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1. INTRODUCTION

We observe in this note that the proof of the Bogomolov stable restriction theorem [B] can be
adapted to give an ampleness criterion for globally generated rank 2 vector bundles on certain sur-
faces. This applies to the Lazarsfeld-Mukai bundles, to congruences of lines in P3 , and possibly to
the construction of surfaces with ample cotangent bundle.

2. MAIN RESULT

Throughout the note, S will be a smooth projective surface over C . We denote by N1(S) the
group of divisors on S modulo numerical equivalence; this is a free, finitely generated abelian group,
quotient of NS(S) = H2(S,Z)alg by its torsion subgroup.

Proposition 1. Let E be a globally generated rank 2 vector bundle on S , with h0(E) ≥ 4 . Assume that
N1(S) = Z · c1(E) . Then either E is ample, or E = OS ⊕ det(E) .

We will need the following lemma:

Lemma. Let S be a smooth projective surface, and let E be a globally generated rank 2 vector bundle on S ,
with h0(E) ≥ 4 and H1(S, det(E)−1) = 0 . Then c21(E) > c2(E) .

Proof : Let V be a general 4 -dimensional subspace of H0(S,E) . Then V generates E globally, giving
rise to an exact sequence

(1) 0→ N → V ⊗C OS → E → 0 .

Since N∗ is globally generated, the zero locus of a general section s of N∗ is finite, of length c2(N∗) =

c21(E)− c2(E) . Thus this number is ≥ 0 ; if it is zero, s does not vanish, so we have an exact sequence

0→ OS
s−→ N∗ → det(E)→ 0 .

Since H1(S,det(E)−1) = 0 , this sequence splits, so that N ∼= OS⊕det(E)−1 . Thus the exact sequence
(1) reduces to

0→ det(E)−1 → O3
S → E → 0 ;

but using again H1(S,det(E)−1) = 0 this implies h0(E) ≤ 3 , contradicting the hypothesis.

Proof of the Proposition : We denote by c1 and c2 the Chern classes of E in H∗(S,Z) , and by ∆E := 4c2−c21
its discriminant. Assume that E is not ample. By Gieseker’s lemma [L, Proposition 6.1.7], there exists
an irreducible curve C in S and a surjective homomorphism u : E � OC . The kernel F of u is a
vector bundle, with total Chern class c(F ) = c(E)c(OC)−1 = (1 + c1 + c2)(1− [C]) , hence

c1(F ) = c1 − [C] , c2(F ) = c2 − c1 · [C] , and ∆F = ∆E − 2c1 · [C]− [C]2 .

The curve C is numerically equivalent to rc1 for some integer r ≥ 1 . Therefore

∆F = 4c2 − (r + 1)2c21 ≤ 4(c2 − c21) .
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Because of our hypotheses det(E) is ample, so H1(S, det(E)−1) = 0 and we can apply the Lemma,
which gives ∆F < 0 . By Bogomolov’s theorem (see [Ra, Théorème 6.1]), we have an exact sequence

0→ L→ F → IZM → 0

where Z is a finite subscheme of S , L and M are line bundles on S , with c1(L) = ac1 , c1(M) = bc1
for some integers a, b such that a ≥ b .

From that exact sequence we get c1(F ) = (a+b)c1 , hence a+b = 1−r , and c2(F ) = deg(Z)+abc21 ,
hence ∆F = 4 deg(Z) − (a − b)2c21 . Comparing with the previous expression for ∆F and using the
Lemma again we find

(a− b)2c21 ≥ −∆F = (r + 1)2c21 − 4c2 > (r2 + 2r − 3)c21 ≥ (r2 − 1)c21 ,

hence a− b ≥ r , and a ≥ 1 .
We have H0(E ⊗ L−1) = H0(E∗ ⊗ det(E) ⊗ L−1) 6= 0 . Since E is globally generated, the natural

map E∗ → H0(E)∗⊗COS is injective, hence H0(det(E)⊗L−1) 6= 0 . Since c1(L) = ac1 with a ≥ 1 , the
only possibility is L ∼= det(E) , and therefore H0(E∗) 6= 0 . Using again that E is globally generated,
we obtain E = OS ⊕ det(E) .

Remark. The condition h0(E) ≥ 4 is necessary: if E is ample and globally generated, the ratio-
nal map P(E) → P(H0(E)) associated to the linear system |OP(E)(1)| is a finite morphism, hence
dimP(H0(E)) ≥ 3 . On the other hand, the condition N1(S) = Z · c1 is quite restrictive, but it is not
clear how it could be weakened. For instance, we will exhibit in Example 1 of §4 a globally generated
rank 2 vector bundle E on P2 with h0(E) ≥ 4 , detE = OP2(2) , which is not ample.

3. APPLICATION 1: LAZARSFELD-MUKAI BUNDLES

Let C be an irreducible curve in S , L a line bundle on C , and V a 2-dimensional subspace of
H0(L) which generates L . The Lazarsfeld-Mukai bundle EC,V is defined by the exact sequence

0→ E∗C,V → V ⊗C OS → L→ 0 .

Let NC := OS(C)|C be the normal of C in S . By duality we get an exact sequence

0→ V ∗ ⊗C OS → EC,V → NC ⊗ L−1 → 0 .

Proposition 2. Assume H1(S,OS) = 0 , N1(S) = Z · [C] , and that the line bundle NC ⊗ L−1 on C is
globally generated and nontrivial. Then EC,V is globally generated and ample.

Proof : We put E := EC,V . Since H1(S,OS) = 0 , we have a commutative diagram of exact sequences

0 // V ∗ ⊗C OS
// H0(S,E)⊗C OS

//

��

H0(C,NC ⊗ L−1)⊗C OS
//

����

0

0 // V ∗ ⊗C OS
// E // NC ⊗ L−1 // 0 .

This implies that E is globally generated, with h0(E) = 2+h0(NC⊗L−1) ≥ 4 . From the bottom exact
sequence we get c1(E) = [C] and c2(E) = deg(L) > 0 . The conclusion follows from Proposition 1.
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4. APPLICATION 2: CONGRUENCES OF LINES

Let G be the Grassmannian of lines in P3 , which we view as a smooth quadric in P5 ; let S ⊂ G be
a smooth surface. This defines a 2-dimensional family of lines in P3 , classically called a congruence. A
point p ∈ P3 through which pass infinitely many lines of the congruence is called a fundamental point
(or, more classically, a singular point) of the congruence.

Proposition 3. Assume that S has degree > 1 and that N1(S) is generated by the restriction of OG(1) .
Then S has no fundamental point.

Proof : Let E be the restriction to S of the universal quotient bundle Q on G . The projective bundle
P(E) on S parametrizes pairs (`, p) in S × P3 with p ∈ ` , and the second projection q : PS(E)→ P3

satisfies q∗OP3(1) = OP(E)(1) . Thus q is finite (that is, S has no fundamental point) if and only if E
is ample.

We have h0(Q) = 4 , and a nonzero section of Q vanishes along a linear plane; therefore h0(E) ≥ 4 ,
and we can apply Proposition 1. If E = OS ⊕ OS(1) , we have c2(E) = 0 , that is, c2(Q) · [S] = 0 ; this
can only happen if S is a linear plane, which we have excluded. Therefore E is ample.

Corollary. Let d, e be two integers with d, e > 1 , or d = 1 and e ≥ 3 ; let S ⊂ G be the complete intersection
of two general hypersurfaces of degree d and e . Then S has no fundamental point.

Indeed Pic(S) is generated by OS(1) [D, Théorème 1.2].

Examples .− 1) Perhaps the simplest example of a nontrivial congruence is the surface S of lines bise-
cant to a twisted cubic T ⊂ P3 ; it is isomorphic to Sym2 T ∼= P2 , embedded in G ⊂ P5 by the Veronese
map. In that case N1 = Z · [OP2(1)] but detE = OP2(2) , and indeed the fundamental locus of S is T ,
so E is not ample.

2) Let A be an abelian surface such that NS(A) = Z · [L] , where L is a line bundle with L2 = 10 .
The linear system |L| embeds A into P4 [R], giving the famous Horrocks-Mumford abelian sur-
face. The projection π : G → P4 from a general point of P5 is a double covering, and the surface
S := π−1(A) ⊂ G is smooth. The line bundle π∗L is not divisible in N1(S) : since (π∗L)2 = 20 , this
could happen only if π∗L is divisible by 2; but π∗L = KS , so this would imply that K2

S is divisible by
8, a contradiction. It then follows from [Bu] that N1(S) is generated by π∗L = OS(1) , so Proposition
2 applies and S has no fundamental point.

5. APPLICATION 3 (VIRTUAL): SURFACES WITH AMPLE COTANGENT BUNDLE

The original motivation of this work was to obtain new examples of surfaces with ample cotangent
bundle – these surfaces have very interesting properties, but there are few concrete examples known.
Applying Proposition 1 to Ω1

S we get the following result; unfortunately we do not know any example
of a surface satisfying the hypotheses (help welcome!).

Proposition 4. Assume that Ω1
S is globally generated (for instance that S is a subvariety of an abelian

variety), q(S) ≥ 4 , and N1(S) = Z · [KS ] . Then Ω1
S is ample.

Proof : The hypotheses imply that KS is ample, hence c2(S) > 0 ; therefore Ω1
S is not isomorphic to

OS ⊕KS . The conclusion follows from Proposition 1.
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