V. Further developments

Arnaud Beauville

Université de Nice

March 28, 2008
Proposition (Bogomolov-Verbitsky)

X hyperkähler, A sub-algebra of $H^\ast(X, \mathbb{Q})$ spanned by $H^2(X, \mathbb{Q})$.

Then A satisfies Poincaré duality; $H^\ast(X, \mathbb{Q}) = A \oplus A^\perp$;

$A = S^\ast H^2(X, \mathbb{Q}) / J$ with $J = \langle x^r+1 | x \in H^2(X, \mathbb{Q}), q(x) = 0 \rangle$

Corollary

$Sp H^2(X, \mathbb{Q}) \to H^2_p(X, \mathbb{Q})$ injective for $p \leq r$.

Arnaud Beauville

V. Further developments
Proposition (Bogomolov-Verbitsky)

Let X be hyperkähler, A a sub-algebra of $H^*(X, \mathbb{Q})$ spanned by $H^2(X, \mathbb{Q})$.

Then A satisfies Poincaré duality; $H^*(X, \mathbb{Q}) = A \oplus A^\perp$;

$$A = S^*H^2(X, \mathbb{Q})/J \quad \text{with} \quad J = \langle x^{r+1} | x \in H^2(X, \mathbb{Q}), q(x) = 0 \rangle$$
Proposition (Bogomolov-Verbitsky)

X hyperkähler, A sub-algebra of $H^*(X, \mathbb{Q})$ spanned by $H^2(X, \mathbb{Q})$.

Then A satisfies Poincaré duality; $H^*(X, \mathbb{Q}) = A \oplus A^\perp$;

$$A = S^*H^2(X, \mathbb{Q})/J \text{ with } J = \langle x^{r+1} \mid x \in H^2(X, \mathbb{Q}), q(x) = 0 \rangle$$

Corollary

$$S^p H^2(X, \mathbb{Q}) \rightarrow H^{2p}(X, \mathbb{Q}) \text{ injective for } p \leq r.$$
Proof.

1. Geometric input:

 \[q(\alpha) = 0 \implies \alpha r + 1 = 0; \exists \omega \in H_2(X, Q), \omega_2 \neq 0. \]

2. Put \(H = H_2(X, Q), B = S^*H/J \). Then \(S^*H \to H^*(X, Q) \) maps \(J \) to 0, hence factors as \(\lambda: B \twoheadrightarrow A \), with \(\lambda(B_2r) \neq 0 \).

3. Representation theory of \(O(H, q) \) \(\Rightarrow \) \(B \) Gorenstein, i.e. \(B_p \times B_2r - p \to B_2r = Q \) perfect \(\forall p \).

4. If \(\ker \lambda \neq 0 \), contains \(B_2r \), contradiction.

Remark: \(A \) depends only on \((H, q)\) and \(r \).
Proof.

1. Geometric input:
 - $q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0$;
Proof.

1 Geometric input:
 - \(q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0 \);
 - \(\exists \omega \in H^2(X, \mathbb{Q}), \omega^{2r} \neq 0 \).
Proof.

1 Geometric input:
 - $q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0$
 - $\exists \omega \in H^2(X, \mathbb{Q}), \omega^{2r} \neq 0$

2 Put $H = H^2(X, \mathbb{Q}), B = S^*H/J$. Then $S^*H \to H^*(X, \mathbb{Q})$ maps J to 0, hence factors as $\lambda : B \to A$, with $\lambda(B_{2r}) \neq 0$.

Remark: A depends only on (H, q) and r.

Arnaud Beauville
V. Further developments
Proof.

1. Geometric input:
 - \(q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0; \)
 - \(\exists \omega \in H^2(X, \mathbb{Q}), \omega^{2r} \neq 0. \)

2. Put \(H = H^2(X, \mathbb{Q}), B = S^*H/J. \) Then \(S^*H \to H^*(X, \mathbb{Q}) \)
 maps \(J \) to 0, hence factors as \(\lambda : B \to A, \) with \(\lambda(B_{2r}) \neq 0. \)

3. Representation theory of \(O(H, q) \Rightarrow B \) Gorenstein, i.e.
 \(B_p \times B_{2r-p} \to B_{2r} = \mathbb{Q} \) perfect \(\forall p. \)
Proof.

1. **Geometric input:**
 - $q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0$;
 - $\exists \omega \in H^2(X, \mathbb{Q}), \omega^{2r} \neq 0$.

2. Put $H = H^2(X, \mathbb{Q})$, $B = S^*H/J$. Then $S^*H \rightarrow H^*(X, \mathbb{Q})$ maps J to 0, hence factors as $\lambda : B \rightarrow A$, with $\lambda(B_{2r}) \neq 0$.

3. Representation theory of $O(H, q) \Rightarrow B$ Gorenstein, i.e.
 - $B_p \times B_{2r-p} \rightarrow B_{2r} = \mathbb{Q}$ perfect $\forall p$.

4. If $\text{Ker} \lambda \neq 0$, contains B_{2r}, contradiction.
Proof.

1. Geometric input:
 - \(q(\alpha) = 0 \Rightarrow \alpha^{r+1} = 0; \)
 - \(\exists \omega \in H^2(X, \mathbb{Q}), \omega^{2r} \neq 0. \)

2. Put \(H = H^2(X, \mathbb{Q}), B = S^*H/J. \) Then \(S^*H \to H^*(X, \mathbb{Q}) \)
 maps \(J \) to 0, hence factors as \(\lambda : B \to A, \) with \(\lambda(B_{2r}) \neq 0. \)

3. Representation theory of \(O(H, q) \Rightarrow B \) Gorenstein, i.e.
 \[B_p \times B_{2r-p} \to B_{2r} = \mathbb{Q} \] perfect \(\forall p. \)

4. If \(\text{Ker} \lambda \neq 0, \) contains \(B_{2r}, \) contradiction.

Remark : \(A \) depends only on \((H, q) \) and \(r. \)
Lagrangian fibrations

X hyperkähler, $\dim X = 2r$. **Lagrangian fibration**:

$f : X \to B$ with connected fibres, B Kähler of dimension r, smooth fibres Lagrangian (i.e. $\sigma|_{X_b} = 0$).

 Proposition (Arnold-Liouville)

The smooth fibres of f are complex tori.

Proof.

$$0 \to \mathcal{T} X \to \mathcal{T} X \to f^* \mathcal{T} B \to f^* \Omega^1 B \to \Omega^1 X \to \Omega^1 X \to 0 \implies \Omega^1 X_b \cong O_{X_b} \implies X_b \text{ complex torus.}$$
Lagrangian fibrations

X hyperkähler, dim $X = 2r$. Lagrangian fibration:

$f : X \rightarrow B$ with connected fibres, B Kähler of dimension r, smooth fibres Lagrangian (i.e. $\sigma|_{X_b} = 0$).

Proposition (Arnold-Liouville)

The smooth fibres of f are complex tori.
Lagrangian fibrations

X hyperkähler, $\dim X = 2r$. Lagrangian fibration:

$f : X \to B$ with connected fibres, B Kähler of dimension r, smooth fibres Lagrangian (i.e. $\sigma|_{X_b} = 0$).

Proposition (Arnold-Liouville)

\textit{The smooth fibres of f are complex tori.}

Proof.

\[
\begin{array}{cccccc}
0 & \longrightarrow & T_{X/B} & \longrightarrow & T_X & \longrightarrow & f^* T_B & \longrightarrow & 0 \\
\downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \\
0 & \longrightarrow & f^* \Omega^1_B & \longrightarrow & \Omega^1_X & \longrightarrow & \Omega^1_{X/B} & \longrightarrow & 0 \\
\end{array}
\]

$\Rightarrow \quad \Omega^1_{X_b} \cong \mathcal{O}^r_{X_b} \Rightarrow X_b$ complex torus.
Remark: Lagrangian fibrations correspond to completely integrable hamiltonian system in symplectic geometry.
Remark: Lagrangian fibrations correspond to completely integrable hamiltonian system in symplectic geometry.

Theorem (Matsushita + Hwang)

X hyperkähler, B Kähler with $0 < \dim B < 2r$, $f : X \to B$ with connected fibers. Then:

1. f is a Lagrangian fibration;
2. B Fano with $b_2 = 1$ (and $\dim B = r$);
3. If X projective, $B \sim = P^r$.

Arnaud Beauville

V. Further developments
Remark: Lagrangian fibrations correspond to **completely integrable hamiltonian system** in symplectic geometry.

Theorem (Matsushita + Hwang)

X hyperkähler, B Kähler with $0 < \dim B < 2r$, $f : X \rightarrow B$ with connected fibers. Then:

1. f is a Lagrangian fibration;
Remark: Lagrangian fibrations correspond to completely integrable hamiltonian system in symplectic geometry.

Theorem (Matsushita + Hwang)

X hyperkähler, B Kähler with $0 < \dim B < 2r$, $f: X \to B$ with connected fibers. Then:

1. f is a Lagrangian fibration;
2. B Fano with $b_2 = 1$ (and $\dim B = r$);
Remark: Lagrangian fibrations correspond to completely integrable hamiltonian system in symplectic geometry.

Theorem (Matsushita + Hwang)

\[X \text{ hyperkähler, } B \text{ Kähler with } 0 < \dim B < 2r, \quad f : X \to B \text{ with connected fibers. Then:} \]

1. \(f \) is a Lagrangian fibration;
2. \(B \) Fano with \(b_2 = 1 \) (and \(\dim B = r \));
3. If \(X \) projective, \(B \cong \mathbb{P}^r \).
Proof.

For $\alpha \in H^2(B, C)$, $\alpha^2 r = 0 \Rightarrow (f^* \alpha)^2 r = 0 \Rightarrow (f^* \alpha)^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0 \Rightarrow \dim B \leq r$ (take α Kähler).

$\alpha \neq 0 \Rightarrow f^* \alpha \neq 0 \Rightarrow (f^* \alpha)^r \neq 0 \Rightarrow \alpha^r \neq 0 \Rightarrow \dim B \geq r$.

$f^* : H^2(B, C) \to H^2(X, C)$ injective $\Rightarrow H^2(B, 0) = 0$.

$f^*(H^2(B, C)) \subset H^1(X)$ totally isotropic for q; signature $q \mid H^1 = (1, h_1 - 1) \Rightarrow \dim H^2(B, C) \leq 1$.

$\text{Pic}(B) = \mathbb{Z} \cdot [L]$, $K_B = L \otimes n$.

Idea: $H^r(B, 0) = 0$ (as above) $\Rightarrow n \neq 0$, more work $\Rightarrow n < 0$.

Proof that X_b Lagrangian: Skip proof.

Arnaud Beauville V. Further developments
Proof.

1. For $\alpha \in H^2(B, \mathbb{C})$,

\[
\alpha^{2r} = 0 \Rightarrow (f^* \alpha)^{2r} = 0 \Rightarrow (f^* \alpha)^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0
\]

$\Rightarrow \dim B \leq r$ (take α Kähler).
Proof.

1. For $\alpha \in H^2(B, \mathbb{C})$,

 $\alpha^{2r} = 0 \Rightarrow (f^* \alpha)^{2r} = 0 \Rightarrow (f^* \alpha)^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0$

 $\Rightarrow \dim B \leq r$ (take α Kähler).

2. $\alpha \neq 0 \Rightarrow f^* \alpha \neq 0 \Rightarrow (f^* \alpha)^r \neq 0 \Rightarrow \alpha^r \neq 0 \Rightarrow \dim B \geq r$.

Proof that X is Lagrangian: Skip proof
Proof.

1. For $\alpha \in H^2(B, \mathbb{C})$,
 \[
 \alpha^{2r} = 0 \Rightarrow (f^* \alpha)^{2r} = 0 \Rightarrow (f^* \alpha)^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0
 \]
 \[
 \Rightarrow \dim B \leq r \text{ (take } \alpha \text{ Kähler)}.\]

2. $\alpha \neq 0 \Rightarrow f^* \alpha \neq 0 \Rightarrow (f^* \alpha)^r \neq 0 \Rightarrow \alpha^r \neq 0 \Rightarrow \dim B \geq r$.

3. $f^* : H^2(B, \mathbb{C}) \to H^2(X, \mathbb{C})$ injective $\Rightarrow H^{2,0}(B) = 0$.

Arnaud Beauville V. Further developments
Proof.

1. For $\alpha \in H^2(B, \mathbb{C})$,

$$\alpha^{2r} = 0 \Rightarrow (f^* \alpha)^{2r} = 0 \Rightarrow (f^* \alpha)^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0$$

$$\Rightarrow \dim B \leq r \text{ (take } \alpha \text{ Kähler)}.$$

2. $\alpha \neq 0 \Rightarrow f^* \alpha \neq 0 \Rightarrow (f^* \alpha)^r \neq 0 \Rightarrow \alpha^r \neq 0 \Rightarrow \dim B \geq r.$

3. $f^* : H^2(B, \mathbb{C}) \to H^2(X, \mathbb{C})$ injective $\Rightarrow H^{2,0}(B) = 0.$

4. $f^*(H^2(B, \mathbb{C})) \subset H^{1,1}(X)$ totally isotropic for q;

 signature $q|_{H^{1,1}} = (1, h^{1,1} - 1) \Rightarrow \dim H^2(B, \mathbb{C}) \leq 1.$
Proof.

1. For $\alpha \in H^2(B, \mathbb{C})$,

$$\alpha^{2r} = 0 \Rightarrow (f^* \alpha)^{2r} = 0 \Rightarrow (f^* \alpha)^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0$$

$$\Rightarrow \dim B \leq r \text{ (take } \alpha \text{ Kähler)}.\]$$

2. $\alpha \neq 0 \Rightarrow f^* \alpha \neq 0 \Rightarrow (f^* \alpha)^r \neq 0 \Rightarrow \alpha^r \neq 0 \Rightarrow \dim B \geq r.$

3. $f^* : H^2(B, \mathbb{C}) \to H^2(X, \mathbb{C})$ injective $\Rightarrow H^{2,0}(B) = 0.$

4. $f^*(H^2(B, \mathbb{C})) \subset H^{1,1}(X)$ totally isotropic for q;

signature $q|_{H^{1,1}} = (1, h^{1,1} - 1) \Rightarrow \dim H^2(B, \mathbb{C}) \leq 1.$

5. Pic$(B) = \mathbb{Z} \cdot [L], K_B = L \otimes n$. Idea : $H^{r,0}(B) = 0$ (as above)

$\Rightarrow n \neq 0$, more work $\Rightarrow n < 0.$
Proof.

1. For $\alpha \in H^2(B, \mathbb{C})$,
 \[
 \alpha^{2r} = 0 \implies (f^*\alpha)^{2r} = 0 \implies (f^*\alpha)^{r+1} = 0 \implies \alpha^{r+1} = 0
 \]
 \[\implies \dim B \leq r\] (take α Kähler).

2. $\alpha \neq 0 \implies f^*\alpha \neq 0 \implies (f^*\alpha)^r \neq 0 \implies \alpha^r \neq 0 \implies \dim B \geq r$.

3. $f^*: H^2(B, \mathbb{C}) \to H^2(X, \mathbb{C})$ injective $\implies H^{2,0}(B) = 0$.

4. $f^*(H^2(B, \mathbb{C})) \subset H^{1,1}(X)$ totally isotropic for q;
 signature $q|_{H^{1,1}} = (1, h^{1,1} - 1) \implies \dim H^2(B, \mathbb{C}) \leq 1$.

5. $\text{Pic}(B) = \mathbb{Z} \cdot [L], K_B = L^\otimes n$. Idea: $H^{r,0}(B) = 0$ (as above)
 $\implies n \neq 0$, more work $\implies n < 0$.

6. Proof that X_b Lagrangian: Skip proof
Proof that the fibres are Lagrangian

Lemma

$\alpha, \beta, \gamma \in H^2(X, C)$ with $q(\alpha) = q(\alpha, \beta) = 0$. Then

$$\int_X \alpha \cdot p \cdot \beta \cdot q \cdot m = 0$$

for $p > m$.

Proof of the lemma.

$\forall \gamma \in H^2(X, C)$, $q(t \alpha + \beta + s \gamma) = c st + P(s)$ \Rightarrow

$$\int_X (t \alpha + \beta + s \gamma)^2 = f_X(c st + P(s)) \Rightarrow$$

$$\int_X \alpha \cdot p \cdot \beta \cdot q \cdot m = 0$$

for $p > m$.

Arnaud Beauville

V. Further developments
Proof that the fibres are Lagrangian

Lemma

\[\alpha, \beta, \gamma \in H^2(X, \mathbb{C}) \text{ with } q(\alpha) = q(\alpha, \beta) = 0. \text{ Then} \]

\[\int_X \alpha^p \beta^q \gamma^m = 0 \quad \text{for } p > m . \]
Proof that the fibres are Lagrangian

Lemma

\[\alpha, \beta, \gamma \in H^2(X, \mathbb{C}) \text{ with } q(\alpha) = q(\alpha, \beta) = 0. \text{ Then} \]

\[\int_X \alpha^p \beta^q \gamma^m = 0 \text{ for } p > m. \]

Proof of the lemma.
Proof that the fibres are Lagrangian

Lemma

\[\alpha, \beta, \gamma \in H^2(X, \mathbb{C}) \text{ with } q(\alpha) = q(\alpha, \beta) = 0. \text{ Then} \]

\[\int_X \alpha^p \beta^q \gamma^m = 0 \text{ for } p > m. \]

Proof of the lemma.

1. \(\forall \gamma \in H^2(X, \mathbb{C}), \) \(q(t\alpha + \beta + s\gamma) = cst + P(s) \)
Proof that the fibres are Lagrangian

Lemma
\[\alpha, \beta, \gamma \in H^2(X, \mathbb{C}) \text{ with } q(\alpha) = q(\alpha, \beta) = 0. \text{ Then} \]
\[\int_X \alpha^p \beta^q \gamma^m = 0 \quad \text{for } p > m. \]

Proof of the lemma.
\[\forall \gamma \in H^2(X, \mathbb{C}), \quad q(t\alpha + \beta + s\gamma) = cst + P(s) \]
\[\Rightarrow \int_X (t\alpha + \beta + s\gamma)^{2r} = f_X (cst + P(s))^r = \sum_{m \geq p} a_{p,m} t^p s^m \]
Proof that the fibres are Lagrangian

Lemma

\(\alpha, \beta, \gamma \in H^2(X, \mathbb{C}) \) with \(q(\alpha) = q(\alpha, \beta) = 0 \). Then

\[\int_X \alpha^p \beta^q \gamma^m = 0 \quad \text{for} \ p > m. \]

Proof of the lemma.

- \(\forall \gamma \in H^2(X, \mathbb{C}), \ q(t\alpha + \beta + s\gamma) = c \text{ st} + P(s) \)

- \[\Rightarrow \int_X (t\alpha + \beta + s\gamma)^{2r} = f_X (c \text{ st} + P(s))^r = \sum_{m \geq p} a_{p,m} t^p s^m \]

- \[\Rightarrow \int_X \alpha^p \beta^q \gamma^m = 0 \quad \text{for} \ p > m. \]
Proof that the fibres are Lagrangian.
Proof that the fibres are Lagrangian.

- **Apply with**: $\alpha = f^* \alpha_0$ with $\int_B \alpha'_0 = m \neq 0$, $\beta = \sigma + \bar{\sigma}$, $\gamma = \text{Kähler class on } X$.
Proof that the fibres are Lagrangian.

- **APPLY WITH**: \(\alpha = f^* \alpha_0 \) with \(\int_B \alpha_0^r = m \neq 0 \), \(\beta = \sigma + \bar{\sigma} \), \(\gamma = \text{Kähler class on } X \).

- \(i : X_b \hookrightarrow X \). Then \(\int_X \alpha^r \omega = m \int_{X_b} i^* \omega \). Thus:

\[i^* \gamma \text{ Kähler} \Rightarrow \text{hermitian form } (\alpha, \beta) \mapsto \int_X \alpha \bar{\beta} (i^* \gamma) > 0 \] on \(H^2, 0 \left(X_b \right) \) and \(\bar{\alpha} = 0 \).
Proof that the fibres are Lagrangian.

- **Apply with**: $\alpha = f^* \alpha_0$ with $\int_B \alpha_0^r = m \neq 0$, $\beta = \sigma + \bar{\sigma}$, $\gamma = \text{Kähler class on } X$.

- $i : X_b \hookrightarrow X$. Then $\int_X \alpha^r \omega = m \int_{X_b} i^* \omega$. Thus:

- $0 = \int_X \alpha^r \beta^2 \gamma^{r-2} = m \int_{X_b} i^* (\beta^2 \gamma^{r-2}) = 2m \int_{X_b} (i^* \sigma)(i^* \bar{\sigma})(i^* \gamma)^{r-2}$.
Proof that the fibres are Lagrangian.

- **Apply with**: $\alpha = f^*\alpha_0$ with $\int_B \alpha_0^r = m \neq 0$, $\beta = \sigma + \bar{\sigma}$, $\gamma = \text{Kähler class on } X$.

- $i : X_b \hookrightarrow X$. Then $\int_X \alpha^r \omega = m \int_{X_b} i^* \omega$. Thus:

$$0 = \int_X \alpha^r \beta^2 \gamma^{r-2} = m \int_{X_b} i^*(\beta^2 \gamma^{r-2}) = 2m \int_{X_b} (i^* \sigma)(i^* \bar{\sigma})(i^* \gamma)^{r-2}.$$

- $i^* \gamma$ Kähler \Rightarrow hermitian form $(\alpha, \beta) \mapsto \int_X \alpha \bar{\beta}(i^* \gamma)^{r-2} > 0$ on $H^{2,0}(X_b) \Rightarrow i^* \sigma = 0$.

$$\blacksquare$$
Some open questions

If $f : X \to B$ Lagrangian and M ample on B, $f^* M$ nef and $q(f^* M) = 0$.

Example: $S^3 K_3$ with $\text{Pic}(S^3) = \mathbb{Z}[L]$. Recall: $\text{Pic}(X) = \mathbb{Z}[L], q(L) = L_2$, $q(\delta r) = -2(r - 1)$.

Assume $L_2 = 2(r - 1)n_2$, then $M = L[r](\delta_2 n)$ has $q(M) = 0$.

Theorem (Sawon, Markushevich): $\exists f : S[r] \to P[r]$ with $f^* O_{P[r]}(1) = M$.

Recall $H^*(X, \mathbb{Q}) = A \oplus A^\perp$. What about A^\perp?

Known: $4 | b_{2i+1}$ (Wakakuwa).
Some open questions

If $f : X \to B$ Lagrangian and M ample on B, $f^* M$ nef and $q(f^* M) = 0$.

1. $L \in \operatorname{Pic}(X)$ nef, $q(L) = 0 \Rightarrow \exists f : X \to B$ s.t. $L = f^* M$?
Some open questions

If $f : X \to B$ Lagrangian and M ample on B, $f^* M$ nef and $q(f^* M) = 0$.

1. $L \in \text{Pic}(X)$ nef, $q(L) = 0 \Rightarrow \exists f : X \to B$ s.t. $L = f^* M$?

2. Variant: $L \in \text{Pic}(X)$, $q(L) = 0 \Rightarrow \exists f : X \to B$?

Arnaud Beauville | V. Further developments
Some open questions

If $f : X \to B$ Lagrangian and M ample on B, $f^* M$ nef and $q(f^* M) = 0$.

1. $L \in \text{Pic}(X)$ nef, $q(L) = 0 \Rightarrow \exists f : X \to B$ s.t. $L = f^* M$?
2. Variant: $L \in \text{Pic}(X)$, $q(L) = 0 \Rightarrow \exists f : X \dashrightarrow B$?

Example: S K3 with $\text{Pic}(S) = \mathbb{Z}[L]$. Recall:

\[
\text{Pic}(X) = \mathbb{Z}[L^r] \perp \mathbb{Z}[\delta_r], \quad q(L^r) = L^2, \quad q(\delta_r) = -2(r-1).
\]
Some open questions

If $f: X \to B$ Lagrangian and M ample on B, f^*M nef and $q(f^*M) = 0$.

1. $L \in \text{Pic}(X)$ nef, $q(L) = 0 \Rightarrow \exists f: X \to B$ s.t. $L = f^*M$?

2. Variant: $L \in \text{Pic}(X)$, $q(L) = 0 \Rightarrow \exists f: X \to B$?

Example: S K3 with $\text{Pic}(S) = \mathbb{Z}[L]$. Recall:

$$\text{Pic}(X) = \mathbb{Z}[L^r] \perp \mathbb{Z}[\delta_r], \quad q(L^r) = L^2, \quad q(\delta_r) = -2(r - 1).$$

Assume $L^2 = 2(r - 1)n^2$, then $M = L^r(-n\delta_r)$ has $q(M) = 0$.

Arnaud Beauville | V. Further developments
Some open questions

If $f : X \to B$ Lagrangian and M ample on B, $f^* M$ nef and $q(f^* M) = 0$.

1. $L \in \text{Pic}(X)$ nef, $q(L) = 0 \Rightarrow \exists f : X \to B$ s.t. $L = f^* M$?

2. Variant: $L \in \text{Pic}(X)$, $q(L) = 0 \Rightarrow \exists f : X \to B$?

Example: S K3 with $\text{Pic}(S) = \mathbb{Z}[L]$. Recall:

\[
\text{Pic}(X) = \mathbb{Z}[L^r] \perp \mathbb{Z}[\delta_r], \quad q(L^r) = L^2, \quad q(\delta_r) = -2(r - 1).
\]

Assume $L^2 = 2(r - 1)n^2$, then $M = L^r(-n\delta_r)$ has $q(M) = 0$.

Theorem (Sawon, Markushevich): $\exists f : S^r \to \mathbb{P}^r$ with $f^* \mathcal{O}_{\mathbb{P}^r}(1) = M$.

Arnaud Beauville | V. Further developments
Some open questions

If \(f : X \to B \) Lagrangian and \(M \) ample on \(B \), \(f^* M \) nef and \(q(f^* M) = 0 \).

1. \(L \in \text{Pic}(X) \) nef, \(q(L) = 0 \) \(\Rightarrow \) \(\exists \ f : X \to B \) s.t. \(L = f^* M \) ?

2. Variant: \(L \in \text{Pic}(X) \), \(q(L) = 0 \) \(\Rightarrow \) \(\exists \ f : X \to B \) ?

Example: \(S \) K3 with \(\text{Pic}(S) = \mathbb{Z}[L] \). Recall:

\[
\text{Pic}(X) = \mathbb{Z}[L^r] \perp \mathbb{Z}[\delta_r], \quad q(L^r) = L^2, \quad q(\delta_r) = -2(r - 1).
\]

Assume \(L^2 = 2(r - 1)n^2 \), then \(M = L^r(-n\delta_r) \) has \(q(M) = 0 \).

Theorem (Sawon, Markushevich): \(\exists \ f : S^r \to \mathbb{P}^r \) with \(f^* \mathcal{O}_{\mathbb{P}^r}(1) = M \).

3. Recall \(H^*(X, \mathbb{Q}) = A \oplus A^\perp \). What about \(A^\perp \) ?

Known: \(4 \mid b_{2i+1} \) (Wakakuwa).
Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?
4. Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

5. Do they have only finitely many deformation types?
Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

Do they have only finitely many deformation types?

Is there a correct formulation of a Torelli-type property?
Some open questions, II

4. Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

5. Do they have only finitely many deformation types?

6. Is there a correct formulation of a Torelli-type property?

7. Most important: Find more examples!
Some open questions, II

4. Can we say more for hyperkähler 4-folds?

\textbf{Theorem} (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

5. Do they have only finitely many deformation types?

6. Is there a correct formulation of a Torelli-type property?

7. Most important: Find more examples!

\textbf{THE END}
4 Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

5 Do they have only finitely many deformation types?

6 Is there a correct formulation of a Torelli-type property?

7 Most important: **Find more examples!**

THE END
Some open questions, II

4. Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

5. Do they have only finitely many deformation types?

6. Is there a correct formulation of a Torelli-type property?

7. Most important: Find more examples!

THE END
4. Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

5. Do they have only finitely many deformation types?

6. Is there a correct formulation of a Torelli-type property?

7. Most important: Find more examples!

THE END
Can we say more for hyperkähler 4-folds?

Theorem (Guan): either $b_2 = 23$, or $3 \leq b_2 \leq 8$. Improve?

Do they have only finitely many deformation types?

Is there a correct formulation of a Torelli-type property?

Most important: **Find more examples!**

THE END