mathcal{H}, \mathbb{Z}) \) with \(p_*z = 1 \).

By Lefschetz, \(H^{2n-2}(L \times \mathbb{P}^n, \mathbb{Z}) \sim H^{2n-2}(\mathcal{H}, \mathbb{Z}) \). Easy calculation gives \(p_*H^{2n-2}(\mathcal{H}, \mathbb{Z}) \subset d\mathbb{Z} \), contradiction.

\[\square \]
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in $L \times \mathbb{P}^n$.

Proof: rational section $\leadsto z \in H^{2n-2}(\mathcal{H}, \mathbb{Z})$ with $p_*z = 1$.

By Lefschetz, $H^{2n-2}(L \times \mathbb{P}^n, \mathbb{Z}) \xrightarrow{\sim} H^{2n-2}(\mathcal{H}, \mathbb{Z})$. Easy calculation gives $p_*H^{2n-2}(\mathcal{H}, \mathbb{Z}) \subset d\mathbb{Z}$, contradiction.

Conclusion: get a nontrivial 2-torsion class in $H^3(X_{sm}, \mathbb{Z})$.

Arnaud Beauville | The stable Lüroth problem
The desingularization

Recall: $\Sigma \Delta \Lambda L - P_{n^{rk}} \geq 2 \text{rk} - 3$

...quartic hypersurface, \text{Sing} \notin \Sigma, \text{dim} \notin \Sigma^q \leq 3.

1) Baby case: $n = 3$ surface, $\Sigma^t P_1, \ldots, P_{10}$ ordinary double points: near p_i, $\Delta - \text{loc} Q$ quadratic cone $x^2`y^2`z^2 = 0$ in \mathbb{C}^3.

\text{Sing} \notin X^{q^t P_1, \ldots, P_{10}} \text{ordinary double points}

\text{Blow up} \notin p_i \sigma \notseq \tilde{X} \xrightarrow{} X \text{smooth}, \sigma \leq 1 p_i^q \text{smooth quadric}.

Need to check a^q and b^q:

b^q immediate; for a^q, exact sequence $0 \notseq H^1 p_Qi, \mathcal{Z}^q \notseq H^3 p_{\tilde{X}}, \mathcal{Z}^q \notseq H^3 p_X, \mathcal{Z}^q \notseq H^2 p_Qi, \mathcal{Z}^q \notseq H^2 p_X$.
Recall: $\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$rk \leq 2 \quad rk \leq 3$
Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)

\(\text{rk} \leq 2 \quad \text{rk} \leq 3 \)

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).
The desingularization

Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]
\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\text{dim}(\Sigma) = n - 3 \).

1) **Baby case:** \(n = 3 \)
Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]
\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

1) **Baby case**: \(n = 3 \)
\(\Delta \) surface, \(\Sigma = \{p_1, \ldots, p_{10}\} \) ordinary double points:
The desingularization

Recall: $\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$rk \leq 2 \quad rk \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

1) Baby case: $n = 3$

Δ surface, $\Sigma = \{p_1, \ldots, p_{10}\}$ ordinary double points:

near p_i, $\Delta \cong_{\text{loc}} Q$ quadratic cone $x^2 + y^2 + z^2 = 0$ in \mathbb{C}^3.

Arnaud Beauville
The stable Lüroth problem
Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)

\(\text{rk} \leq 2 \quad \text{rk} \leq 3 \)

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

1) **Baby case:** \(n = 3 \)

\(\Delta \) surface, \(\Sigma = \{p_1, \ldots, p_{10}\} \) ordinary double points:

near \(p_i \), \(\Delta \cong_{loc} Q \) quadratic cone \(x^2 + y^2 + z^2 = 0 \) in \(\mathbb{C}^3 \).

\(\text{Sing}(X) = \{p_1, \ldots, p_{10}\} \) ordinary double points \(w^2 = x^2 + y^2 + z^2 \).
The desingularization

Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\text{dim}(\Sigma) = n - 3 \).

1) **Baby case**: \(n = 3 \)

\(\Delta \) surface, \(\Sigma = \{p_1, \ldots, p_{10}\} \) ordinary double points:

near \(p_i \), \(\Delta \cong_{\text{loc}} Q \) quadratic cone \(x^2 + y^2 + z^2 = 0 \) in \(\mathbb{C}^3 \).

\(\text{Sing}(X) = \{p_1, \ldots, p_{10}\} \) ordinary double points \(w^2 = x^2 + y^2 + z^2 \).

Blow up \(p_i \) \(\leadsto \sigma: \tilde{X} \to X \) smooth, \(\sigma^{-1}(p_i) = Q_i \) smooth quadric.
Recall: $\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

1) **Baby case: $n = 3$**

Δ surface, $\Sigma = \{p_1, \ldots, p_{10}\}$ ordinary double points:

near p_i, $\Delta \cong_{\text{loc}} Q$ quadratic cone $x^2 + y^2 + z^2 = 0$ in \mathbb{C}^3.

$\text{Sing}(X) = \{p_1, \ldots, p_{10}\}$ ordinary double points $w^2 = x^2 + y^2 + z^2$.

Blow up $p_i \leadsto \sigma : \tilde{X} \to X$ smooth, $\sigma^{-1}(p_i) = Q_i$ smooth quadric.

- Need to check $a)$ and $b)$:
Recall: $\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$rk \leq 2 \quad \text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

1) **Baby case: $n = 3$**

Δ surface, $\Sigma = \{p_1, \ldots, p_{10}\}$ ordinary double points:

near p_i, $\Delta \cong_{loc} Q$ quadratic cone $x^2 + y^2 + z^2 = 0$ in \mathbb{C}^3.

$\text{Sing}(X) = \{p_1, \ldots, p_{10}\}$ ordinary double points $w^2 = x^2 + y^2 + z^2$.

 Blow up $p_i \mapsto \sigma : \tilde{X} \to X$ smooth, $\sigma^{-1}(p_i) = Q_i$ smooth quadric.

Need to check a) and b): b) immediate;
The desingularization

Recall: $\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

1) Baby case: $n = 3$

Δ surface, $\Sigma = \{p_1, \ldots, p_{10}\}$ ordinary double points:

near p_i, $\Delta \cong_{loc} Q$ quadratic cone $x^2 + y^2 + z^2 = 0$ in \mathbb{C}^3.

$\text{Sing}(X) = \{p_1, \ldots, p_{10}\}$ ordinary double points $w^2 = x^2 + y^2 + z^2$.

Blow up $p_i \rightsquigarrow \sigma : \tilde{X} \to X$ smooth, $\sigma^{-1}(p_i) = Q_i$ smooth quadric.

Need to check a) and b): b) immediate; for a), exact sequence

$$0 = \bigoplus H^1(Q_i, \mathbb{Z}) \to H^3(\tilde{X}, \mathbb{Z}) \to H^3(X_{sm}, \mathbb{Z}) \to \bigoplus H^2(Q_i, \mathbb{Z})$$
Higher dimension

Arnaud Beauville The stable Lüroth problem
2) \(n = 4 \) or \(5 \)
2) \(n = 4 \) or \(5 \)

\(\Sigma \) smooth; near \(q \in \Sigma, \; \Delta \cong_{loc} \Sigma \times Q \) (\(Q \) quadratic cone in \(\mathbb{C}^3 \)).
2) \(n = 4 \text{ or } 5 \)

\(\Sigma \) smooth; near \(q \in \Sigma \), \(\Delta \cong_{loc} \Sigma \times \mathcal{Q} \) (\(\mathcal{Q} \) quadratic cone in \(\mathbb{C}^3 \)).

Blow up \(\Sigma \) in \(X \):

\[
\begin{array}{ccc}
E & \xleftarrow{\sigma_E} & \tilde{X} \\
\downarrow & & \downarrow \\
\Sigma & \xleftarrow{\sigma} & X
\end{array}
\]

\(\tilde{X} \) and \(E \) smooth, \(\sigma_E : E \to \Sigma \) quadric bundle.
2) \(n = 4 \) or \(5 \)

\(\Sigma \) smooth; near \(q \in \Sigma \), \(\Delta \cong_{loc} \Sigma \times Q \) (\(Q \) quadratic cone in \(\mathbb{C}^3 \)).

Blow up \(\Sigma \) in \(X \):

\[
\begin{array}{ccc}
E & \leftarrow & \tilde{X} \\
\downarrow \sigma_E & & \downarrow \sigma \\
\Sigma & \leftarrow & X
\end{array}
\]

\(\tilde{X} \) and \(E \) smooth, \(\sigma_E : E \rightarrow \Sigma \) quadric bundle.

Key point for \(a \) and \(b \): the fibration \(\sigma_E \) is *Zariski locally trivial*.
2) \(n = 4 \) or \(5 \)

\(\Sigma \) smooth; near \(q \in \Sigma \), \(\Delta \cong_{loc} \Sigma \times \mathcal{Q} \) (\(\mathcal{Q} \) quadratic cone in \(\mathbb{C}^3 \)).

Blow up \(\Sigma \) in \(X \):

\[\begin{array}{ccc}
E & \subset & \tilde{X} \\
\downarrow \sigma_E & & \downarrow \sigma \\
\Sigma & \subset & X
\end{array} \]

\(\tilde{X} \) and \(E \) smooth, \(\sigma_E : E \rightarrow \Sigma \) quadric bundle.

Key point for a) and b): the fibration \(\sigma_E \) is Zariski locally trivial. (follows from: the projective normal cone to \(\Sigma \) in \(\Delta \) is Zariski locally trivial over \(\Sigma \).)
Higher dimension

2) $n = 4$ or 5

Σ smooth; near $q \in \Sigma$, $\Delta \cong_{loc} \Sigma \times \mathcal{Q}$ (\mathcal{Q} quadratic cone in \mathbb{C}^3).

Blow up Σ in X:

$$
\begin{array}{c}
E \leftarrow \tilde{X} \\
\downarrow \sigma_E \quad \downarrow \sigma \\
\Sigma \leftarrow X
\end{array}
$$

\tilde{X} and E smooth, $\sigma_E : E \rightarrow \Sigma$ quadric bundle.

Key point for $a)$ and $b)$: the fibration σ_E is *Zariski locally trivial*. (follows from: the projective normal cone to Σ in Δ is Zariski locally trivial over Σ.) $b)$ follows.
Tors $H^3(\tilde{X}, \mathbb{Z})$
For $a)$, use factorization

\[E \xleftarrow{\sigma_E} \tilde{X} \xrightarrow{\sigma} X' \]

\[E' \xleftarrow{\sigma} \tilde{X} \xrightarrow{\sigma} X' \]

\[\Sigma \xleftarrow{\sigma} \tilde{X} \xrightarrow{\sigma} X' \]

with E' smooth of codimension 2 in X', $\tilde{X} = \text{Bl}_{E'}(X')$.

Tors $H^3(\tilde{X}, \mathbb{Z})$
For $a)$, use factorization

\[
\begin{array}{ccc}
E & \longrightarrow & \tilde{X} \\
\sigma_E & \downarrow & \sigma \\
E' & \longrightarrow & X'
\end{array}
\]

with E' smooth of codimension 2 in X', $\tilde{X} = Bl_{E'}(X')$. Then

\[
0 \rightarrow H^3(X', \mathbb{Z}) \rightarrow H^3(X_{sm}, \mathbb{Z}) \rightarrow H^0(E', \mathbb{Z})
\]
For a), use factorization

$$
\begin{array}{ccc}
E & \xrightarrow{\sigma_E} & \tilde{X} \\
\downarrow & & \downarrow \\
E' & \xrightarrow{\sigma} & X' \\
\downarrow & & \downarrow \\
\Sigma & \xrightarrow{\sigma} & X
\end{array}
$$

with E' smooth of codimension 2 in X', $\tilde{X} = \text{Bl}_{E'}(X')$. Then

$$0 \rightarrow H^3(X', \mathbb{Z}) \rightarrow H^3(X_{sm}, \mathbb{Z}) \rightarrow H^0(E', \mathbb{Z})$$

and $\text{Tors } H^3(X', \mathbb{Z}) \cong \text{Tors } H^3(\tilde{X}, \mathbb{Z})$.

THE END
Happy birthday, Bob!