The stable Lüroth problem

Arnaud Beauville

Université de Nice

Bayreuth, March 2015
The classical Lüroth problem

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

\[X \text{ complex variety} \]
The classical Lüroth problem

X complex variety

$(\mathbb{P}^n \dashrightarrow X)$

X rational

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

\(X \) complex variety

\((\mathbb{P}^n \overset{\sim}{\longrightarrow} X)\) \hspace{2cm} \((\mathbb{P}^n \overset{-}{\longrightarrow} X)\)

\(X \) rational \hspace{2cm} \(X \) unirational

\((\mathbb{P}^n \overset{\sim}{\longrightarrow} X) \) gives examples in dimension \(\geq 3 \), and quite particular.

\((\mathbb{P}^n \overset{-}{\longrightarrow} X) \) gives counter-examples (1971), with 3 different methods, at least in dimension 3.

Arnaud Beauville
The classical Lüroth problem

\(X \) complex variety

\[(\mathbb{P}^n \sim \to X) \quad \quad \quad \quad \quad (\mathbb{P}^n - - \to X) \]

\(X \) rational \quad \Rightarrow \quad \quad \quad \quad X \) unirational

\(\text{(Lüroth problem)} \)

3 counter-examples (1971), with 3 different methods

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

X complex variety

$\mathbb{P}^n \sim X$ \quad $\mathbb{P}^n \rightarrow X$

X rational \quad \leftrightarrow \quad X unirational

(Lüroth problem)
The classical Lüroth problem

\(X \) complex variety

\[(\mathbb{P}^n \cong X) \quad \quad \quad \quad (\mathbb{P}^n \rightarrow X)\]

\(X \) rational \quad \xrightarrow{\sim} \quad X \) unirational

Arnaud Beauville

The stable Lüroth problem
The classical Lüroth problem

X complex variety

$\mathbb{P}^n \cong X$ \quad $\mathbb{P}^n \dashrightarrow X$

X rational \quad \Leftrightarrow \quad X unirational

3 counter-examples (1971), with 3 different methods

\therefore many examples, at least in dimension 3.
The classical Lüroth problem

\begin{align*}
X \text{ complex variety} \\
(\mathbb{P}^n \xrightarrow{\sim} X) & \quad (\mathbb{P}^n \xrightarrow{-} X) \\
X \text{ rational} & \quad \leftrightarrow \quad X \text{ unirational}
\end{align*}

3 counter-examples (1971), with 3 different methods

\xrightarrow[]{-} \text{ many examples, at least in dimension 3.}

(Only the Artin-Mumford method gives examples in dimension > 3, and quite particular.)
The stable Lüroth problem

Hence, search for intermediate notion:

X stably rational

if $X \subset \mathbb{P}^m$ rational for some m.

\[\text{rational} \rightarrow \text{unirational} \rightarrow \text{stably rational} \rightarrow \text{Artin-Mumford : stably rational} \rightarrow \text{Tors} H^3 P X, Z_{q \neq 0}:\]

Construct quartic double solid X: branched along Δ quartic symmetroid: defined by $\det p_{ij}$ symmetric 4 4 matrix of linear forms.
Hence, search for intermediate notion:

- \(X \) stably rational if \(X \cong \mathbb{P}^m \) for some \(m \).

\[\xymatrix{ \text{rational} & \text{unirational} \ar@{<->}[r] \ar@{<->}[d] & \text{stably rational} \ar@{<->}[d] \ar@{<->}[l] \\
\text{Artin-Mumford: stably rational} & \text{Tors} \ar@{<->}[r] & \text{H}_3(\mathbb{P}^3, \mathbb{Z}) \qquad \text{q}=0 }
\]

Construct quartic double solid \(X \) with \(\text{Tors} \mathbb{H}_3(\mathbb{P}^3, \mathbb{Z}) \quad \text{q}=0 \):

- branched along \(\Delta \) quartic symmetroid: defined by \(\det L_{ij} \quad \text{symmetric 4x4 matrix of linear forms.} \)
Hence, search for intermediate notion:

\[X \text{ stably rational if } X \times \mathbb{P}^m \text{ rational for some } m. \]
Hence, search for intermediate notion:

* X stably rational if $X \times \mathbb{P}^m$ rational for some m.

Diagram:

- Rational
- Unirational
- Stably rational

Arnaud Beauville

The stable Lüroth problem
Hence, search for intermediate notion:

X stably rational if $X \times \mathbb{P}^m$ rational for some m.

Arnaud Beauville

The stable Lüroth problem
Hence, search for intermediate notion:

\(X \) *stably rational* if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[\text{rational} \quad \xrightarrow{\text{unirational}} \quad \text{unirational} \]

\[\text{stably rational} \]

\[[B-C-S-S] \quad \xleftrightarrow{\text{X}} \]

Artin-Mumford: stably rational \(\Rightarrow \) Tors \(H^3(X, \mathbb{Z}) \\) 0: branched along \(\Delta \) quartic symmetroid: defined by \(\det p_{ij}^{q''} \), \(p_{ij} \) symmetric 4 \(\times \) 4 matrix of linear forms.
Hence, search for intermediate notion:

\(X \text{ stably rational} \) if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[\text{rational} \quad \overset{\text{unirational}}{\longrightarrow} \quad \text{stably rational} \]

\[X \text{ stably rational} \quad \overset{\text{A-M}}{\longrightarrow} \quad [A-M] \]

\[\text{[B-C-S-S]} \quad \overset{\text{X}}{\longrightarrow} \quad \text{[A-M]} \]
Hence, search for intermediate notion:

\[X \text{ stably rational if } X \times \mathbb{P}^m \text{ rational for some } m. \]

\[
\begin{array}{c}
\text{rational} \quad \leftrightarrow \quad \text{unirational} \\
\text{stably rational} \\
\text{[B-C-S-S]} \quad \leftrightarrow \quad X \quad \leftrightarrow \quad X \\
\text{Arta-Mumford: stably rational} \quad \iff \quad \text{Tors } H^3(X, \mathbb{Z}) = 0
\end{array}
\]
The stable Lüroth problem

Hence, search for intermediate notion:

\(X \) \textit{stably rational} if \(X \times \mathbb{P}^m \) rational for some \(m \).

\[\begin{align*}
\text{rational} & \quad \longrightarrow \quad \text{unirational} \\
\downarrow & \quad \downarrow & \quad \uparrow \\
\text{stably rational} & \quad \langle \quad \langle & \quad \rangle \quad \rangle \quad \langle & \quad \rangle \\
[B-C-S-S] & \quad \langle & \quad \rangle \quad \langle & \quad \rangle & \quad \langle & \quad \rangle \\
X & \quad \langle & \quad \rangle \quad \langle & \quad \rangle & \quad \langle & \quad \rangle \quad \langle & \quad \rangle & \quad \langle & \quad \rangle \\
X & \quad \langle & \quad \rangle \quad \langle & \quad \rangle & \quad \langle & \quad \rangle \quad \langle & \quad \rangle & \quad \langle & \quad \rangle \quad \langle & \quad \rangle \\
[A-M] & \quad \langle & \quad \rangle \quad \langle & \quad \rangle & \quad \langle & \quad \rangle
\end{align*} \]

Artin-Mumford: \(\text{stably rational} \implies \text{Tors } H^3(X, \mathbb{Z}) = 0 \)

Construct \textit{quartic double solid} \(X \xrightarrow{2:1} \mathbb{P}^3 \) with \(\text{Tors } H^3(X, \mathbb{Z}) \neq 0 \):
The stable Lüroth problem

Hence, search for intermediate notion:

X stably rational if $X \times \mathbb{P}^m$ rational for some m.

\[\text{rational} \quad \xrightarrow{\text{unirational}} \quad \text{stably rational} \]

Artin-Mumford: stably rational \implies $\text{Tors } H^3(X, \mathbb{Z}) = 0$

Construct \textit{quartic double solid} $X \xrightarrow{2:1} \mathbb{P}^3$ with $\text{Tors } H^3(X, \mathbb{Z}) \neq 0$:

- branched along $\Delta = \text{quartic symmetroid}$: defined by $\det(L_{ij}) = 0$,
- (L_{ij}) symmetric 4×4 matrix of linear forms.
New results

Theorem (Voisin)
A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

very general := outside countable union of strict subvarieties of the moduli space

Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)
A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

Unirational; rationality was not known.

First example of a prime Fano manifold ($b_2^+ = 1$) of dimension ≥ 3, unirational but not rational.

Arnaud Beauville
The stable Lüroth problem
Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

Very general := outside countable union of strict subvarieties of the moduli space

Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

Unirational; rationality was not known.

First example of a prime Fano manifold (b_2^1) of dimension ≥ 3, unirational but not rational.
Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

very general := outside countable union of strict subvarieties of the moduli space
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is **not** stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is **not** stably rational.
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

- Unirational; rationality was not known.
New results

Theorem (Voisin)

A double covering of \mathbb{P}^3 branched along a very general quartic surface is not stably rational.

- very general := outside countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Theorem (AB)

A double covering of \mathbb{P}^4 or \mathbb{P}^5 branched along a very general quartic hypersurface is not stably rational.

- Unirational; rationality was not known.
- First example of a prime Fano manifold ($b_2 = 1$) of dimension > 3, unirational but not rational.
Other results

A very general quartic threefold is not stably rational (C-P).

A double covering of \mathbb{P}^3 branched along a very general sextic surface is not stably rational (AB).

A very general hypersurface of degree $\ell^2 R_n^3 V_{\infty} \in \mathbb{P}^{n+1}$ is not stably rational (Totaro; applies in particular to quartic threefolds and fourfolds).

But: not expected to be unirational. Already known to be non-rational (Iskovskikh, Manin, Kollár).
A very general quartic threefold is not stably rational (C-P).
A very general quartic threefold is not stably rational (C-P).

A double covering of \mathbb{P}^3 branched along a very general sextic surface is not stably rational (AB).
Other results

- A very general quartic threefold is not stably rational (C-P).
- A double covering of \mathbb{P}^3 branched along a very general sextic surface is not stably rational (AB).
- A very general hypersurface of degree $\geq 2 \left\lceil \frac{n + 2}{3} \right\rceil$ in \mathbb{P}^{n+1} is not stably rational (Totaro; applies in particular to quartic threefolds and fourfolds).
A very general quartic threefold is not stably rational (C-P).

A double covering of \mathbb{P}^3 branched along a very general sextic surface is not stably rational (AB).

A very general hypersurface of degree $\geq 2 \left\lceil \frac{n + 2}{3} \right\rceil$ in \mathbb{P}^{n+1} is not stably rational (Totaro; applies in particular to quartic threefolds and fourfolds).

But: not expected to be unirational.
Other results

- A very general quartic threefold is not stably rational (C-P).
- A double covering of \mathbb{P}^3 branched along a very general sextic surface is not stably rational (AB).
- A very general hypersurface of degree $\geq 2 \left\lfloor \frac{n + 2}{3} \right\rfloor$ in \mathbb{P}^{n+1} is not stably rational (Totaro; applies in particular to quartic threefolds and fourfolds).

But: not expected to be unirational.
- Already known to be non-rational (Iskovskikh, Manin, Kollár).
Voisin’s idea:

Degenerate general quartic into symmetroid.

But: $T_{pX, Z}^q H^3$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational $\Rightarrow CH^0$-trivial $\Rightarrow T_{pX, Z}^q H^3$ and CH^0-trivial behaves well under mild degeneration.

Recall: $CH^0_{\mathbb{P}^X}$ Chow group of 0-cycles on X.

Proposition (Bloch) X smooth projective of dimension n.

If this holds, we say that X is CH^0-trivial.

Arnaud Beauville
The stable Lüroth problem
Voisin’s idea:

Degenerate general quartic into symmetroid.
Voisin’s idea:

Degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Recall: CH_0 is the Chow group of 0-cycles on X.
Voisin's idea:

Degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational \iff "CH_0-trivial" \implies Tors $H^3(X, \mathbb{Z}) = 0$;
Voisin's idea:

Degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational $\implies "CH_0$-trivial" $\implies \text{Tors } H^3(X, \mathbb{Z}) = 0$;
and "CH_0-trivial" behaves well under mild degeneration.
Voisin’s idea:

Degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational $\implies "CH_0\text{-trivial}" \implies \text{Tors } H^3(X, \mathbb{Z}) = 0$; and "$CH_0\text{-trivial}" behaves well under mild degeneration.

Recall: $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X)/\sim_{\text{rat}}$.
Voisin’s idea:

Degenerate general quartic into symmetroid.

But : $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin : stably rational \implies "CH_0-trivial" \implies $\text{Tors } H^3(X, \mathbb{Z}) = 0$; and "CH_0-trivial" behaves well under mild degeneration.

Recall : $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}(X) / \sim_{\text{rat}}$.

Proposition (Bloch)

X smooth projective of dimension n.

Voisin’s idea:

Degenerate general quartic into symmetroid.

But: $\text{Tors } H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational \implies "CH_0-trivial" \implies $\text{Tors } H^3(X, \mathbb{Z}) = 0$; and "$CH_0$-trivial" behaves well under mild degeneration.

Recall: $CH_0(X) = \text{Chow group of 0-cycles on } X = \mathbb{Z}^X/\sim_{\text{rat}}$.

Proposition (Bloch)

X smooth projective of dimension n.

(i) $CH_0(X_K) = \mathbb{Z}$ for all extensions $\mathbb{C} \to K$;
Voisin’s idea:

Degenerate general quartic into symmetroid.

But: Tors $H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational $\implies "CH_0\text{-trivial}" \implies$ Tors $H^3(X, \mathbb{Z}) = 0$; and "$CH_0\text{-trivial}"$ behaves well under mild degeneration.

Recall: $CH_0(X) =$ Chow group of 0-cycles on $X = \mathbb{Z}(X)/\sim_{rat}$.

Proposition (Bloch)

X smooth projective of dimension n.

1. $CH_0(X_K) = \mathbb{Z}$ for all extensions $\mathbb{C} \to K$;
2. $\Delta = X \times \{p\} + Z$ in $CH^n(X \times X)$, $\text{Supp}(Z) \subset D \times X$.

Arnaud Beauville

The stable Lüroth problem
Voisin’s idea:

Degenerate general quartic into symmetroid.

But: Tors $H^3(X, \mathbb{Z}) = 0$ for a smooth double cover of \mathbb{P}^n.

Voisin: stably rational \implies "CH_0-trivial" \implies Tors $H^3(X, \mathbb{Z}) = 0$;
and "CH_0-trivial" behaves well under mild degeneration.

Recall: $CH_0(X) = $ Chow group of 0-cycles on $X = \mathbb{Z}(X)/\sim_{rat}$.

Proposition (Bloch)

X smooth projective of dimension n.

(i) $CH_0(X_K) = \mathbb{Z}$ for all extensions $\mathbb{C} \rightarrow K$;

(ii) $\Delta = X \times \{p\} + Z$ in $CH^n(X \times X)$, $\text{Supp}(Z) \subset D \times X$

If this holds, we say that X is CH_0-trivial.
CH_0-trivial \Rightarrow Tors $H^3(X, \mathbb{Z}) = 0$
Proposition

X stably rational $\iff X$ CH$_0$-trivial $\iff \text{Tors } H^3(X, \mathbb{Z}) = 0.$
CH_0-trivial \Rightarrow Tors $H^3(X, \mathbb{Z}) = 0$

Proposition

X stably rational \iff X CH_0-trivial \iff Tors $H^3(X, \mathbb{Z}) = 0$.

Proof: a) CH_0 birational invariant, and $CH_0(X \times \mathbb{P}^m) = CH_0(X)$.

Arnaud Beauville The stable Lüroth problem
Proposition

\(X \) stably rational \(\iff \) \(X \) \(CH_0 \)-trivial \(\iff \) \(\text{Tors} \, H^3(X, \mathbb{Z}) = 0 \).

Proof: a) \(CH_0 \) birational invariant, and \(CH_0(X \times \mathbb{P}^m) = CH_0(X) \).

b) \(X \) \(CH_0 \)-trivial: \(\Delta \sim_{\text{rat}} X \times \{p\} + Z \).
Proposition

X stably rational $\iff X$ CH$_0$-trivial \iff Tors $H^3(X, \mathbb{Z}) = 0$.

Proof: a) CH$_0$ birational invariant, and $CH_0(X \times \mathbb{P}^m) = CH_0(X)$.

b) X CH$_0$-trivial : $\Delta \sim_{\text{rat}} X \times \{p\} + \mathbb{Z}$.

![Diagram](attachment:image.png)
Proposition

\(X \) stably rational \(\iff X \) CH\(_0\)-trivial \(\iff \) Tors \(H^3(X, \mathbb{Z}) = 0 \).

Proof: a) \(CH_0 \) birational invariant, and \(CH_0(X \times \mathbb{P}^m) = CH_0(X) \).

b) \(X \) CH\(_0\)-trivial: \(\Delta \sim_{\text{rat}} X \times \{p\} + Z \).

For \(\delta \in CH^n(X \times X) \), endomorphism \(\delta^* : \alpha \mapsto p_*(q^*\alpha \cdot \delta) \) of \(H^r(X, \mathbb{Z}) \).
CH_0-trivial \Rightarrow Tors $H^3(X, \mathbb{Z}) = 0$

Proposition

X stably rational $\implies X$ CH_0-trivial \implies Tors $H^3(X, \mathbb{Z}) = 0$.

Proof:

a) CH_0 birational invariant, and $CH_0(X \times \mathbb{P}^m) = CH_0(X)$.

b) X CH_0-trivial: $\Delta \sim_{\text{rat}} X \times \{p\} + Z$.

For $\delta \in CH^n(X \times X)$, endomorphism $\delta^* : \alpha \mapsto p_*(q^* \alpha \cdot \delta)$ of $H^r(X, \mathbb{Z})$.

$\Delta^* = \text{Id}$, $[X \times \{p\}]^* = 0$ for $r \neq 0$, and
Proposition

X stably rational $\implies X$ CH$_0$-trivial \implies Tors $H^3(X, \mathbb{Z}) = 0$.

Proof: a) CH$_0$ birational invariant, and $CH_0(X \times \mathbb{P}^m) = CH_0(X)$.

b) X CH$_0$-trivial : $\Delta \sim_{rat} X \times \{p\} + Z$.

\[\xymatrix{ X \times X & \ar[l]_p \ar[r]^q \ar[d] \ar[u] & X \times X \ar[l] \ar[r] & X \ar[d] \ar[u] } \]

For $\delta \in CH^n(X \times X)$, endomorphism $\delta^* : \alpha \mapsto p_*(q^* \alpha \cdot \delta)$ of $H^r(X, \mathbb{Z})$.

$\Delta^* = \text{Id}$, $[X \times \{p\}]^* = 0$ for $r \neq 0$, and

$\text{Id} = Z^* : H^r(X, \mathbb{Z}) \to H^{r-2}(D, \mathbb{Z}) \xrightarrow{i_*} H^r(X, \mathbb{Z})$.

Arnaud Beauville The stable Lüroth problem
\[CH_0 \text{-trivial} \Rightarrow \text{Tors } H^3(X, \mathbb{Z}) = 0 \]

Proposition

\[X \text{ stably rational} \implies X \text{ } CH_0 \text{-trivial} \implies \text{Tors } H^3(X, \mathbb{Z}) = 0. \]

Proof:

a) \(CH_0 \) birational invariant, and \(CH_0(X \times \mathbb{P}^m) = CH_0(X) \).

b) \(X \) \(CH_0 \)-trivial: \(\Delta \sim_{\text{rat}} X \times \{p\} + Z \).

For \(z \in CH^n(X \times X) \), endomorphism \(z^* : \alpha \mapsto p_*(q^*\alpha \cdot z) \) of \(H^r(X, \mathbb{Z}) \).

\[\Delta^* = \text{Id}, [X \times \{p\}]^* = 0 \text{ for } r \neq 0, \text{ and} \]

\[\text{Id} = Z^* : H^r(X, \mathbb{Z}) \rightarrow H^{r-2}(D, \mathbb{Z}) \stackrel{i_*}{\rightarrow} H^r(X, \mathbb{Z}). \]

For \(r = 3 \), \(H^1(D, \mathbb{Z}) \) torsion free \(\Rightarrow \) .
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

X flat projective, B smooth, general fiber smooth, O_B.

Assume X_o admits a desingularization $\sigma: \tilde{X} \to X$ with:

- a $q_Tor H^3(p_\tilde{X}, Z_{q\neq 0});$
- b $q_\sigma^{-1}(x)$ rational over κ_x for all $x \in X$.

Then X_b not stably rational for very general b.

Idea:
- a $q_{\tilde{X}}$ not CH_0-trivial;
- b q_X same for X.

Specialization argument $q_{\text{generic fiber}}$, then for very general fiber X_b (Baire) q_X not stably rational.

Thus to prove the theorem, we need a double covering $X \to P^n$ ($n = 3, 4, 5$) with a desingularization $\tilde{X} \to X$ satisfying a and b.

Arnaud Beauville

The stable Lüroth problem
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $o \in B$.

Assume X^0 admits a desingularization $\sigma : \tilde{X} \to X$ with:

- $a_\text{q} T\text{ors} H^3_p \tilde{X}, Z_{q} \neq 0$;
- $b_\text{q} \sigma^{-1} p_x \text{ rational over } \kappa$ for all $x \in X$.

Then X^b not stably rational for very general b.

Idea:
- a_q not CH_0-trivial;
- b_q same for X.

Specialization argument same for generic fiber, then for very general fiber $X^b (\text{Baire})$ not stably rational.

Thus to prove the theorem, we need a double covering $\mathcal{X} \to \mathbb{P}^n (n = 3, 4, 5)$ with a desingularization $\tilde{X} \to X$ satisfying a and b.

Arnaud Beauville

The stable Lüroth problem
The degeneration argument

 Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).

Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with:

\[a \in H^3_p(\tilde{X}), Z^q \neq 0; b \in \sigma^{-1}(\mathbb{Q}^r) \] for all \(x \in X \).

Then \(X \) is not stably rational for very general fiber.

Idea:

- \(a \) and \(\tilde{X} \) not \(\text{CH}^0 \)-trivial;
- \(b \) and \(X \) the same for generic fiber,

then for very general fiber \(X \) is not stably rational.

Thus to prove the theorem, we need a double covering \(\mathcal{X} \to \mathbb{P}^n \) (\(n = 3, 4, 5 \)) with a desingularization \(\tilde{X} \to X \) satisfying \(a \) and \(b \).
Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).
Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with :

a) \(\text{Tors} \ H^3(\tilde{X}, \mathbb{Z}) \neq 0; \)
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

\[\mathcal{X} \to B \] flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).

Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with:

a) \(\text{Tors} H^3(\tilde{X}, \mathbb{Z}) \neq 0 \);

b) \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

Let $\mathcal{X} \rightarrow B$ be a flat projective family, B smooth, general fiber smooth, $0 \in B$.

Assume $X := \mathcal{X}_0$ admits a desingularization $\sigma : \tilde{X} \rightarrow X$ with:

1. $\text{Tors} H^3(\tilde{X}, \mathbb{Z}) \neq 0$;
2. $\sigma^{-1}(x)$ is rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b is not stably rational for very general b.

Idea:

- $\text{Tors} H^3(\tilde{X}, \mathbb{Z})$ not CH_0-trivial;
- Same for X.

Specialization argument:

- Same for generic fiber;
- Then for very general fiber \mathcal{X}_b (Baire) is not stably rational.

Thus to prove the theorem, we need a double covering $\mathcal{X} \rightarrow \mathbb{P}^n$ ($n = 3, 4, 5$) with a desingularization $\tilde{X} \rightarrow X$ satisfying $a)$ and $b)$.

Arnaud Beauville

The stable Lüroth problem
Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $0 \in B$.
Assume $X := \mathcal{X}_o$ admits a desingularization $\sigma : \tilde{X} \to X$ with:

a) $\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0$;

b) $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

Idea: a) $\Rightarrow \tilde{X}$ not CH_0-trivial;
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

$\mathcal{X} \to B$ flat projective, B smooth, general fiber smooth, $0 \in B$.

Assume $X := \mathcal{X}_0$ admits a desingularization $\sigma : \tilde{X} \to X$ with:

1. $\text{Torsh} H^3(\tilde{X}, \mathbb{Z}) \neq 0$;
2. $\sigma^{-1}(x)$ rational over $\kappa(x)$ for all $x \in X$.

Then \mathcal{X}_b not stably rational for very general b.

Idea: a) $\Rightarrow \tilde{X}$ not CH_0-trivial; b) \Rightarrow same for X.
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).

Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with:

a) \(\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0 \);

b) \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).

Then \(\mathcal{X}_b \) not stably rational for very general \(b \).

Idea: a) \(\Rightarrow \tilde{X} \) not \(CH_0 \)-trivial; b) \(\Rightarrow \) same for \(X \).

Specialization argument \(\Rightarrow \) same for generic fiber,
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(\circ \in B \).

Assume \(X := \mathcal{X}_\circ \) admits a desingularization \(\sigma : \tilde{X} \to X \) with:

a) \(\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0 \);

b) \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).

Then \(\mathcal{X}_b \) not stably rational for very general \(b \).

Idea : a) \(\Rightarrow \tilde{X} \) not \(CH_0 \)-trivial; b) \(\Rightarrow \) same for \(X \).

Specialization argument \(\Rightarrow \) same for generic fiber, then for very general fiber \(\mathcal{X}_b \) (Baire)
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(\mathfrak{o} \in B \).
Assume \(\mathcal{X} := \mathcal{X}_0 \) admits a desingularization \(\sigma : \tilde{\mathcal{X}} \to \mathcal{X} \) with:

\begin{itemize}
 \item[a)] \(\text{Tors } H^3(\tilde{\mathcal{X}}, \mathbb{Z}) \neq 0 \);
 \item[b)] \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in \mathcal{X} \).
\end{itemize}

Then \(\mathcal{X}_b \) not stably rational for very general \(b \).

\textbf{Idea :} a) \(\Rightarrow \tilde{\mathcal{X}} \) not \(CH_0 \)-trivial; b) \(\Rightarrow \) same for \(\mathcal{X} \).

Specialization argument \(\Rightarrow \) same for generic fiber, then for very general fiber \(\mathcal{X}_b \) (Baire) \(\Rightarrow \mathcal{X}_b \) not stably rational.
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)

\(\mathcal{X} \to B \) flat projective, \(B \) smooth, general fiber smooth, \(o \in B \).

Assume \(X := \mathcal{X}_o \) admits a desingularization \(\sigma : \tilde{X} \to X \) with :

1. \(\text{Tors } H^3(\tilde{X}, \mathbb{Z}) \neq 0; \)
2. \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).

Then \(\mathcal{X}_b \) not stably rational for very general \(b \).

Idea:
1. \(\Rightarrow \tilde{X} \) not \(CH_0 \)-trivial;
2. \(\Rightarrow \) same for \(X \).

Specialization argument \(\Rightarrow \) same for generic fiber,
then for very general fiber \(\mathcal{X}_b \) (Baire) \(\Rightarrow \mathcal{X}_b \) not stably rational.

Thus to prove the theorem, we need a double covering \(X \to \mathbb{P}^n \).
The degeneration argument

Proposition (Voisin, Colliot-Thélène-Pirutka)
\[X \to B \] flat projective, \(B \) smooth, general fiber smooth, \(\circ \in B \).
Assume \(X := X_0 \) admits a desingularization \(\sigma : \tilde{X} \to X \) with :

\(a) \) \(\text{Tors} \, H^3(\tilde{X}, \mathbb{Z}) \neq 0; \)

\(b) \) \(\sigma^{-1}(x) \) rational over \(\kappa(x) \) for all \(x \in X \).

Then \(X_b \) not stably rational for very general \(b \).

Idea : \(a) \) \(\Rightarrow \) \(\tilde{X} \) not \(CH_0 \)-trivial; \(b) \) \(\Rightarrow \) same for \(X \).
Specialization argument \(\Rightarrow \) same for generic fiber, then for very general fiber \(X_b \) (Baire) \(\Rightarrow \) \(X_b \) not stably rational.

Thus to prove the theorem, we need a double covering \(X \to \mathbb{P}^n \) (\(n = 3, 4, 5 \)) with a desingularization \(\tilde{X} \to X \) satisfying \(a) \) and \(b) \).
The Brauer group

How to find torsion elements in H^3_p, \mathbb{Z}^q?

Observation

For V smooth projective with $H^2_p V, \mathcal{O}^q = 0$, $\text{Tors} H^3_p V, \mathbb{Z}^q = \text{Tors} H^2_p V, \mathcal{O}_{\text{hol}}^q$.

Proof: The exponential exact sequence gives an exact sequence $H^2_p V, \mathcal{O}_{\text{hol}}^q \Rightarrow H^2_p V, \mathcal{O}_{\text{hol}}^q \Rightarrow H^3_p V, \mathbb{Z}^q \Rightarrow H^3_p V, \mathcal{O}_{\text{hol}}^q$.

Arnaud Beauville

The stable Lüroth problem
The Brauer group

How to find torsion elements in $H^3(\ , \mathbb{Z})$?
The Brauer group

How to find torsion elements in $H^3(\, , \mathbb{Z})$?

Observation

For V smooth projective with $H^2(V, \mathcal{O}_V) = 0$, the exponential exact sequence gives an exact sequence:

$$
0 \rightarrow H^2(p, \mathcal{O}_V) \rightarrow H^3(p, \mathcal{O}_V) \rightarrow \text{Br}_p(V) \rightarrow 0
$$

where $\text{Br}_p(V)$ is the Brauer group of V. The sheaf of holomorphic functions on V.

Proof: The exponential exact sequence gives an exact sequence:

$$
0 \rightarrow H^2(p, \mathcal{O}_V) \rightarrow H^3(p, \mathcal{O}_V) \rightarrow \text{Br}_p(V) \rightarrow 0
$$

where $\text{Br}_p(V)$ is the Brauer group of V. The sheaf of holomorphic functions on V.

Arnaud Beauville

The stable Lüroth problem
How to find torsion elements in $H^3(\cdot, \mathbb{Z})$?

Observation

For V smooth projective with $H^2(V, \mathcal{O}_V) = 0$,

$$\text{Tors } H^3(V, \mathbb{Z}) = \text{Tors } H^2(V, \mathcal{O}_h^*) := \text{Br}(V)$$

(Brauer group)

where $\mathcal{O}_h :=$ sheaf of holomorphic functions on V.

Arnaud Beauville

The stable Lüroth problem
How to find torsion elements in $H^3(\cdot, \mathbb{Z})$?

Observation

For V smooth projective with $H^2(V, \mathcal{O}_V) = 0$,

$$\text{Tors } H^3(V, \mathbb{Z}) = \text{Tors } H^2(V, \mathcal{O}_h^*) := \text{Br}(V) \quad \text{(Brauer group)}$$

where $\mathcal{O}_h :=$ sheaf of holomorphic functions on V.

Proof: The exponential exact sequence gives an exact sequence

$$H^2(V, \mathcal{O}_h) = 0 \longrightarrow H^2(V, \mathcal{O}_h^*) \longrightarrow H^3(V, \mathbb{Z}) \longrightarrow H^3(V, \mathcal{O}_h).$$
One way to get classes in the Brauer group $\text{Br}_p\mathbb{V}$ is to consider \mathbb{P}^m-bundles on \mathbb{V}, that is, smooth fibrations $\mathbb{P} \rightarrow \mathbb{V}$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over \mathbb{V}).

Reminder: An \mathbb{P}^n-bundle $\mathbb{P} \rightarrow \mathbb{V}$ defines an n-torsion class $r_{\mathbb{P}} \in \text{Br}_p\mathbb{V}$, which is trivial if and only if \mathbb{P} is a projective bundle $\mathbb{P}_p\mathbb{V}/\mathbb{P}$. (follows from the cohomology exact sequence associated to $1 \rightarrow \mathbb{C}^* \rightarrow \text{GL}_n(\mathbb{C}) \rightarrow \text{PGL}_n(\mathbb{C}) \rightarrow 1$.)

Arnaud Beauville
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V.
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).

Reminder

A \mathbb{P}^{n-1}-bundle $P \to V$ defines a n-torsion class $[P] \in \text{Br}(V)$.
One way to get classes in the Brauer group $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. Severi-Brauer schemes over V).

Reminder

A \mathbb{P}^{n-1}-bundle $P \to V$ defines a n-torsion class $[P] \in \text{Br}(V)$, which is trivial if and only if P is a projective bundle $\mathbb{P}_V(E)$.

Arnaud Beauville

The stable Lüroth problem
One way to get classes in the **Brauer group** $\text{Br}(V)$ is to consider \mathbb{P}^m-bundles on V, that is, smooth fibrations $P \to V$ with fibers isomorphic to \mathbb{P}^m (a.k.a. **Severi-Brauer** schemes over V).

Reminder

A \mathbb{P}^{n-1}-bundle $P \to V$ defines a n-torsion class $[P] \in \text{Br}(V)$, which is trivial if and only if P is a projective bundle $\mathbb{P}_V(E)$.

(follows from the cohomology exact sequence associated to

$$1 \to \mathbb{C}^* \to \text{GL}_n(\mathbb{C}) \to \text{PGL}_n(\mathbb{C}) \to 1.$$
The construction

\[\text{The construction} \]

\[\Sigma \Delta L - P^n \text{rk} \geq 2 \text{rk} \geq 3 \text{∆ quartic hypersurface,} \]

\[\text{Sing}_p \Delta q'' \Sigma, \dim_p \Delta q'' n - 3. \]

\[\pi: X \rightarrow L := \text{double cover branched along } \Delta. \]

\[X_{sm} \pi' 1_p L \setminus \Sigma \text{tp}_q \sigma_q|_q P L, \text{rk}_p q \sigma_q'' 3 \text{ or 4,} \sigma_q \text{system of generatrices of } q_u. \]

\[\sigma \text{parametrized by } P^1 \text{ù } \text{P}^1 \text{-bundle } p: P \rightarrow X_{sm}. \]

\[\text{Proposition} \]

\[\text{The } P^1 \text{-bundle } p: P \rightarrow X_{sm} \text{ is not a projective bundle.} \]

\[\text{Proof:} \text{ Suppose } p \text{ has a rational section:} p q \ell_p q, \sigma_q p \sigma_q X \ell_p q, \sigma_1 q''. \]

\[\text{For general } q, 2 \text{ systems } \sigma, \sigma_1 \ell_p q, \sigma_q X \ell_p q, \sigma_1 q''. \]

\[\text{Get rational section of quadric family } Q \rightarrow L. \]
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n.$
The construction

\(L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n. \)

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \]
\[\text{rk } \leq 2 \quad \text{rk } \leq 3 \]
$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n.$

$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

$\Delta \text{ quartic hypersurface, } \text{Sing}(\Delta) = \Sigma, \dim(\Sigma) = n - 3.$
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n.$

\[
\Sigma \subset \Delta \subset L \cong \mathbb{P}^n
\]

\[\text{rk} \leq 2 \quad \text{rk} \leq 3\]

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

$\pi : X \to L := \text{double cover branched along } \Delta$. $X_{sm} = \pi^{-1}(L \setminus \Sigma)$
$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n.$

$$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$$

$rk \leq 2 \quad rk \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\text{dim}(\Sigma) = n - 3$.

$\pi : X \to L := \text{double cover branched along } \Delta. \quad X_{sm} = \pi^{-1}(L \setminus \Sigma)$

$= \{(q, \sigma) \mid q \in L, \rk(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}$.

The construction

Arnaud Beauville

The stable Lüroth problem
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n.$

$$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

$\Delta \text{ quartic hypersurface, } \text{Sing}(\Delta) = \Sigma, \dim(\Sigma) = n - 3.$

$\pi : X \to L := \text{double cover branched along } \Delta. \quad X_{sm} = \pi^{-1}(L \setminus \Sigma)$

$= \{(q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}.$

$\sigma \text{ parametrized by } \mathbb{P}^1 \dashrightarrow \mathbb{P}^1\text{-bundle } p : P \to X_{sm}.$
The construction

$L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n.$

\[
\Sigma \subset \Delta \subset L \cong \mathbb{P}^n
\]

\[
\text{rk} \leq 2 \quad \text{rk} \leq 3
\]

\(\Delta\) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma\), \(\dim(\Sigma) = n - 3\).

\(\pi : X \to L := \text{double cover branched along } \Delta. \quad X_{sm} = \pi^{-1}(L \setminus \Sigma) = \{(q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}.

\(\sigma\) parametrized by \(\mathbb{P}^1 \cong \mathbb{P}^1\)-bundle \(p : P \to X_{sm}\).

Proposition

The \(\mathbb{P}^1\)-bundle \(p : P \to X_{sm}\) is not a projective bundle.
L = general linear system of quadrics in \mathbb{P}^3 of dimension n.

$\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\dim(\Sigma) = n - 3$.

$\pi : X \to L := $ double cover branched along Δ. $X_{sm} = \pi^{-1}(L \setminus \Sigma) = \{(q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q\}$. σ parametrized by $\mathbb{P}^1 \dashrightarrow \mathbb{P}^1$-bundle $p : P \to X_{sm}$.

Proposition

The \mathbb{P}^1-bundle $p : P \to X_{sm}$ is not a projective bundle.

Proof : Suppose p has a rational section : $(q, \sigma) \dashrightarrow \ell(q, \sigma) \in \sigma$.
The construction

\[L = \text{general linear system of quadrics in } \mathbb{P}^3 \text{ of dimension } n. \]

\[\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \]

\[\text{rk } \leq 2 \quad \text{rk } \leq 3 \]

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\text{dim}(\Sigma) = n - 3 \).

\(\pi : X \to L := \text{double cover branched along } \Delta. \) \(X_{sm} = \pi^{-1}(L \setminus \Sigma) \)

\[= \{ (q, \sigma) \mid q \in L, \text{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q \}. \]

\(\sigma \) parametrized by \(\mathbb{P}^1 \overset{\sim}{\to} \mathbb{P}^1\)-bundle \(p : P \to X_{sm} \).

Proposition

The \(\mathbb{P}^1\)-bundle \(p : P \to X_{sm} \) is not a projective bundle.

Proof: Suppose \(p \) has a rational section : \((q, \sigma) \mapsto \ell(q, \sigma) \in \sigma \).

For general \(q \), 2 systems \(\sigma, \sigma' \overset{\sim}{\mapsto} \ell(q, \sigma) \cap \ell(q, \sigma') = s(q) \in q. \)
The construction

\(L = \) general linear system of quadrics in \(\mathbb{P}^3 \) of dimension \(n \).

\[
\Sigma \subset \Delta \subset L \cong \mathbb{P}^n
\]

\(\mathrm{rk} \leq 2 \quad \mathrm{rk} \leq 3 \)

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

\(\pi : X \to L := \) double cover branched along \(\Delta \). \(X_{sm} = \pi^{-1}(L \setminus \Sigma) \)

\[= \{ (q, \sigma) \mid q \in L, \mathrm{rk}(q) = 3 \text{ or } 4, \sigma = \text{system of generatrices of } q \}. \]

\(\sigma \) parametrized by \(\mathbb{P}^1 \rightrightarrows \mathbb{P}^1 \)-bundle \(p : P \to X_{sm} \).

Proposition

The \(\mathbb{P}^1 \)-bundle \(p : P \to X_{sm} \) is not a projective bundle.

Proof: Suppose \(p \) has a rational section : \((q, \sigma) \mapsto \ell(q, \sigma) \in \sigma \).

For general \(q \), 2 systems \(\sigma, \sigma' \rightrightarrows \ell(q, \sigma) \cap \ell(q, \sigma') = s(q) \in q \).

Get rational section of quadric family \(Q \to L \).
Lemma

The universal family $p: H \to \mathbb{P}^n$ has no rational section.

Proof: rational section $u: \mathbb{Z} \to H$, $r \mapsto \hat{u}(r)$ smooth hypersurface in $H \to \mathbb{P}^n$.

Conclusion: get a nontrivial 2-torsion class in $\text{Br}_p X_{\text{sm}}$.
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

Proof: rational section $u : \mathbb{P}^n \to \mathcal{O}_{\mathbb{P}^n}(d)$.

Conclusion: get a nontrivial 2-torsion class in $\text{Br}_{\mathbb{P}^n}$. Then:

$\text{Br}_{\mathbb{P}^n} \tilde{\mathcal{X}}_\mathbb{P}^n = \text{Br}_{\mathbb{P}^n} \mathcal{X}_\mathbb{P}^n$.

Arnaud Beauville
The stable Lüroth problem
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.

$\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\}$

![Diagram](image)
Lemma

$L \subset |O_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.

\[\mathcal{H} := \{ (H, x) \in L \times \mathbb{P}^n \mid x \in H \} \]

smooth hypersurface in $L \times \mathbb{P}^n$.

\[\begin{array}{ccc}
\mathcal{H} & \xrightarrow{p} & L \\
\downarrow & & \downarrow \\
\mathbb{P}^n & \xrightarrow{q} & \mathbb{P}^n
\end{array} \]
Lemma

\[L \subset |\mathcal{O}_{\mathbb{P}^n}(d)| \text{ base point free linear system, } d \geq 2. \]

The universal family \(p : \mathcal{H} \to L \) has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in \(L \times \mathbb{P}^n \).

Proof: rational section \(Z \subset \mathcal{H} \), \([Z] \cdot p^*[\text{pt}] = 1. \)
Lemma

\(L \subset |O_{\mathbb{P}^n}(d)| \) base point free linear system, \(d \geq 2 \).

The universal family \(p: \mathcal{H} \to L \) has no rational section.

\[\mathcal{H} := \{ (H, x) \in L \times \mathbb{P}^n \mid x \in H \} \]

smooth hypersurface in \(L \times \mathbb{P}^n \).

Proof:

rational section \(\sim \) \(Z \subset \mathcal{H} \), \([Z] \cdot p^*[\text{pt}] = 1 \).

\([Z] \in H^{2n-2}(\mathcal{H}, \mathbb{Z}) \): by Lefschetz, \([Z] = \sum_i n_i p^* h^i_L \cdot q^* h^{n-1-i}_{\mathbb{P}^n} \).
Lemma

\(L \subset |\mathcal{O}_{\mathbb{P}^n}(d)| \) base point free linear system, \(d \geq 2 \).

The universal family \(p : \mathcal{H} \rightarrow L \) has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in \(L \times \mathbb{P}^n \).

Proof: rational section \(\rightsquigarrow Z \subset \mathcal{H}, \ [Z] \cdot p^* [pt] = 1. \)

\([Z] \in H^{2n-2}(\mathcal{H}, \mathbb{Z}) \) : by Lefschetz, \([Z] = \sum_i n_i p^* h^i_L \cdot q^* h^{n-1-i}_{\mathbb{P}^n} \)

\([Z] \cdot p^* [pt] = n_0 p^* [pt] \cdot q^* h^{n-1}_{\mathbb{P}^n} = n_0 d \quad \Rightarrow \quad \boxed{\text{}}. \)
Lemma

$L \subset |\mathcal{O}_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \to L$ has no rational section.

$\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\}$
smooth hypersurface in $L \times \mathbb{P}^n$.

Proof: rational section $\rightsquigarrow Z \subset \mathcal{H}$, $[Z] \cdot p^*[\text{pt}] = 1$.

$[Z] \in H^{2n-2}(\mathcal{H}, \mathbb{Z})$: by Lefschetz, $[Z] = \sum n_i p^* h_L^i \cdot q^* h_{\mathbb{P}^n}^{n-1-i}$

$[Z] \cdot p^*[\text{pt}] = n_0 p^*[\text{pt}] \cdot q^* h_{\mathbb{P}^n}^{n-1} = n_0 d \implies \square$.

Conclusion: get a nontrivial 2-torsion class in $\text{Br}(X_{sm})$.
Lemma

$L \subset |O_{\mathbb{P}^n}(d)|$ base point free linear system, $d \geq 2$.

The universal family $p : \mathcal{H} \rightarrow L$ has no rational section.

\[\mathcal{H} := \{(H, x) \in L \times \mathbb{P}^n \mid x \in H\} \]

smooth hypersurface in $L \times \mathbb{P}^n$.

\[\text{Proof: rational section } Z \subset \mathcal{H}, \ [Z] \cdot p^*[\text{pt}] = 1. \]

\[[Z] \in H^{2n-2}(\mathcal{H}, \mathbb{Z}) : \text{by Lefschetz, } [Z] = \sum_i n_i p^* h_i^L \cdot q^* h_{\mathbb{P}^n}^{n-1-i} \]

\[[Z] \cdot p^*[\text{pt}] = n_0 p^*[\text{pt}] \cdot q^* h_{\mathbb{P}^n}^{n-1} = n_0 d \implies \square \]

Conclusion: get a nontrivial 2-torsion class in $\text{Br}(X_{sm})$. Then:

\[\text{Br}(\tilde{X}) \twoheadrightarrow \text{Br}(X_{sm}) \]
The desingularization

Recall: \(\Sigma \)

\[\Delta \]

\(L - P \)

\(n \rightarrow 2 \rightarrow 3 \)

\(\Delta \) quartic hypersurface,

\(\text{Sing} \)

\(p \)

\(\Delta q'' \)

\(\Sigma, \dim \)

\(p \)

\(\Sigma q'' n \rightarrow 3. \)

Assume \(n \rightarrow 5 \):

Then \(\Sigma \) smooth; locally at \(q \)

\(P \)

\(\Delta - \Sigma \hat{Q} \)

\(Q \)

quadratic cone in \(P_3 \).

Blow up \(L \) along \(\Sigma \):

\[\mathcal{L} \]

\(\mathcal{E} \)

\(\mathcal{L} \tilde{\Delta} \)

\(\mathcal{Q} \)

\(\mathcal{E} \rightarrow \mathcal{L} \mathcal{Q} \)

\(\tilde{\Delta} \)

\(\mathcal{Q} \)

\(\mathcal{E} \rightarrow \mathcal{L} \mathcal{C} \)

\(\mathcal{C} \)

smooth conic.

Key fact

True locally for the Zariski topology.
The desingularization

Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)

\(\text{rk} \leq 2 \quad \text{rk} \leq 3 \)
Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\[
\text{rk} \leq 2 \quad \text{rk} \leq 3
\]
\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma, \dim(\Sigma) = n - 3 \).
Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\(\text{rk } \leq 2 \quad \text{rk } \leq 3 \)

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma, \dim(\Sigma) = n - 3 \).

Assume \(n \leq 5 \): Then \(\Sigma \) smooth; locally at \(q \in \Sigma \), \(\Delta \cong \Sigma \times Q \),
\(Q \) quadratic cone in \(\mathbb{P}^3 \).
Recall: $\Sigma \subset \Delta \subset L \cong \mathbb{P}^n$

$\text{rk} \leq 2 \quad \text{rk} \leq 3$

Δ quartic hypersurface, $\text{Sing}(\Delta) = \Sigma$, $\text{dim}(\Sigma) = n - 3$.

Assume $n \leq 5$: Then Σ smooth; locally at $q \in \Sigma$, $\Delta \cong \Sigma \times Q$, Q quadratic cone in \mathbb{P}^3. Blow up L along Σ:
Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]
\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

Assume \(n \leq 5 \): Then \(\Sigma \) smooth; locally at \(q \in \Sigma \), \(\Delta \cong \Sigma \times Q \), \(Q \) quadratic cone in \(\mathbb{P}^3 \). Blow up \(L \) along \(\Sigma \):

\[
\begin{array}{ccc}
E & \hookrightarrow & \tilde{L} \\
\downarrow & & \downarrow b \\
\Sigma & \hookrightarrow & L
\end{array}
\]
The desingularization

Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)

\(\text{rk} \leq 2 \quad \text{rk} \leq 3 \)

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

Assume \(n \leq 5 \): Then \(\Sigma \) smooth; locally at \(q \in \Sigma \), \(\Delta \cong \Sigma \times Q \),

\(Q \) quadratic cone in \(\mathbb{P}^3 \). Blow up \(L \) along \(\Sigma \):

\[
\begin{array}{ccc}
E & \hookrightarrow & \tilde{L} \\
\downarrow & & \downarrow b \\
\Sigma & \hookrightarrow & L
\end{array}
\]

\[
\begin{array}{ccc}
\tilde{\Delta} & \leftarrow & \Delta \\
\downarrow & & \downarrow \\
\tilde{L} & \leftarrow & L
\end{array}
\]
The desingularization

Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\(\operatorname{rk} \leq 2 \quad \operatorname{rk} \leq 3 \)
\(\Delta \) quartic hypersurface, \(\operatorname{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

Assume \(n \leq 5 \): Then \(\Sigma \) smooth; locally at \(q \in \Sigma \), \(\Delta \cong \Sigma \times Q \), \(Q \) quadratic cone in \(\mathbb{P}^3 \). Blow up \(L \) along \(\Sigma \):

\[
\begin{array}{ccc}
E & \hookrightarrow & \tilde{L} & \leftarrow & \tilde{\Delta} \\
\downarrow & & \downarrow b & & \downarrow \\
\Sigma & \hookrightarrow & L & \leftarrow & \Delta
\end{array}
\]

locally over \(q \in \Sigma \): \(\tilde{\Delta} \cong \Sigma \times \tilde{Q} \), \(\tilde{\Delta} \cap E \cong \Sigma \times C \), \(C \) smooth conic.
The desingularization

Recall: \(\Sigma \subset \Delta \subset L \cong \mathbb{P}^n \)
\[\text{rk} \leq 2 \quad \text{rk} \leq 3 \]

\(\Delta \) quartic hypersurface, \(\text{Sing}(\Delta) = \Sigma \), \(\dim(\Sigma) = n - 3 \).

Assume \(n \leq 5 \): Then \(\Sigma \) smooth; locally at \(q \in \Sigma \), \(\Delta \cong \Sigma \times Q \), \(Q \) quadratic cone in \(\mathbb{P}^3 \). Blow up \(L \) along \(\Sigma \):

\[
\begin{array}{ccc}
E & \hookrightarrow & \tilde{L} \quad \leftarrow \quad \tilde{\Delta} \\
\downarrow & & \downarrow b \\
\Sigma & \hookrightarrow & L \quad \leftarrow \quad \Delta
\end{array}
\]

locally over \(q \in \Sigma \): \(\tilde{\Delta} \cong \Sigma \times \tilde{Q}, \tilde{\Delta} \cap E \cong \Sigma \times C \), \(C \) smooth conic.

Key fact

True locally for the Zariski topology.
Double coverings

π: X → L branched along ∆; define ˜π: ˜X → ˜L branched along ˜∆ (note that ˜∆ = ∆ + ∆ | b δ ∆ 2 E |)

˜Σ ↘ ↙ → ↓ ↓ ˜X ˜π → → ˜Σ ↓ ↓ ˜L b ↓ ↓ Σ ↘ ↙ → X π → → L

"double cover of E branched along ˜∆ X E."

˜Σ → Zar X ˜Σ → Zar X ˆt smooth quadric u.

ù condition a q for σ.
\[\pi : X \rightarrow L \text{ branched along } \Delta; \]
Double coverings

\[\pi : X \rightarrow L \text{ branched along } \Delta; \text{ define } \tilde{\pi} : \tilde{X} \rightarrow \tilde{L} \text{ branched along } \tilde{\Delta} \]

Arnaud Beauville
The stable Lüroth problem
$\pi : X \to L$ branched along Δ; define $\tilde{\pi} : \tilde{X} \to \tilde{L}$ branched along $\tilde{\Delta}$
(note that $\tilde{\Delta} \in |b^*\Delta - 2E|$)
Double coverings

$\pi : X \rightarrow L$ branched along Δ; define $\tilde{\pi} : \tilde{X} \rightarrow L$ branched along $\tilde{\Delta}$
(note that $\tilde{\Delta} \in |b^*\Delta - 2E|$)

$\quad \begin{array}{c}
\tilde{\Sigma} \rightarrow \tilde{X} \xrightarrow{\tilde{\pi}} \tilde{L} \\
\downarrow \quad \downarrow \sigma \quad \downarrow b \\
\Sigma \rightarrow X \xrightarrow{\pi} L
\end{array}$

Arnaud Beauville
The stable Lüroth problem
Double coverings

$\pi : X \to L$ branched along Δ; define $\tilde{\pi} : \tilde{X} \xrightarrow{2:1} \tilde{L}$ branched along $\tilde{\Delta}$
(note that $\tilde{\Delta} \in |b^* \Delta - 2E|$)

\[\begin{array}{ccc}
\tilde{\Sigma} & \subset & \tilde{X} \\
\downarrow & & \downarrow \sigma \\
\Sigma & \subset & X \\
\downarrow & & \downarrow \pi \\
\Sigma & \rightarrow & L \\
\end{array} \]

$\tilde{\Sigma} =$ double cover of E branched along $\tilde{\Delta} \cap E$.
Double coverings

\(\pi : X \to L \) branched along \(\Delta \); define \(\tilde{\pi} : \tilde{X} \xrightarrow{2:1} \tilde{L} \) branched along \(\tilde{\Delta} \)

(note that \(\tilde{\Delta} \in |b^*\Delta - 2E| \))

\[\begin{array}{ccc}
\Sigma & \xhookrightarrow{} & \tilde{X} & \xrightarrow{\tilde{\pi}} & \tilde{L} \\
\downarrow & & \downarrow_{\sigma} & & \downarrow_{b} \\
\Sigma & \xhookrightarrow{} & X & \xrightarrow{\pi} & L
\end{array} \]

\(\tilde{\Sigma} = \) double cover of \(E \) branched along \(\tilde{\Delta} \cap E \).

\(\tilde{\Delta} \cap E \cong_{\text{Zar}} X \times C \Rightarrow \tilde{\Sigma} \cong_{\text{Zar}} X \times \{\text{smooth quadric}\}. \)
\[\pi : X \to L \text{ branched along } \Delta; \text{ define } \tilde{\pi} : \tilde{X} \xrightarrow{2:1} \tilde{L} \text{ branched along } \tilde{\Delta} \]

(note that \(\tilde{\Delta} \in |b^*\Delta - 2E| \))

\[
\begin{array}{c}
\tilde{\Sigma} \hookrightarrow \tilde{X} \xrightarrow{\tilde{\pi}} \tilde{L} \\
\downarrow \quad \downarrow \sigma \quad \downarrow b \\
\Sigma \hookrightarrow X \xrightarrow{\pi} L
\end{array}
\]

\(\tilde{\Sigma} = \text{double cover of } E \text{ branched along } \tilde{\Delta} \cap E \).

\(\tilde{\Delta} \cap E \cong_{Zar} X \times C \Rightarrow \tilde{\Sigma} \cong_{Zar} X \times \{\text{smooth quadric}\} \).

\(\leadsto \) condition a) for \(\sigma \).
THE END
THE END

Happy birthday, Fabrizio!