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1 Introduction

1.1 Context

In this paper, we consider a system of conservation laws with constraints in two dimensions
and we prove existence and stability of weak solutions. We start by introducing the studied
model. For this, we must remember the Aw-Rascle-Zhang model{

∂tρ+ ∂x(ρu) = 0,
∂t(ρ(u+ p(ρ))) + ∂x(ρu(u+ p(ρ))) = 0,

which is a very well accepted model for traffic flow [1, 29] where ρ is the density of cars, u there
velocity and p(ρ) is a function of the density. We observe that, in this model, upper bounds
on the density are not necessarily preserved through the time evolution of the solution. In
practice, the density of cars is bounded from above by a maximal density ρ∗ corresponding to
a bumper to bumper situation. However, the Aw-Rascle-Zhang model does not exclude cases
where, depending on the smallest invariant region which contains the initial data, solutions
satisfy the maximal density constraint ρ ≤ ρ∗ initially but evolve in finite time to a state, still
uniformly bounded, but which violates this constraint. Then paper [8] presents a model which
improve the Aw-Rascle-Zhang model and preserves the constraints. In order to obtain this, we
take in the Aw-Rascle-Zhang model, the pressure

pε(ρ) = ε

(
1

ρ
− 1

ρ∗

)−γ

1Iρ≤ρ∗

and assuming that this term have a limit p when ε → 0, which acts only when ρ = ρ∗, it leads
to the system {

∂tρ+ ∂x(ρu) = 0,
∂t(ρ(u+ p)) + ∂x(ρu(u+ p)) = 0,

(1.1)
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with the constraints

0 ≤ ρ ≤ ρ∗, u ≥ 0, p ≥ 0, (ρ∗ − ρ)p = 0. (1.2)

The term p represents the speed capability which is not used if the road is overloaded or if
the cars in front impose a reduced speed than that desired. We proved in particular existence
and stability of solutions in [8]. After this paper, some improvements of the model have been
completed in [9] for ρ∗ depending on u (case where the maximum density of cars depends on the
cars velocities) and in [7] for ρ∗ depending on x (multi-lines case). Particle approximation of
this constrained model was obtained in [10]. Let’s mention also [19] for other congested model
and self-organization. We remark that the important property of the contraint (ρ∗ − ρ)p = 0
is its link with the property

Supp p ⊂ Supp (ρ− ρ∗).

Notice that the structure of the system is related to the pressureless gases system{
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu

2) = 0.
(1.3)

The system (1.3) was studied in [11], [14], [20], [22], [13]. It is known that this system gives
Dirac distributions on ρ in finite time, even for smooth initial data. It is clearly incompatible
with a constraint for the density. In [12], a system arises in the modeling of two-phase flows as{

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu

2 + π) = 0,
(1.4)

with constraint and pressure Lagrange multiplier

0 ≤ ρ ≤ 1, π ≥ 0, (1.5)

and extremality relation
(1− ρ)π = 0. (1.6)

The model (1.4)-(1.6) is an hyperbolic constraint model which corresponds to gas dynamics
when π = 0 and gives a bound for the density. Existence and weak stability of suitable weak
solutions was obtained in [3]. There are now a lot of domains in which constraints models take
place. We could find other hyperbolic problems with constraints in [2], [24] and [25]. In [6], the
isentropic case of the problem (1.4)-(1.6) was studied with other constraints. See also [5] for
a numerical version of this kind of problems. The case with viscosity was studied in [26]. In
that direction, the limit of barotropic compressible Navier-Stokes to constraint Navier-Stokes
was proved in [15] for the one-dimensional case and in [27] for the multi-dimensional case. In
the paper [4], we studied the multi-dimensional extension of this pressureless model for a gas
system with unilateral constraint. In two-dimension, this system is written

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,
∂t(ρu) + ∂x(ρu

2 + π1) + ∂y(ρuv) = 0,
∂t(ρv) + ∂x(ρuv) + ∂y(ρv

2 + π2) = 0,
(1.7)

with the constraints
0 ≤ ρ ≤ 1, π1 ≥ 0, π2 ≥ 0, (1.8)
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and the exclusion relations
ρπ1 = π1, ρπ2 = π2. (1.9)

By the way, these exclusion relations were in this context only taken by a reformulation in a
very weak sense. Thus it is not the most satisfying study. This is why we turn our attention to
the model studied in the present paper: in order to get solutions in most classical spaces and
with contraints in the classical sense.

In the present paper, we want to study the two-dimensional extension of the model (1.1)-
(1.2), that is to say the system

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,
∂t(ρ(u+ p)) + ∂x(ρu(u+ p)) + ∂y(ρ(u+ p)v) = 0,
∂t(ρ(v + q)) + ∂x(ρu(v + q)) + ∂y(ρv(v + q)) = 0,

(1.10)

with the constraints

0 ≤ ρ ≤ ρ∗, u ≥ 0, v ≥ 0, p ≥ 0, q ≥ 0, (1.11)

and the exclusion relations
(ρ− ρ∗)p = 0, (ρ− ρ∗)q = 0. (1.12)

It can be viewed as the modelization of a pedestrian flow coming fromWest and South and going
to East and North and crossing together. The term (p, q) represents here the speed capability
of a pedestrian, which is not used if a pedestrian in the same direction imposes a speed smaller
than that desired. The constant ρ∗ > 0 is the maximal density of pedestrians. This model
has different properties and requires a different approach than the one from (1.7)-(1.9). In the
present paper, we will get the exclusion relations in a strong sence and for all initial data unlike
the case of (1.7)-(1.9). Notice also that we have to get a more robust block approximation
which is Proposition 3.2. In this result, we have to perform a nice BV approximation and also
to keep the contraints. In order to get all these things together, we will have only (3.47) but
it will be enough to get the constraints at the limit. For pedestrian flow model, we refer for
exemple to the articles [16, 17, 18] and references inside.

1.2 Main result

In the present paper, we are focusing on extending the existence and stability result of [8] for
this system (1.10)-(1.12) in two dimensions.

An important tool for this result is the sticky block dynamics. In dimension one, the density
and momentum of blocks are sum of terms of the form

(ρ(t), ρ(t)u(t)) = ρ∗(1, ui(t))1Iali(t)≤x≤ari (t)

with a density equals to ρ∗ and a velocity ui(t) constant on the block ali(t) ≤ x ≤ ari (t). The
time evolution is defined as follows. The number of blocks n indeed depends on t, but is
piecewise constant. As long as the blocks do not meet, they move at constant velocity ui(t).
When two or more blocks collide, they get stuck, building a new block. Then, in dimension
one, the blocks dynamics is easy because after a collision, we still have a single block.

In multi-dimension, we extend the notion of blocks as

(ρ(t), ρ(t)u(t)ρ(t)v(t)) = ρ∗(1, ui(t), vi(t))1Iali(t)≤x≤ari (t)
1Ibli(t)≤y≤bri (t)
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with density equals to ρ∗ and velocity (ui, vi)(t), constant on the block ali(t) ≤ x ≤ ari (t),
bli(t) ≤ y ≤ bri (t). Then a geometric problem appears since when two rectangular parallelepipeds
collide, they do not form a rectangular parallelepiped. The idea presented in [4] to pass over
this difficulty is to approximate the motion of each block by discrete jumps in all the directions
separately in consecutive time steps. In other words, we make a splitting with respect to the
various directions of space on consecutive time steps and then, on each time interval, we do
vary only one direction then, on the next interval, another direction and so on to keep the
geometry at each collision. Then by letting the time step going to 0 and thereby forcing the
splitting to be more rapid, we hope to find the limit of the speed on any directions.

In this paper, we have to consider more complex blocks since we also need ρp and ρq to be
of this kind. Then, we will call block data sum of terms of the form

(ρ(t), ρ(t)u(t)ρ(t)v(t), ρp(t), ρq(t))
= ρ∗(1, ui(t), vi(t), pi(t), qi(t))1Iali(t)≤x≤ari (t)

1Ibli(t)≤y≤bri (t)

with density equals to ρ∗, velocity (ui, vi)(t) and speed capacity (pi, qi)(t) constant on the block
ali(t) ≤ x ≤ ari (t), b

l
i(t) ≤ y ≤ bri (t).

The purpose of this paper is to achieve this approach in the present case and prove that it
works.

Furthermore for block initial data in the one-dimensional case, we get explicit solutions.
Here, in the multi-dimensional case, we will only get approximations of solutions for these
special initial data. Then, the stability and existence of solutions will require additional steps
to work.

Let us also consider initial data

ρ(0, x, y) = ρ0(x, y),
ρ(0, x, y)u(0, x, y) = ρ0(x, y)u0(x, y),
ρ(0, x, y)v(0, x, y) = ρ0(x, y)v0(x, y),
ρ(0, x, y)p(0, x, y) = ρ0(x, y)p0(x, y),
ρ(0, x, y)q(0, x, y) = ρ0(x, y)q0(x, y),

(1.13)

with the regularities

ρ0 ∈ L∞(R2) ∩ L1(R2), u0, v0, p0, q0 ∈ L∞(R2) ∩BV (R2). (1.14)

Let us define precisely the weak solutions we shall consider. We are looking for solutions
satisfying

ρ ∈ L∞
t (]0,+∞[, L∞

xy(R
2) ∩ L1

xy(R
2)) ∩ Ct([0,+∞[, L∞

w∗(R
2)), (1.15)

u, v, p, q ∈ L∞
t (]0,+∞[, L∞

xy(R
2)) ∩ L∞(]0, T [, BVloc(R

2)). (1.16)

for any T > 0.
Hence, (1.10), (1.13) must be satisfied in the sense of distributions:

for all φ ∈ C∞
c ([0,+∞[×R2),∫

[0,+∞[

∫∫
R2

(ρ∂tφ+ ρu∂xφ+ ρv∂yφ) dx dy dt

+
∫∫
R2

ρ0(x, y)φ(0, x, y) dx dy = 0, (1.17)
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∫
[0,+∞[

∫∫
R2

(ρ(u+ p)∂tφ+ ρu(u+ p)∂xφ+ ρ(u+ p)v∂yφ) dx dy dt

+
∫∫
R2

(ρ0(u0 + p0))(x, y)φ(0, x, y) dx dy = 0, (1.18)

and ∫
[0,+∞[

∫∫
R2

(ρ(v + q)∂tφ+ ρu(v + q)∂xφ+ ρv(v + q)∂yφ) dx dy dt

+
∫∫
R2

(ρ0(v0 + p0))(x, y)φ(0, x, y) dx dy = 0. (1.19)

The main result we get in this paper is the following.

Theorem 1.1 (Existence of solutions) Let us consider ρ∗ > 0 and initial data (ρ0, u0, v0, p0, q0)
with regularities (1.14) and satisfying

0 ≤ ρ ≤ ρ∗, u0 ≥ 0, v0 ≥ 0, p0 ≥ 0, q0 ≥ 0, (1.20)

(ρ0 − ρ∗)p0 = 0, (ρ0 − ρ∗)q0 = 0. (1.21)

Then there exists (ρ, u, v, p, q), with regularities (1.15)-(1.16), which are weak solutions of (1.10)
with initial data (ρ0, u0, v0, p0, q0), that is to say (1.17)-(1.19), with the constraints (1.11)-(1.12)
and satisfying the bounds

0 ≤ ρ ≤ ρ∗,
∫∫
R2

ρ(t, x, y) dx dy ≤
∫∫
R2

ρ0(x, y) dx dy, (1.22)

0 ≤ u ≤ esssup u0, 0 ≤ v ≤ esssup v0, (1.23)

0 ≤ p ≤ esssup u0 + esssup p0, 0 ≤ q ≤ esssup v0 + esssup q0, (1.24)∫∫
R×[−a,a]

|∂xw(t, x, y)| ≤ (1 + a2t )
∫∫
R2

∣∣∣∂xw0(x, y)
∣∣∣ , (1.25)

∫∫
[−a,a]×R

|∂yw(t, x, y)| ≤ (1 + a2t )
∫∫
R2

∣∣∣∂yw0(x, y)
∣∣∣ (1.26)

for w = u and v and

∫∫
R×[−a,a]

|∂xp(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂xu0(x, y)
∣∣∣+ ∫∫

R2

∣∣∣∂xp0(x, y)∣∣∣
 , (1.27)

∫∫
[−a,a]×R

|∂yp(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂yu0(x, y)
∣∣∣+ ∫∫

R2

∣∣∣∂yp0(x, y)∣∣∣
 , (1.28)
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∫∫
R×[−a,a]

|∂xq(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂xv0(x, y)∣∣∣+ ∫∫
R2

∣∣∣∂xq0(x, y)∣∣∣
 , (1.29)

∫∫
[−a,a]×R

|∂yq(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂yv0(x, y)∣∣∣+ ∫∫
R2

∣∣∣∂yq0(x, y)∣∣∣
 (1.30)

for any a > 0 and with at = a+ tmax(∥u0∥∞ + ∥p0∥∞, ∥v0∥∞ + ∥q0∥∞).

An other important result of the paper is the Proposition 3.2 which gives a very general result
for approximation and can be use as such, or this kind of proof, in other contexts.

The scheme of the proof we have to keep in mind to read the paper is the following. In
order to get the existence of solutions, we approximate the initial data by blocks initial data.
For these blocks initial data, we prove the existence of approximations of solutions. We obtain
the limit of these approximations to get the existence of solutions for initial data with a block
form. Finally, by a stability result, we find a solution for the general initial data. We could
draw the scheme of the proof in figure 1.

Figure 1.

(ρ0, u0, v0, p0, q0) initial data

?
approximation by blocks Proposition 3.2

(ρ0k, u
0
k, v

0
k, p

0
k, q

0
k) approximations by blocks initial data

?
dynamics of blocks Proposition 3.9

(ρkl, ukl, vkl, pkl, qkl) approximations of solutions

?
k fixed, l → +∞ Theorem 4.1

(ρk, uk, vk, pk, qk) solutions with initial data (ρ0k, u
0
k, v

0
k)

?
k → +∞ Theorem 1.1

(ρ, u, v, p, q) solution with initial data (ρ0, u0, v0)

The paper is organized as follows. In section 2, we present some particular solutions for the
system. In section 3, we prove that we can approximate any initial data by block initial (first
arrow of figure 1) and we prove that there exists approximations of solutions in the class for
block initial data : first for the particular solutions of section 2 then for any approximated
solution (Proposition 3.9, second arrow of figure 1). In section 4, we conclude to the existence
result (third and fourth arrows of figure 1).
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2 Particular solutions

We first present some particular solutions for the system. It concerns the evolution of solutions
which are sum of terms of the form

(ρ(t), ρ(t)u(t)ρ(t)v(t)) = ρ∗(1, ui(t), vi(t))1Iali(t)≤x≤ari (t)
1Ibli(t)≤y≤bri (t)

.

We start first by studying the dynamics when constraints don’t act. In this very particular
case, there is no specific dynamic of the system and it is similarly as in [4], it leads to the study
of pressureless dynamics equations in dimension two, which are given by

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,
∂t(ρu) + ∂x(ρu

2) + ∂y(ρuv) = 0,
∂t(ρv) + ∂x(ρuv) + ∂y(ρv

2) = 0.
(2.31)

and in this paper, we have the following result just by adding ρ∗ to the proof.

Proposition 2.1 Let ũ, ṽ, a0, b0 ∈ R and c, d > 0. The functions

ρ(1, u, v)(t, x, y) = ρ∗(1, ũ, ṽ)1I0≤t1Ia(t)≤x≤a(t)+c1Ib(t)≤y≤b(t)+d, (2.32)

where a(t) = a0 + ũt and b(t) = b0 + ṽt, are solutions of (2.31) in the distributional sense with
the initial data

ρ∗(1, ũ, ṽ)1Ia0≤x≤a0+c1Ib0≤y≤b0+d.

The previous dynamics concern some particular evolutions as long as there is no collision. Now
we consider the case with a collision in the x direction at some time t∗. Then the two (or more)
blocks collide, they get stuck, building a new block, which volume is the sum of the volumes,
and taking the velocity of the block with the smallest velocity. This result is specific to the
studied system. We first have the following Lemma.

Lemma 2.2 Let u, v ∈ R, φ ∈ C1
c ([0,+∞ × R2), a1, a2, b1, b2 ∈ C1([0,+∞[,R) such that

a′1(t) = a′2(t) = u et b′1(t) = b′2(t) = v. Then, for any σ, s ∈ [0,+∞[, we have[∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
φ(t, x, y) dy dx

]s
σ

=
∫ s

σ

∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
(∂tφ(t, x, y) + u∂xφ(t, x, y) + v∂yφ(t, x, y)) dy dx dt.

The proof of this result can be found in Annex. We have now the result.

Proposition 2.3 Let t∗, µ > 0, x∗, ul, ur, pl, pr, c, d, vl, vr, ql, qr ∈ R with ul > ur > 0 and
vl, vr, pl, pr, ql, qr ≥ 0. The functions

ρ(1, u, v)(t, x, y) = 1I0≤t<t∗ ρ
∗
(
(1, ul, vl)1Ial(t)−c≤x≤al(t)1Ib(t)≤y≤b(t)+µ

+(1, ur, vr)1Iar(t)≤x≤ar(t)+d1Ib(t)≤y≤b(t)+µ

)
+1It∗≤t ρ

∗(1, ur, vl) 1Iar(t)−c≤x≤ar(t)1Ib(t)≤y≤b(t)+µ

+1It∗≤t ρ
∗(1, ur, vr) 1Iar(t)≤x≤ar(t)+d1Ib(t)≤y≤b(t)+µ,
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and

ρ(1, p, q)(t, x, y) = 1I0≤t<t∗ ρ
∗
(
(1, pl, ql)1Ial(t)−c≤x≤al(t)1Ib(t)≤y≤b(t)+µ

+(1, pr, qr)1Iar(t)≤x≤ar(t)+d1Ib(t)≤y≤b(t)+µ

)
+1It∗≤t ρ

∗
(
(1, ul − ur + pl, ql)1Iar(t)−c≤x≤ar(t)1Ib(t)≤y≤b(t)+µ

+ (1, pr, qr) 1Iar(t)≤x≤ar(t)+d1Ib(t)≤y≤b(t)+µ

)
,

where al(t) = x∗ + ul(t− t∗), ar(t) = x∗ + ur(t− t∗), b′(t) = v (the point x∗ being the point of
collision), are solution of (1.10)-(1.12) in the distributional sense.

Proof. Let φ be a test function with a support on [0,+∞[×R2 and S : R2 → R be a continuous
function. We have

< ∂t(ρS(u+ p, v + q)) + ∂x(ρS(u+ p, v + q)u) + ∂y(ρS(u+ p, v + q)v), φ >

= −
∫ t∗

0

∫ al(t)

al(t)−c

∫ b(t)+µ

b(t)
ρ∗S(ul + pl, vl + ql)(∂tφ+ ul∂xφ+ vl∂yφ) dy dx dt (2.33)

−
∫ t∗

0

∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
ρ∗S(ur + pr, vr + qr)(∂tφ+ ur∂xφ+ vr∂yφ) dy dx dt (2.34)

−
∫ +∞

t∗

∫ ar(t)

ar(t)−c

∫ b(t)+µ

b(t)
ρ∗S(ur + ul − ur + pl, vl + ql)(∂tφ+ ur∂xφ+ vl∂yφ) dy dx dt(2.35)

−
∫ +∞

t∗

∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
ρ∗S(ur + pr, vr + qr)(∂tφ+ ur∂xφ+ vr∂yφ) dy dx dt. (2.36)

Using Lemma 2.2 with a1(t) = al(t)− c, a2(t) = al(t), b1(t) = b(t), b2(t) = b(t) + µ, σ = 0 and
s = t∗, we have ∫ t∗

0

∫ al(t)

al(t)−c

∫ b(t)+µ

b(t)
ρ∗S(ul + pl, vl + ql)(∂tφ+ ul∂xφ+ vl∂yφ) dy dx dt

= S(ul + pl, vl + ql)

[∫ al(t)

a1(t)−c

∫ b(t)+µ

b(t)
φ(t, x, y) dy dx

]t∗
0

=
∫ al(t

∗)

al(t∗)−c

∫ b(t∗)+µ

b(t∗)
S(ul + pl, vl + ql)φ(t, x, y) dy dx

−
∫ al(0)

al(0)−c

∫ b(0)+µ

b(0)
S(ul + pl, vl + ql)φ(t, x, y) dy dx.

Using Lemma 2.2 with a1(t) = ar(t), a2(t) = ar(t) + d, b1(t) = b(t), b2(t) = b(t) + µ, σ = 0 and
s = t∗, we have∫ t∗

0

∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
ρ∗S(ur + pr, vr + qr)(∂tφ+ ur∂xφ+ vr∂yφ) dy dx dt

= S(ur + pr, vr + qr)

[∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
φ(t, x, y) dy dx

]t∗
0
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=
∫ ar(t∗)+d

ar(t∗)

∫ b(t∗)+µ

b(t∗)
S(ur + pr, vr + qr)φ(t, x, y) dy dx

−
∫ ar(0)+d

ar(0)

∫ b(0)+µ

b(0)
S(ur + pr, vr + qr)φ(t, x, y) dy dx.

Using Lemma 2.2 with a1(t) = ar(t)− c, a2(t) = ar(t), b1(t) = b(t), b2(t) = b(t) +µ, σ = t∗ and
s tends to +∞, we have∫ +∞

t∗

∫ ar(t)

ar(t)−c

∫ b(t)+µ

b(t)
ρ∗S(ul + pl, vl + ql)(∂tφ+ ur∂xφ+ vl∂yφ) dy dx dt

= S(ul + pl, vl + ql)

[∫ ar(t)

ar(t)−c

∫ b(t)+µ

b(t)
φ(t, x, y) dy dx

]+∞

t∗

= −
∫ ar(t∗)

ar(t∗)−c

∫ b(0)+µ

b(0)
S(ul + pl, vl + ql)φ(t, x, y) dy dx.

Using Lemma 2.2 with a1(t) = ar(t), a2(t) = ar(t)+ d, b1(t) = b(t), b2(t) = b(t)+µ, σ = t∗ and
s tends to +∞, we have∫ +∞

t∗

∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
ρ∗S(ul + pl, vl + ql)(∂tφ+ ur∂xφ+ vl∂yφ) dy dx dt

= −
∫ ar(t∗)+d

ar(t∗)

∫ b(0)+µ

b(0)
S(ul + pl, vl + ql)φ(t, x, y) dy dx.

Then we get, since al(t
∗) = ar(t

∗),

< ∂t(ρS(u+ p, v + q)) + ∂x(ρS(u+ p, v + q)u) + ∂y(ρS(u+ p, v + q)v), φ >

=
∫ al(0)

al(0)−c

∫ b(0)+µ

b(0)
ρ∗S(ul + pl, vl + ql)φ(t, x, y) dy dx

+
∫ ar(0)+d

ar(0)

∫ b(0)+µ

b(0)
ρ∗S(ur + pr, vr + qr)φ(t, x, y) dy dx.

Both terms on the right-hand side correspond to the initial data conditions. If we take a test
function with compact support on ]0,+∞[×R2, these two terms are zero and for S(w, z) = 1,
it gives

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,

for S(w, z) = w, it gives

∂t(ρ(u+ p)) + ∂x(ρu(u+ p)) + ∂y(ρv(u+ p)) = 0

and for S(w, z) = z, we get

∂t(ρ(v + q)) + ∂x(ρu(v + q)) + ∂y(ρv(v + q)) = 0.

By a similar proof for the case of a collision in the y direction at some time t∗, we have the
following result.
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Proposition 2.4 Let t∗, µ > 0, x∗, ul, ur, pl, pr, c, d, vl, vr, ql, qr ∈ R with vl > vr > 0 and
ul, ur, pl, pr, ql, qr ≥ 0. The functions

ρ(1, u, v)(t, x, y) = 1I0≤t<t∗ ρ
∗
(
(1, ul, vl)1Ia(t)≤x≤a(t)+µ1Ibl(t)−c≤y≤bl(t)

+(1, ur, vr)1Ia(t)≤x≤a(t)+µ1Ibr(t)≤y≤br(t)+d

)
+1It∗≤t ρ

∗(1, ul, vr) 1Ia(t)≤x≤a(t)+µ1Ibr(t)−c≤y≤br(t)

+1It∗≤t ρ
∗(1, ur, vr) 1Ia(t)≤x≤a(t)+µ1Ibr(t)≤y≤br(t)+d,

and

ρ(1, p, q)(t, x, y) = 1I0≤t<t∗ ρ
∗
(
(1, pl, ql)1Ia(t)≤x≤a(t)+µ1Ibl(t)−c≤y≤bl(t)

+(1, pr, qr)1Ia(t)≤x≤a(t)+µ1Ibr(t)≤y≤br(t)+d

)
+1It∗≤t ρ

∗
(
(1, pl, vl − vr + ql)1Ia(t)≤x≤a(t)+µ1Ibr(t)−c≤y≤br(t)

+ (1, pr, qr) 1Ia(t)≤x≤a(t)+µ1Ibr(t)≤y≤br(t)+d

)
,

where bl(t) = x∗ + vl(t − t∗), br(t) = x∗ + vr(t − t∗), a′(t) = u (the point x∗ being the point of
collision), are solutions of (1.10)-(1.12) in the distributional sense.

3 Approximations of solutions

In this section, we prove that for any initial data, we can construct a sequence of blocks which
converges in the distributional sense toward this initial data. Then we prove that for each block
initial data, we can construct a sequence of approximations of solutions.

3.1 Discretization with blocks

About approximation of data by block data, the first result was given in one dimension in [3].
It was extended for the BV context in [7]. Then a very precise result was obtained in [4] which
allows to deal with multi-variable functions instead of real-variable functions. In particular, the
arguments with BV functions have to be changed. There are also additional difficulties in the
definition of the blocks which approximate the initial data. Here, we extend again the result to
get the following approximation by blocks result for initial data. It concerns an extension to
functions (u, v, p, q) instead of (u, v) and also the argument for BV approximation for (p, q) is
an important difference with respect to the proof of [4]. Finaly, an other important difference
is that in order to conserve all the bounds, we will only have (3.47) instead of an egality at the
block level.

Definition 3.1 Let ρ0 > 0. We call block initial data a function (ρ0, u0, v0, p0, q0) depending
on (x, y) of the form

ρ0(x, y)(1, u0(x, y), v0(x, y), p0(x, y), q0(x, y))

=
I′∑

i=−I

J ′∑
j=−J

ρij(1, uij, vij, pij, qij)1I(x,y)∈Pij
, (3.37)
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where
1I(x,y)∈Pij

= 1Iaij≤x≤bij1Icij≤y≤dij , (3.38)

with I, I ′, J, J ′ ∈ N and, for −I ≤ i ≤ I ′, −J ≤ j ≤ J ′,

ρij ∈ {0, ρ∗},

aij, bij, cij, dij, uij, vij ∈ R such that bij ≤ ai+1,j and dij ≤ ci,j+1.

Proposition 3.2 Let ρ0 ∈ L1(R2), u0, v0, p0, q0 ∈ L∞(R2) ∩BV (R2) such that

0 ≤ ρ0 ≤ ρ∗ and (ρ0 − ρ∗)p0 = (ρ0 − ρ∗)q0 = 0.

Then, there exists a sequence of block initial data (ρ0k, u
0
k, v

0
k, p

0
k, q

0
k)k≥1 with ρ0k of the form

ρ0k(x, y) =
k2∑

i,j=−k2

ρ∗1I] ik ,
i
k
+rijk[(x)1I] jk ,

j
k
+rijk[(y), (3.39)

with 0 ≤ rijk ≤ 1/k, and such that, for any k ∈ N∗,

ρ0k ∈ L1(R2), u0
k, v

0
k, p

0
k, q

0
k ∈ L∞(R2) ∩BVloc(R

2) (3.40)

with the bounds

0 ≤ ρ0k ≤ ρ∗,
∫∫
R2

ρ0k(x, y) dx dy ≤
∫∫
R2

ρ0(x, y) dx dy, (3.41)

ess inf u0 ≤ u0
k ≤ ess sup u0, ess inf v0 ≤ v0k ≤ ess sup v0, (3.42)

ess inf p0 ≤ p0k ≤ ess sup p0, ess inf q0 ≤ q0k ≤ ess sup q0, (3.43)∫∫
R×[−a,a]

∣∣∣∂xw0
k(x, y)

∣∣∣ ≤ (1 + a2)
∫∫
R2

∣∣∣∂xw0(x, y)
∣∣∣ , (3.44)

∫∫
[−a,a]×R

∣∣∣∂yw0
k(x, y)

∣∣∣ ≤ (1 + a2)
∫∫
R2

∣∣∣∂yw0(x, y)
∣∣∣ , (3.45)

for any a > 0, and with w = u, v, p and q, and for which the convergences

ρ0k ⇀ρ0, ρ0ku
0
k ⇀ρ0u0, ρ0kv

0
k ⇀ρ0v0, ρ0kp

0
k ⇀ρ0p0, ρ0kq

0
k ⇀ρ0q0 (3.46)

hold in the distributional sense as well as the constraints

(ρ0k − ρ∗)p0k ⇀ 0, (ρ0k − ρ∗)q0k ⇀ 0. (3.47)
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Proof. Let k ∈ N∗ and set for any i, j ∈ Z

mijk =
∫ i+1

k

i
k

∫ j+1
k

j
k

ρ0(x, y) dx dy,

u0
ijk = k2

∫ i+1
k

i
k

∫ j+1
k

j
k

u0(x, y) dx dy, v0ijk = k2
∫ i+1

k

i
k

∫ j+1
k

j
k

v0(x, y) dx dy, (3.48)

p0ijk = k2
∫ i+1

k

i
k

∫ j+1
k

j
k

p0(x, y) dx dy, q0ijk = k2
∫ i+1

k

i
k

∫ j+1
k

j
k

q0(x, y) dx dy, (3.49)

Now we set, for any (x, y) ∈ R2,

ρ0k(x, y) = ρ∗
k2∑

i,j=−k2

1I] ik ,
i
k
+
√
mijk[(x)1I] jk ,

j
k
+
√
mijk[(y) (3.50)

and for w = u, v, p and q,

w0
k(x, y) =

k2∑
i,j=−k2

w0
ijk1I] ik ,

i+1
k [(x)1I] jk ,

j+1
k [(y) (3.51)

+
k2∑

j=−k2

(
w0

−k2,j,k1I]−∞,−k[(x) + w0
k2,j,k1I]k+1/k,+∞[(x)

)
1I] jk ,

j+1
k [(y)

+
k2∑

i=−k2

(
w0

i,−k2,k1I]−∞,−k[(y) + w0
i,k2,k1I]k+1/k,+∞[(y)

)
1I] ik ,

i+1
k [(x)

+
(
w0

k2,k2,k1I]k+1/k,+∞[(y) + w0
k2,−k2,k1I]−∞,−k[(y)

)
1I]k+1/k,+∞[(x)

+
(
w0

−k2,k2,k1I]k+1/k,+∞[(y) + w0
−k2,−k2,k1I]−∞,−k[(y)

)
1I]−∞,−k[(x)

We prove only the properties which are not obvious. Notice also that
√
mijk ≤ 1

k
− 1

k2
<

1

k
.

This element is crucial for blocks to be disjoint. We have (3.41), in particular since

∫∫
R2

ρ0k(x, y) dx dy =
k2∑

i,j=−k2

mijk

=
k2∑

i,j=−k2

∫ i+1
k

− 1
k2

i
k

∫ j+1
k

− 1
k2

j
k

ρ0(x, y) dx dy

≤
∫∫
R2

ρ0(x, y) dx dy.

13



For w = u, v, p or q, we have the following BV estimate. For y ∈] j
k
, j+1

k
[, the function w0

k takes
the value

w0
k(x, y) =

k2∑
i=−k2

w0
ijk1I] ik ,

i+1
k [(x) +

(
w0

−k2,j,k1I]−∞,−k[(x) + w0
k2,j,k1I]k,+∞[(x)

)
,

then we get, for such a y, ∫
Rx

∣∣∣∂xw0
k(x, y)

∣∣∣ = k2−1∑
i=−k2

|w0
i+1,jk − w0

ijk|.

For y ∈]−∞,−k[, the function w0
k takes the value

w0
k(x, y) =

k2∑
i=−k2

w0
i,−k2,k1I] ik ,

i+1
k [(x) + w0

k2,−k2,k1I]k+1/k,+∞[(x) + w0
−k2,−k2,k1I]−∞,−k[(x),

which gives, for such a y,∫
Rx

∣∣∣∂xw0
k(x, y)

∣∣∣ = k2−1∑
i=−k2

|w0
i+1,−k2,k − w0

i,−k2,k|.

Similarly, for y ∈]k + 1/k,+∞[, we have∫
Rx

∣∣∣∂xw0
k(x, y)

∣∣∣ = k2−1∑
i=−k2

|w0
i+1,k2,k − w0

i,k2,k|.

Then, for any y ∈ R, we obtain∫
Rx

∣∣∣∂xw0
k(x, y)

∣∣∣ =
k2−1∑

i,j=−k2

|w0
ijk − w0

i−1,jk| 1I] jk , j+1
k [(y)

+
k2−1∑
i=−k2

|w0
i+1,−k2,k − w0

i,−k2,k| 1I]−∞,−k[(y)

+
k2−1∑
i=−k2

|w0
i+1,k2,k − w0

i,k2,k| 1I]k+1/k,+∞[(y),

and we get ∫∫
R×[−a,a]

∣∣∣∂xw0
k(x, y)

∣∣∣ ≤
k2∑

i,j=−k2

|w0
ijk − w0

i−1,jk|
1

k
(3.52)

+
k2−1∑
i=−k2

|w0
i+1,−k2,k − w0

i,−k2,k| (a− k)1Ia>k

+
k2−1∑
i=−k2

|w0
i+1,k2,k − w0

i,k2,k| (a− k)1Ia>k.
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Now

|w0
ijk − w0

i−1,jk| = k2

∣∣∣∣∣
∫ i+1

k

i
k

∫ j+1
k

j
k

w0(x, y) dx dy −
∫ i

k

i−1
k

∫ j+1
k

j
k

w0(x, y) dx dy

∣∣∣∣∣
= k2

∣∣∣∣∣
∫ i+1

k

i
k

∫ j+1
k

j
k

w0(x, y)− w0(x− 1

k
, y) dx dy

∣∣∣∣∣
≤ k2

∫ i+1
k

i
k

∫ j+1
k

j
k

∣∣∣∣w0(x, y)− w0(x− 1

k
, y)

∣∣∣∣ dx dy,
therefore

k2−1∑
i,j=−k2

|w0
ijk − w0

i−1,jk|
1

k
≤

k2∑
i,j=−k2

k
∫ i+1

k

i
k

∫ j+1
k

j
k

∣∣∣∣w0(x, y)− w0(x− 1

k
, y)

∣∣∣∣ dx dy
≤

∫∫
R2

∣∣∣∣∣w
0(x, y)− w0(x− 1

k
, y)

1/k

∣∣∣∣∣ dx dy
≤

∫∫
R2

∣∣∣∂xw0(x, y)
∣∣∣ .

Furthermore

k2−1∑
i=−k2

|w0
i+1,−k2,k − w0

i,−k2,k| (a− k)1Ia>k

≤ a1Ia>k

k2−1∑
i=−k2

k2
∫ i+2

k

i+1
k

∫ −k+1/k

−k

∣∣∣∣w0(x, y)− w0(x− 1

k
, y)

∣∣∣∣ dx dy
≤ a2

∫ k+ 1
k

−k+ 1
k

∫ −k+1/k

−k

∣∣∣∣∣w
0(x, y)− w0(x− 1

k
, y)

1/k

∣∣∣∣∣ dx dy
and then

k2−1∑
i=−k2

|w0
i+1,−k2,k − w0

i,−k2,k| (a− k)1Ia>k +
k2−1∑
i=−k2

|w0
i+1,k2,k − w0

i,k2,k| (a− k)1Ia>k

≤ a2
∫∫
R2

∣∣∣∣∣w
0(x, y)− w0(x− 1

k
, y)

1/k

∣∣∣∣∣ dx dy
≤ a2

∫∫
R2

∣∣∣∂xw0(x, y)
∣∣∣ .

Finally we get ∫∫
R×[−a,a]

∣∣∣∂xw0
k(x, y)

∣∣∣ ≤ (1 + a2)
∫∫
R2

∣∣∣∂xw0(x, y)
∣∣∣ .
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We turn now to convergences (3.46)-(3.47). Let φ ∈ C∞
c (R2) and let k0 ∈ N such that supp φ ⊂

[−k0, k0]
2. For k > k0, we have∣∣∣∣∣∣

∫∫
R2

p0k(x, y)φ(x, y) dx dy −
∫∫
R2

p0(x, y)φ(x, y) dx dy

∣∣∣∣∣∣
≤

kk0−1∑
i,j=−kk0

∫ i+1
k

i
k

∫ j+1
k

j
k

|p0ijk − p0(x, y)| |φ(x, y)| dx dy

≤
kk0−1∑

i,j=−kk0

∫ i+1
k

i
k

∫ j+1
k

j
k

∣∣∣∆p0

ijk(x, y)
∣∣∣ ∥φ∥∞ dx dy,

where

∆p0

ijk(x, y) = k2
∫ i+1

k

i
k

∫ j+1
k

j
k

(p0(x̃, ỹ)− p0(x, y)) dx̃ dỹ.

We have

|∆p0

ijk(x, y)| ≤ k2
∫ i+1

k

i
k

∫ j+1
k

j
k

|p0(x̃, ỹ)− p0(x, y)| dx̃ dỹ

≤ k2
∫ i+1

k

i
k

∫ j+1
k

j
k

(
|p0(x̃, ỹ)− p0(x, ỹ)|+ |p0(x, ỹ)− p0(x, y)|

)
dx̃ dỹ

≤ k2
∫ i+1

k

i
k

∫ j+1
k

j
k

(∣∣∣∣∫ x̃

x
∂xp

0(z, ỹ) dz
∣∣∣∣+ ∣∣∣∣∫ ỹ

y
∂yp

0(x̃, z) dz
∣∣∣∣) dx̃ dỹ

≤ k2
∫ i+1

k

i
k

∫ j+1
k

j
k

(∫ i+1
k

i
k

|∂xp0(z, ỹ)| dz +
∫ j+1

k

j
k

|∂yp0(x̃, z)| dz
)
dx̃ dỹ,

thus ∣∣∣∣∣∣
∫∫
R2

p0k(x, y)φ(x, y) dx dy −
∫∫
R2

p0(x, y)φ(x, y) dx dy

∣∣∣∣∣∣
≤ ∥φ∥∞ k2

kk0−1∑
i,j=−kk0

∫ i+1
k

i
k

∫ j+1
k

j
k

∫ i+1
k

i
k

∫ j+1
k

j
k

∫ i+1
k

i
k

|∂xp0(z, ỹ)| dz dx̃ dỹ dx dy

+ ∥φ∥∞ k2
kk0−1∑

i,j=−kk0

∫ i+1
k

i
k

∫ j+1
k

j
k

∫ i+1
k

i
k

∫ j+1
k

j
k

∫ j+1
k

j
k

|∂yp0(x̃, z)| dz dx̃ dỹ dx dy

≤ ∥φ∥∞ k2
kk0−1∑

i,j=−kk0

1

k3

∫ i+1
k

i
k

∫ j+1
k

j
k

|∂xp0(z, ỹ)| dz dỹ

+ ∥φ∥∞ k2
kk0−1∑

i,j=−kk0

1

k3

∫ i+1
k

i
k

∫ j+1
k

j
k

|∂yp0(x̃, z)| dz dx̃

≤ ∥φ∥∞
1

k

∫∫
R2

|∂xp0(x, y)|+
∫∫
R2

|∂yp0(x, y)|

 →
k→+∞

0.
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It gives the limit of the new term and we get that p0k ⇀p0 holds in the distributional sense. For
convergences (3.46), we refer to the appendix A of [4] adapting the end of the proof with the
argument just above. Since ρ0kp

0
k ⇀ρ0p0 and ρ∗p0k ⇀ρ∗p0 and get (ρ0k − ρ∗)p0k ⇀(ρ0 − ρ∗)p0 = 0.

Similarly we obtain (ρ0k − ρ∗)q0k ⇀ 0. Finally, we have (3.47).

Remark 3.1 In the paper [4], we use a different approximation :

mijk =
∫ i+1

k
− 1

k2

i
k

∫ j+1
k

− 1
k2

j
k

ρ0(x, y) dx dy,

because we need that no collision happens to time t = 0.

Remark 3.2 In particular if we assume that u0, v0, p0, q0 are non-negative functions, then using
(3.42)-(3.43), the blocks u0

k, v
0
k, p

0
k, q

0
k are non-negative functions.

3.2 Approximations of solutions for block initial data

First we present how we approximate the particular solutions of Section 2. This way, it gives
an idea on how to deal with the general case which will be a succession of such local situations.

We define now the notion of discrete blocks we are going to use. The definition is more
precise than in [4].

Definition 3.3 Let ∆t,∆x,∆y > 0. We call discrete block a function (ρ, u, v, p, q) depending
on (t, x, y) of the form

ρ(1, u, v, p, q)(t, x, y) =
I′∑

i=−I

J ′∑
j=−J

+∞∑
l=0

ρijl(1, uijl, vijl, pijl, qijl)1I(t,x,y)∈Pijl
, (3.53)

at level of discretization (∆t,∆x,∆y), where

1I(t,x,y)∈Pijl
= 1Il∆t≤t<(l+1)∆t1Ii∆x≤x<i∆x+aijl1Ij∆y≤y<j∆y+bijl , (3.54)

with I, I ′, J, J ′ ∈ N and, for −I ≤ i ≤ I ′, −J ≤ j ≤ J ′, l ∈ N,

ρijl ∈ {0, ρ∗},

aijl, bijl ∈ R, uijl, vijl, pijl, qijl ∈ [0,+∞[, such that 0 ≤ aijl ≤ ∆x and 0 ≤ bijl ≤ ∆y.
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Remark 3.3 It looks like the standard numerical discretization, taking a function piecewise con-
stant on a square grid. But the density takes as only values 0 and ρ∗ and we have to take into
account the time evolution.

Remark 3.4 To simplify the presentation, we can assume that I = J = 0 which is just a
translation of indices and I ′ = J ′ by adding zero terms to have the same number of terms
(adding some ρijl(1, uijl, vijl, pijl, qijl)1I(x,y)∈Pij

with ρij = 0). In the following, we may sometimes
use this change of notations by setting N := I ′ + 1 = J ′ + 1.

Remark 3.5 Notice that the definition of initial block and discrete blocks are consistent together
because for t = 0, the relation (3.53) has only the term for l = 0 remaining and we get

ρ(0, x, y)(1, u(0, x, y), v(0, x, y), p(0, x, y), q(0, x, y))

=
I′∑

i=−I

J ′∑
j=−J

ρij0(1, uij0, vij0, pij0, qij0)1I(0,x,y)∈Pij0
,

with
1I(0,x,y)∈Pij0

= 1Ii∆x≤x<i∆x+aij01Ij∆y≤y<+j∆y+bij0 .

Remark 3.6 Alos, from now on, we will consider special choice of ∆t,∆x,∆y, that is to say
∆x = ∆y = 1/(kN) and ∆t = 1/N with k,N ∈ N∗.

For the case of free dynamics, we now approximate the solution of Proposition 2.1. We use
the following approximation by discrete blocks.

Definition 3.4 According to our initial block data of Proposition 3.2, the case we are going to
use is the particular choice of a0, b0 ∈ 1

k
Z for k ∈ N and 0 ≤ c, d < 1/k. We set a0 = r/k and

b0 = s/k with r, s ∈ Z.
Let’s set

∆x = ∆y = 1/(kN) and ∆t = 1/N.

For any integer N > 1/k, there exists integers 0 ≤ lN ,mN ≤ N such that lN∆x ≤ c <
(lN + 1)∆x and mN∆x ≤ d < (mN + 1)∆y. We consider the approximations given by the
following sum of blocks:

(ρN , ρNuN , ρNvN)(t, x, y) =
lN∑
i=0

mN∑
j=0

+∞∑
l=0

ρ∗(1, u, v)1I(t,x,y)∈Pijl
(3.55)

where
1I(t,x,y)∈Pijl

= 1Il∆t≤t<(l+1)∆t1Ial+i∆x≤x<al+(i+1)∆x1Ibl+j∆y≤y<bl+(j+1)∆y (3.56)

for 0 ≤ i ≤ lN − 1 and 0 ≤ j ≤ mN − 1 and

1I(t,x,y)∈PlN jl
= 1Il∆t≤t<(l+1)∆t1Ial+lN∆x≤x<al+c1Ibl+j∆y∆y≤y<bl+(j+1)∆y

for 0 ≤ j ≤ mN − 1

1I(t,x,y)∈PlNmNl
= 1Il∆t≤t<(l+1)∆t1Ial+i∆x≤x<al+(i+1)∆x1Ibl+mN∆y≤y<bl+d
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for 0 ≤ i ≤ lN − 1, and

1I(t,x,y)∈PlNmNl
= 1Il∆t≤t<(l+1)∆t1Ial+lN∆x≤x<al+c1Ibl+mN∆y≤y<bl+d

with the sequences (an)n and (bn)n defined as follows. Starting from a0 and b0, we build the
sequences as

a2p+1 = a0 +

[
2(p+ 1)u∆t

∆x

]
∆x, b2p+1 = b2p,

and

b2p+2 = b0 +

[
2(p+ 1)v∆t

∆y

]
∆y, a2p+2 = a2p+1,

where the big square brackets denote the integer part.

Remark 3.7 Notice that we can also easily add terms ρNpN , ρNqN being this dynamics because
they are just translated in the free dynamics evolution. And then if we have initialy (ρ0 −
ρ∗)p0⇀ 0, then we get (ρN − ρ∗)pN ⇀ 0. We choose not to note them here in order to keep the
presentation simple.

Remark 3.8 At time t = (2k + 1)∆t, we have a jump for the block in the x direction, and at
time t = (2k + 2)∆t, we have a jump for the block in the y direction, staying on the fixed grid
at level N and taking an approximation of the movement.

We have the following result which is an adaptation of a similar result of [4]. The main
improvement is a more precise definition of blocks. It gives discrete blocks which approximate
the solution of Proposition 2.1.

Proposition 3.5 Let u, v, a0, b0 ∈ R such that a0, b0 ∈ 1
k
Z with k ∈ N and 0 ≤ c, d < 1/k.

Then there exists discrete blocks (ρN , ρNuN , ρNvN) with initial data

1Ia0≤x≤a0+c1Ib0≤y≤b0+d(1, u, v, 0, 0)

such that 
∂tρN + ∂x(ρNuN) + ∂y(ρNvN)⇀ 0,
∂t(ρNuN) + ∂x(ρNu

2
N) + ∂y(ρNuNvN)⇀ 0,

∂t(ρNvN) + ∂x(ρNuNvN) + ∂y(ρNv
2
N)⇀ 0,

(3.57)

when N → +∞, in the distributional sense.

Proof. We set a(t) = a0 + ut, b(t) = b0 + vt,

a∆(t) =
+∞∑
l=0

al1Il∆t≤t<(l+1)∆t and b∆(t) =
+∞∑
l=0

bl1Il∆t≤t<(l+1)∆t,

where (an)n and (bn)n are the sequences defined in Definition 3.4. It is proved in [4] that such
functions satisfy

|a(t)− a∆(t)| ≤ |u|∆t+∆x, |b(t)− b∆(t)| ≤ |v|∆t+∆y.

The important limit of this proof can be written in the following Lemma.
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Lemma 3.6 Setting, for any test function φ ∈ C∞
c ([0,+∞[,R2),

A(φ) =
∫ +∞

0

∫∫
R2

ρ(t, x, y)φ(t, x, y) dy dx dt

and

AN(φ) =
∫ +∞

0

∫∫
R2

ρN(t, x, y)φ(t, x, y) dy dx dt.

Then we have AN(φ) → A(φ) when N → +∞.

Proof. We have

A(φ) = ρ∗
+∞∑
l=0

∫ (l+1)∆t

l∆t

∫ a(t)+c

a(t)

∫ b(t)+d

b(t)
φ(t, x, y) dy dx dt (3.58)

and

AN(φ) = ρ∗
lN−1∑
i=0

mN−1∑
j=0

+∞∑
l=0

∫ (l+1)∆t

l∆t

∫ al+(i+1)∆x

al+i∆x

∫ bl+(j+1)∆y

bl+j∆y
φ(t, x, y) dy dx dt

+ρ∗
mN−1∑
j=0

+∞∑
l=0

∫ (l+1)∆t

l∆t

∫ al+c

al+lN∆x

∫ bl+(j+1)∆y

bl+j∆y
φ(t, x, y) dy dx dt

+ρ∗
lN−1∑
i=0

+∞∑
l=0

∫ (l+1)∆t

l∆t

∫ al+(i+1)∆x

al+i∆x

∫ bl+d

bl+mN∆y
φ(t, x, y) dy dx dt

+ρ∗
+∞∑
l=0

∫ (l+1)∆t

l∆t

∫ al+c

al+lN∆x

∫ bl+d

bl+mN∆y
φ(t, x, y) dy dx dt.

Let us denote by T a real such that the support in time of φ is in [0, T ]. Denote by LN an
integer such that (LN − 1)∆t ≤ T ≤ LN∆t. We have

AN(φ)− A(φ) = ρ∗
lN−1∑
i=0

mN−1∑
j=0

+∞∑
l=0

∫ (l+1)∆t

l∆t

(∫ al+(i+1)∆x

al+i∆x

∫ bl+(j+1)∆y

bl+j∆y
φ(t, x, y) dy dx

−
∫ a(t)+(i+1)∆x

a(t)+i∆x

∫ b(t)+(j+1)∆y

b(t)+j∆y
φ(t, x, y) dy dx

)
dt

+ρ∗
mN−1∑
j=0

+∞∑
l=0

∫ (l+1)∆t

l∆t

(∫ al+c

al+lN∆x

∫ bl+(j+1)∆y

bl+j∆y
φ(t, x, y) dy dx

−
∫ a(t)+c

a(t)+lN∆x

∫ b(t)+(j+1)∆y

b(t)+j∆y
φ(t, x, y) dy dx

)
dt

+ρ∗
lN−1∑
i=0

+∞∑
l=0

∫ (l+1)∆t

l∆t

(∫ al+(i+1)∆x

al+i∆x

∫ bl+d

bl+mN∆y
φ(t, x, y) dy dx
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−
∫ a(t)+(i+1)∆x

a(t)+i∆x

∫ b(t)+d

b(t)+mN∆y
φ(t, x, y) dy dx

)
dt

+ρ∗
+∞∑
l=0

∫ (l+1)∆t

l∆t

(∫ al+c

al+lN∆x

∫ bl+d

bl+mN∆y
φ(t, x, y) dy dx

−
∫ a(t)+c

a(t)+lN∆x

∫ b(t)+d

b(t)+mN∆y
φ(t, x, y) dy dx

)
dt

= ρ∗
lN−1∑
i=0

mN−1∑
j=0

LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+(i+1)∆x

al+i∆x

∫ bl+(j+1)∆y

bl+j∆y

−
(
φ(t, x, y)− φ(t, x+ a(t)− al, y + b(t)− bl)

)
dy dx dt

+ρ∗
mN−1∑
j=0

LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+c

al+lN∆x

∫ bl+(j+1)∆y

bl+j∆y

−
(
φ(t, x, y)− φ(t, x+ a(t)− al, y + b(t)− bl)

)
dy dx dt

+ρ∗
lN−1∑
i=0

LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+(i+1)∆x

al+i∆x

∫ bl+d

bl+mN∆y

−
(
φ(t, x, y)− φ(t, x+ a(t)− al, y + b(t)− bl)

)
dy dx dt

+ρ∗
LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+c

al+lN∆x

∫ bl+d

bl+mn∆y

−
(
φ(t, x, y)− φ(t, x+ a(t)− al, y + b(t)− bl)

)
dy dx dt

Let ε > 0. Since φ is continuous and has a compact support, there exists η > 0 such that
for any (t, x1, y1) and (t, x2, y2) in the support of φ, if |x1 − x2| ≤ η and |y1 − y2| ≤ η, then
|φ(t, x1, y1)− φ(t, x2, y2)| ≤ ε.

Let N0 ∈ N∗ be such that N0 is greater than (|u| + 1/k)/η and (|v| + 1/k)/η. Let N ∈ N∗

be greater than N0. Now

|a(t)− a∆(t)| ≤ |u|∆t+∆x = |u| 1
N

+
1

kN
≤ η

and |b(t)− b∆(t)| ≤ |v| 1
N

+
1

kN
≤ η, therefore

|AN(φ)− A(φ)| ≤ ρ∗
lN−1∑
i=0

mN−1∑
j=0

LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+(i+1)∆x

al+i∆x

∫ bl+(j+1)∆y

bl+j∆y
ε dy dx dt

+ρ∗
mN−1∑
j=0

LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+c

al+lN∆x

∫ bl+(j+1)∆y

bl+j∆y
ε dy dx dt

+ρ∗
lN−1∑
i=0

LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+(i+1)∆x

al+i∆x

∫ bl+d

bl+mN∆y
ε dy dx dt
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+ρ∗
LN∑
l=0

∫ (l+1)∆t

l∆t

∫ al+c

al+lN∆x

∫ bl+d

bl+mn∆y
ε dy dx dt

≤ ρ∗
lN−1∑
i=0

mN−1∑
j=0

LN∑
l=0

∆t∆x∆yε+ ρ∗
mN−1∑
j=0

LN∑
l=0

∆t∆x∆yε

+ρ∗
lN−1∑
i=0

LN∑
l=0

∆t∆x∆yε+ ρ∗
LN∑
l=0

∆t∆x∆yε

≤ ρ∗(lN∆x)(mN∆y)(LN∆t)ε+ ρ∗∆x(mN∆y)(LN∆t)ε
+ρ∗(lN∆x)∆y(LN∆t)ε+ ρ∗∆x∆y(LN∆t)ε

≤ 4ρ∗cdT ε. (3.59)

It gives that AN(φ) → A(φ) when N → +∞.

End of Proof of Proposition 3.5. We use the previous Lemma to conclude to our Proposi-
tion. Let φ ∈ C∞

c ([0,+∞[,R2). The solution (ρ̃, ρ̃ũ, ρ̃ũ) of Proposition 2.1 satisfies

0 =
∫ +∞

0

∫∫
R2

(ρ̃∂tφ+ ρ̃ũ∂xφ+ ρ̃ṽ∂yφ) dy dx dt

= A(∂tφ) + uA(∂xφ) + vA(∂yφ).

We also have ∫ +∞

0

∫∫
R2

(ρN∂tφ+ ρNuN∂xφ+ ρNvN∂yφ) dy dx dt

= AN(∂tφ) + uAN(∂xφ) + vAN(∂yφ).

Since A(∂tφ) + uA(∂xφ) + vA(∂yφ) = 0, then we get that

AN(∂tφ) + uAN(∂xφ) + vAN(∂yφ) →
N→+∞

0

applying the previous Lemma to ∂tφ, ∂xφ and ∂yφ. That is to say∫ +∞

0

∫∫
R2

(ρN∂tφ+ ρNuN∂xφ+ ρNvN∂yφ) dy dx dt →
Nt→+∞

0

for any test function φ.
Since the speeds u and v are constant, they can be factorized on each term, thus we get that∫ +∞

0

∫∫
R2

(
ρNuN∂tφ+ ρNu

2
N∂xφ+ ρNvNuN∂yφ

)
dy dx dt →

N→+∞
0

and ∫ +∞

0

∫∫
R2

(
ρNvN∂tφ+ ρNuNvN∂xφ+ ρNv

2
N∂yφ

)
dy dx dt →

N→+∞
0

for any test function φ.
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Remark 3.9 We can also easily add terms ρNpN , ρNqN in this dynamics because they are un-
changed in the free dynamics evolution.

We define now the dynamics in the case of a collision, to approximate the solution of
proposition 2.3 by discrete blocks. We first consider that the shock happens during the x
direction movement in the splitting.

Remark 3.10 As for the free dynamics case, blocks are initialy considered in subdivision with
path 1/k that we refined by approximations by 1/(kN).

Definition 3.7 Let ul, pl, vl, ql, ur, pr, vr, qr ≥ 0 and ρ∗ > 0. Assume that ul > ur. We take,
for k,N ∈ N∗,

∆x = ∆y = 1/(kN) and ∆t = 1/N.

We start at t = L∆t from a situation with two disjoint blocks:

(ρ, ρu, ρv, ρp, ρq)(t, x, y) = ρ∗(1, ul, vl, pl, ql)1Ix∈[αl−P∆x,αl[1Iy∈[b,b+µ[

+ρ∗(1, ur, vr, pr, qr)1Ix∈[αr,αr+Q∆x[1Iy∈[b,b+µ[,

with P,Q ∈ N, αl, αr ∈ 1
kN

Z and such that 0 <
αr − αl

ul − ur

≤ ∆t. Then a collision has to happen

in time t∗ = L∆t+
αr − αl

ul − ur

between L∆t and (L+ 1)∆t. Notice that L changes with ∆t, that

is to say with N . Notice that the values on a discret block are unchanged on [L∆t, (L+ 1)∆t[.
In order to have the conservation of the mass and a good approximation of the velocity and of
the available speed, we take for time t = (L+ 1)∆t the dynamics:

(ρ, ρu, ρv, ρp, ρq)(t, x, y) = ρ∗(1, ur, vl, pl + ul − ur, ql)1Ix∈[αf−P∆x,αf [1Iy∈[b,b+µ[

+ρ∗(1, ur, vr, pr, qr)1Ix∈[αf ,αf+Q∆x[1Iy∈[b,b+µ[

where

αf =

[
urt

∗ + αr + ur(∆t− t∗)

∆x

]
∆x =

[
αr + ur∆t

∆x

]
∆x,

with the big square brackets denoting the integer part.

Remark 3.11 We have similar formulas for a shock in the y direction substituting ∆x by ∆y
and u by v.

Remark 3.12 Notice that to simplify the presentation, we consider two blocks sharing the same
length in the y direction, which is the fixed direction during this step of the movement. Indeed,
in areas where they have different lengths, only the common area will intervene, otherwise the
block moves at constant speed. It would be the opposite in the x direction for the next step of
the motion.

We prove now that the discrete blocks defined previously are approximations of the solution of
proposition 2.3.
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Proposition 3.8 We denote by (ρN , uN , vN , pN , qN) the discrete blocks constructed in defini-
tion 3.7. Then the functions (ρN , ρNuN , ρNvN , ρNpN , ρNqN) tend in the distributional sense,
when N → +∞, to the function (ρ, ρu, ρv, ρp, ρq) of proposition 2.3. Furthermore the functions
satisfy

0 ≤ uN ≤ esssup u0, 0 ≤ vN ≤ esssup v0,

0 ≤ pN ≤ esssup u0 + esssup p0, 0 ≤ qN ≤ esssup v0 + esssup q0.

Proof. We consider the case of a shock in the x direction with the previous notations. Let’s
denote by L (keep in mind that L changes with ∆t, that is to say with N) the integer such
that t∗ ∈ [L∆t, (L+ 1)∆t[. We fix ε small enough in order that t∗ > L∆t+ ε and assume that
there was no shock betweeen (L + 1)∆t and (L + 1)∆t + ε. Thus before L∆t + ε and after
(L + 1)∆t + ε, the movement is without constraint, which we have studied already. Notice
also that after the shock, the positions of the blocks move as in the case without constraints
starting with the new defined positions at the instant of shock.
On [L∆t+ ε, (L+1)∆t+ ε[, the part of the functions located near the collision can be written
as

(ρN , ρNuN , ρNvN , ρNpN , ρNqN)(t, x, y)
= ρ∗(1, ul, v, pl, q)1IL∆t+ε≤t<(L+1)∆t1Iαl−P∆x≤x<αl1Ib≤y<b+µ

+ρ∗(1, ur, v, pr, q)1IL∆t+ε≤t<(L+1)∆t1Iαr≤x<αr+Q∆x1Ib≤y<b+µ

+ρ∗(1, ur, v, pl + ul − ur, q)1I(L+1)∆t≤t<(L+1)∆t+ε1Iαf−P∆x≤x<αf1Ib≤y<b+µ

+ρ∗(1, ur, v, pr, q)1I(L+1)∆t≤t<(L+1)∆t+ε1Iαf≤x<αf+Q∆x1Ib≤y<b+µ.

We consider a test function φ ∈ C∞
c ([0,+∞[,R2) and S : R → R a continuous function. We

have ∫ +∞

0

∫∫
R2

(ρN∂tφ+ ρNuN∂xφ+ ρNvN∂yφ)S(uN + pN) dy dx dt (3.60)

=
∫ (L+1)∆t

L∆t+ε

∫ αl

αl−P∆x

∫ b+µ

b
ρ∗ (∂tφ+ ul∂xφ+ v∂yφ)S(ul + pl) dy dx dt

+
∫ (L+1)∆t

L∆t+ε

∫ αr+Q∆x

αr

∫ b+µ

b
ρ∗ (∂tφ+ ur∂xφ+ v∂yφ)S(ur + pr) dy dx dt

+
∫ (L+1)∆t+ε

(L+1)∆t

∫ αf

αf−P∆x

∫ b+µ

b
ρ∗ (∂tφ+ ur∂xφ+ v∂yφ)S(ul + pl) dy dx dt

+
∫ (L+1)∆t+ε

(L+1)∆t

∫ αf+Q∆x

αf

∫ b+µ

b
ρ∗ (∂tφ+ ur∂xφ+ v∂yφ)S(ur + pr) dy dx dt

+RN(φ),

where RN(φ) → 0 corresponding to the part of ρN which follows a movement without con-
straints and has already been studied. We denote by (ρ, ρu, ρ v, ρp, ρ q) the solution defined in
Proposition 2.4 with c = P∆x and d = Q∆y. We have∫ +∞

0

∫∫
R2

(ρ∂tφ+ ρu∂xφ+ ρv∂yφ)S(u+ p) dy dx dt (3.61)
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=
∫ t∗

L∆t+ε

∫ al(t)

al(t)−c

∫ b(t)+µ

b(t)
ρ∗ (∂tφ+ ul∂xφ+ vl∂yφ)S(ul + pl) dy dx dt

+
∫ t∗

L∆t+ε

∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
ρ∗ (∂tφ+ ur∂xφ+ vr∂yφ)S(ur + pr) dy dx dt

+
∫ (L+1)∆t+ε

t∗

∫ ar(t)

ar(t)−c

∫ b(t)+µ

b(t)
ρ∗ (∂tφ+ ur∂xφ+ vl∂yφ)S(ul + pl) dy dx dt

+
∫ (L+1)∆t+ε

t∗

∫ ar(t)+d

ar(t)

∫ b(t)+µ

b(t)
ρ∗ (∂tφ+ ur∂xφ+ vr∂yφ)S(ur + pr) dy dx dt

=
∫ t∗

L∆t+ε

∫ αf

αf−P∆x

∫ b+µ

b
ρ∗ (∂tφ+ ul∂xφ+ vl∂yφ) (t, x− αf + al(t), y − b+ b(t))S(ul + pl) dy dx dt

+
∫ t∗

L∆t+ε

∫ αf+Q∆y

αf

∫ b+µ

b
ρ∗ (∂tφ+ ur∂xφ+ vr∂yφ) (t, x− αf + ar(t), y − b+ b(t))S(ur + pr) dy dx dt

+
∫ (L+1)∆t+ε

t∗

∫ αf

αf−P∆x

∫ b+µ

b
ρ∗ (∂tφ+ ur∂xφ+ vl∂yφ) (t, x− αf + ar(t), y − b+ b(t))S(ul + pl) dy dx dt

+
∫ (L+1)∆t+ε

t∗

∫ αf+Q∆y

αf

∫ b+µ

b
ρ∗ (∂tφ+ ur∂xφ+ vr∂yφ) (t, x− αf + ar(t), y − b+ b(t))S(ur + pr) dy dx dt

For S(z) = 1 and S(z) = z, the term (3.61) equals to zero. We study the difference between
(3.60) and (3.61).

We have then to consider the quantity

BN(φ) =
∫ t∗

L∆t+ε

∫ αf

αf−c

∫ b+µ

b

(
φ(t, x, y)− φ(t, x− αf + al(t), y)

)
dy dx dt

+
∫ t∗

L∆t+ε

∫ αf+d

αf

∫ b+µ

b

(
φ(t, x, y)− φ(t, x− αf + ar(t), y)

)
dy dx dt

+
∫ (L+1)∆t+ε

t∗

∫ αf+d

αf−c

∫ b+µ

b

(
φ(t, x, y)− φ(t, x− αf + af (t), y)

)
dy dx dt.

We have al(t) = αl + ul(t − L∆), ar(t) = αr + ur(t − L∆t) and x∗ = αl + ul(t
∗ − L∆t), then

for t ∈ [L∆t, (L+ 1)∆t[,

|αf − af (t)| ≤ |uf (t− L∆t)|+∆x ≤ |uf |∆t+∆x,

|αf − al(t)| ≤ |(ul − uf )(t
∗ − L∆t)|+ |uf (∆t− t)|+∆x ≤ (|ul − uf |+ |uf |)∆t+∆x,

and

|αf − ar(t)| ≤ |(ur − uf )(t
∗ − L∆t)|+ |uf (∆t− t)|+∆x ≤ (|ur − uf |+ |uf |)∆t+∆x.

Then we do as in the case without constraints (for the terms AN(φ)) to get that BN(φ) → 0
when N → +∞. The L∞ bounds are obvious because of the definition of the dynamics.

We obtain a similar result to build discrete blocks which are approximations of the solution
of Proposition 2.4.
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3.3 General case of approximations of solutions and BV estimates

We want now to get approximations of solutions for any block initial data of the form of our
approximation processus, that is to say with the following form (3.50)-(3.51). These blocks
have the form

(ρ0(x, y), ρ0(x, y)u0(x, y), ρ0(x, y)v0(x, y), ρ0(x, y)p0(x, y), ρ0(x, y)q0(x, y))

=
I′∑

i=−I

J ′∑
j=−J

ρ∗(1, uij, vij, pij, qij)1Iaij≤x≤bij1Icij≤y≤dij (3.62)

which is a linear sum of terms as the ones considered in previous subsections. Then we have
the following merging result.

Proposition 3.9 Let ρ∗ > 0. Let ρ0 ∈ L1(R2), u0, v0, p0, q0 ∈ L∞(R2) ∩ BV (R2) such that
0 ≤ ρ0 ≤ ρ∗. We consider the sequence of block initial data (ρ0k, u

0
k, v

0
k, p

0
k, q

0
k)k≥1 defined by

(3.50)-(3.51). Then, for any k ∈ N∗, there exists (ρkl, ukl, vkl, pkl, qkl)l discrete blocks associated
to the initial data (ρ0k, u

0
k, v

0
k, p

0
k, q

0
k) such that

∂tρkl + ∂x(ρklukl) + ∂y(ρklvkl) = Rkl ⇀ 0,
∂t(ρklukl) + ∂x(ρklukl(ukl + pkl)) + ∂y(ρkl(ukl + pkl)vkl) = Skl ⇀ 0,
∂t(ρklvkl) + ∂x(ρklukl(vkl + qkl)) + ∂y(ρklvkl(vkl + qkl)) = Tkl ⇀ 0,

(3.63)

and (ρkl − ρ∗)pkl ⇀ 0, (ρkl − ρ∗)qkl ⇀ 0 when l → +∞, in the distributional sense.

Proof. As long as there is no collision, each block moves freely and then locally proposition
3.5 gives approximations of the solution by discrete blocks. Until the first collision between
two blocks, (ρkl, ρklukl, ρklvkl, ρklpkl, ρklqkl) is thus defined locally by the sum of functions like
defined in definition 3.4. Every time a collision between two blocks happens, let us say dur-
ing a movement in direction x (it is similar in the y direction), proposition 3.8 gives an ap-
proximation of the solution by discrete blocks, thus at this time, the corresponding part of
(ρkl, ρklukl, ρklvkl, ρklpkl, ρklqkl) is modified according to definition 3.7. Then, it moves freely as
in proposition 3.5 until the next collision. This way, it defined approximations of solutions as
expected.

We move on now to the proof of L∞ and BV estimates for these functions.

Proposition 3.10 The blocks of proposition 3.9 satisfy, for any t ≥ 0,

0 ≤ ρkl ≤ ρ∗, (3.64)

0 ≤ ukl ≤ esssup u0, 0 ≤ vkl ≤ esssup v0, (3.65)

0 ≤ pkl ≤ esssup u0 + esssup p0, 0 ≤ qkl ≤ esssup v0 + esssup q0, (3.66)∫∫
R×[−a,a]

|∂xwkl(t, x, y)| ≤
∫∫

R×[−at,at]

|∂xw0
k(x, y)|, (3.67)

∫∫
[−a,a]×R

|∂ywkl(t, x, y)| ≤
∫∫

[−at,at]×R

|∂yw0
k(x, y)|, (3.68)
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for w = u and v,∫∫
R×[−a,a]

|∂xpkl(t, x, y)| ≤
∫∫

R×[−at,at]

|∂xu0
k(x, y)|+

∫∫
R×[−at,at]

|∂xp0k(x, y)|, (3.69)

∫∫
[−a,a]×R

|∂ypkl(t, x, y)| ≤
∫∫

[−at,at]×R

|∂yu0
k(x, y)|+

∫∫
[−at,at]×R

|∂yp0k(x, y)| (3.70)

∫∫
R×[−a,a]

|∂xqkl(t, x, y)| ≤
∫∫

R×[−at,at]

|∂xv0k(x, y)|+
∫∫

R×[−at,at]

|∂xq0k(x, y)|, (3.71)

∫∫
[−a,a]×R

|∂yqkl(t, x, y)| ≤
∫∫

[−at,at]×R

|∂yv0k(x, y)|+
∫∫

[−at,at]×R

|∂yq0k(x, y)| (3.72)

for any a > 0 and setting

at = a+ tmax(∥u0∥∞ + ∥p0∥∞, ∥v0∥∞ + ∥q0∥∞).

Proof. The L∞ bounds are obvious by construction. For simplicity, we skip the indice k and
l and denote by u a function ukl. We have a relation like (3.52). It allows to consider the
evolution across shocks of quantities

n0∑
i=2

|u0
i − u0

i−1| and
n0∑
i=2

|p0i − p0i−1|

with u0
i the velocities of the successive blocks and i is the indice in the x or y direction if we

are located during an evolution in x or in y. If a collision happens at time t∗ between blocks
k and k + 1 during this evolution, then blocks k and k + 1 merge with velocity uk+1, then the
variations of u become

|u0
2 − u0

i |+ |u0
3 − u0

2|+ . . .+ |u0
k+2 − u0

k|+ . . .+ |u0
n − u0

n−1|.

Shock after shock on x direction or y direction, we get a non-increasing of the quantity∫∫
R×[−a,a]

|∂xukl(t, x, y)| and
∫∫

R×[−a,a]

|∂yukl(t, x, y)| and we get (3.67) and (3.68) for w = u tak-

ing into account the localisation of the blocks. On an other side, on a collision at time t∗

between blocks k and k + 1 during this evolution, then blocks k and k + 1 merge with ve-
locity uk+1 but on the term p, we have an increase from |pk+2 − pk+1| + |pk+2 − pk+1| to
|pk+2 − pk+1|+ |uk+1 − uk|+ |pk+2 − pk+1|. Thus we get (3.69) and (3.70). We obtain similarly
(3.67) and (3.68) for w = v and (3.71)-(3.72).

Remark 3.13 The combination of the bounds (3.44)-(3.45) and (3.67)-(3.72) gives∫∫
R×[−a,a]

|∂xukl(t, x, y)| ≤
∫∫

R×[−at,at]

∣∣∣∂xu0
k(x, y)

∣∣∣ ≤ (1 + a2t )
∫∫
R2

∣∣∣∂xu0(x, y)
∣∣∣ , (3.73)
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∫∫
[−a,a]×R

|∂yukl(t, x, y)| ≤
∫∫

[−at,at]×R

∣∣∣∂yu0
k(x, y)

∣∣∣ ≤ (1 + a2t )
∫∫
R2

∣∣∣∂yu0(x, y)
∣∣∣ , (3.74)

∫∫
R×[−a,a]

|∂xvkl(t, x, y)| ≤
∫∫

R×[−at,at]

∣∣∣∂xv0k(x, y)∣∣∣ ≤ (1 + a2t )
∫∫
R2

∣∣∣∂xv0(x, y)∣∣∣ , (3.75)

∫∫
[−a,a]×R

|∂yvkl(t, x, y)| ≤
∫∫

[−at,at]×R

∣∣∣∂yv0k(x, y)∣∣∣ ≤ (1 + a2t )
∫∫
R2

∣∣∣∂yv0(x, y)∣∣∣ , (3.76)

∫∫
R×[−a,a]

|∂xpkl(t, x, y)| ≤
∫∫

R×[−at,at]

∣∣∣∂xu0
k(x, y)

∣∣∣+ ∫∫
R×[−at,at]

∣∣∣∂xp0k(x, y)∣∣∣
≤ (1 + a2t )

∫∫
R2

∣∣∣∂xu0(x, y)
∣∣∣+ ∫∫

R2

∣∣∣∂xp0(x, y)∣∣∣
 , (3.77)

∫∫
[−a,a]×R

|∂ypkl(t, x, y)| ≤
∫∫

[−at,at]×R

∣∣∣∂yu0
k(x, y)

∣∣∣+ ∫∫
[−at,at]×R

∣∣∣∂yp0k(x, y)∣∣∣
≤ (1 + a2t )

∫∫
R2

∣∣∣∂yu0(x, y)
∣∣∣+ ∫∫

R2

∣∣∣∂yp0(x, y)∣∣∣
 , (3.78)

∫∫
R×[−a,a]

|∂xqkl(t, x, y)| ≤
∫∫

R×[−at,at]

∣∣∣∂xv0k(x, y)∣∣∣+ ∫∫
R×[−at,at]

∣∣∣∂xq0k(x, y)∣∣∣
≤ (1 + a2t )

∫∫
R2

∣∣∣∂xv0(x, y)∣∣∣+ ∫∫
R2

∣∣∣∂xq0(x, y)∣∣∣
 , (3.79)

∫∫
[−a,a]×R

|∂yqkl(t, x, y)| ≤
∫∫

[−at,at]×R

∣∣∣∂yv0k(x, y)∣∣∣+ ∫∫
[−at,at]×R

∣∣∣∂yq0k(x, y)∣∣∣
≤ (1 + a2t )

∫∫
R2

∣∣∣∂yv0(x, y)∣∣∣+ ∫∫
R2

∣∣∣∂yq0(x, y)∣∣∣
 , (3.80)

for any a > 0 and with at = a+ tmax(∥u0∥∞ + ∥p0∥∞, ∥v0∥∞ + ∥q0∥∞).

We have now to get stability results in order to get solution for the system with constraint for
a large class of initial data.
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4 Existence results

4.1 Limit of approximations of solutions

In dimension one, we have directly obtained explicit solutions for any block initial data. In the
current two-dimension case, at this stage, we only have approximations of solutions for general
block initial data. We need first to pass to the limit of the third arrow of figure 1, that is to
say in the case where we only have

∂tρl + ∂x(ρlul) + ∂y(ρlvl) = Rl ⇀ 0,
∂t(ρl(ul + pl)) + ∂x(ρlul(ul + pl)) + ∂y(ρl(ul + pl)vl) = Sl ⇀ 0,
∂t(ρl(vl + ql)) + ∂x(ρlul(vl + ql)) + ∂y(ρlvl(vl + ql)) = Tl ⇀ 0

(4.81)

when l → +∞, with a limit in the distribution sense, instead of having Rl = Sl = Tl = 0. We
prove now that in this situation, we can extract a subsequence whose limit is a solution.

Theorem 4.1 (Limit of approximations) Let ρ∗ > 0. Consider initial data (ρ0, u0, v0, p0, q0)
with regularities (1.14) such that (1.20)-(1.21). We consider the sequence of blocks initial data
(ρ0k, u

0
k, v

0
k, p

0
k, q

0
k)k≥1 defined by (3.50)-(3.51). For any k, this initial data allows to consider

the sequence (ρkl, ukl, vkl, pkl, qkl)l defined by proposition 3.9. Then, extracting a subsequence if
necessary, as l → +∞, we have

(ρkl, ukl, vkl, pkl, qkl)⇀(ρk, uk, vk, pk, qk)

in the distributional sense, where (ρk, uk, vk, pk, qk) with regularities (1.15)-(1.16), are weak
solutions of (1.10), that is to say (1.17)-(1.19), with constraints (1.11)-(1.12) and initial data
(ρ0k, u

0
k, v

0
k, p

0
k, q

0
k). and satisfy the bounds

0 ≤ ρk ≤ 1,
∫∫
R2

ρk(t, x, y) dx dy ≤
∫∫
R2

ρ0(x, y) dx dy, (4.82)

0 ≤ uk ≤ esssup u0, 0 ≤ vk ≤ esssup v0, (4.83)

0 ≤ pk ≤ esssup u0 + esssup p0, 0 ≤ qk ≤ esssup u0 + esssup q0, (4.84)∫∫
R×[−a,a]

|∂xwk(t, x, y)| ≤ (1 + a2t )
∫∫
R2

∣∣∣∂xw0(x, y)
∣∣∣ , (4.85)

∫∫
[−a,a]×R

|∂ywk(t, x, y)| ≤ (1 + a2t )
∫∫
R2

∣∣∣∂yw0(x, y)
∣∣∣ , (4.86)

for w = u and v and

∫∫
R×[−a,a]

|∂xpk(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂xu0(x, y)
∣∣∣+ ∫∫

R2

∣∣∣∂xp0(x, y)∣∣∣
 , (4.87)
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∫∫
[−a,a]×R

|∂ypk(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂yu0(x, y)
∣∣∣+ ∫∫

R2

∣∣∣∂yp0(x, y)∣∣∣
 , (4.88)

∫∫
R×[−a,a]

|∂xqk(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂xv0(x, y)∣∣∣+ ∫∫
R2

∣∣∣∂xq0(x, y)∣∣∣
 , (4.89)

∫∫
[−a,a]×R

|∂yqk(t, x, y)| ≤ (1 + a2t )

∫∫
R2

∣∣∣∂yv0(x, y)∣∣∣+ ∫∫
R2

∣∣∣∂yq0(x, y)∣∣∣
 , (4.90)

for any a > 0 and with at = a+ tmax(∥u0∥∞ + ∥p0∥∞, ∥v0∥∞ + ∥q0∥∞).

Proof. Since (ρk, uk, vk, pk, qk)k≥1 are bounded in L∞(]0,+∞[×R2), then there exists a subse-
quence such that

ρk ⇀ρ, uk ⇀u, vk ⇀v, pk ⇀p, qk ⇀q in L∞
w∗(]0,+∞[×R2). (4.91)

From the first equation of (4.81), the sequence (ρk)k≥1 satisfies the estimate:∣∣∣∣∣∣
∫∫
R2

(ρkl(t, x, y)− ρkl(s, x, y))φ(x, y) dx dy

∣∣∣∣∣∣ ≤ Cφ|t− s|+

∣∣∣∣∣∣
∫ t

s

∫∫
R2

Rklφ

∣∣∣∣∣∣ , (4.92)

with

Cφ = sup
k≥1

∥u0
k∥L∞

∫∫
R2

|∂xφ| dx dy

+ sup
k≥1

∥v0k∥L∞

∫∫
R2

|∂yφ| dx dy

 .

Adapting the proof of (3.59) but on a time space of length |t− s| instead of T , we similarly get

a bound for
∫ t

s

∫∫
R2

Rklφ of the form |t− s|εC (instead of TεC). Then we get again a bound of

the form ∣∣∣∣∣∣
∫∫
R2

(ρkl(t, x, y)− ρkl(s, x, y))φ(x, y) dx dy

∣∣∣∣∣∣ ≤ C̃φ|t− s|. (4.93)

Then, applying lemma 5.2, we have ρkl → ρk in C([0, T ], L∞
w∗(R

2)) when l → +∞. Furthermore
(uk)k≥1 is bounded in BVloc(R2) uniformly in time sur [0, T ]. We can then apply lemma 5.1,
with Ca = (1+ a2T )K, with K = max(K1, K2) and we get that ρklukl ⇀ρkuk in L∞

w∗(]0, T [×R2).
Similarly, we have ρklvkl ⇀ρkvk, ρklpkl ⇀ρkpk and ρklqkl ⇀ρkqk in L∞

w∗(]0, T [×R2).

Now the second equation of (4.81) gives that

d

dt

∫∫
R2

ρkl(ukl + pkl)(t, x, y)φ(x, y) dx dy

=
∫∫
R2

ρklukl(ukl + pkl)(t, x, y)∂xφ(x, y) dx dy +
∫∫
R2

ρk(ukl + pkl)vkl(t, x, y)∂yφ(x, y) dx dy +
∫∫
R2

Slφ,
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thus the sequence
∫∫
R2

ρkl(ukl + pkl)(t, x, y)φ(x, y) dx dy is bounded in BVt. Therefore, in the

same pattern as the proof of lemma 5.2 (see also [7]), we can extract a subsequence such that∫∫
R2

ρkl(ukl + pkl)(t, x, y)φ(x, y) dx dy →
l→+∞

∫∫
R2

ρk(uk + pk)(t, x, y)φ(x, y) dx dy in L1(]0, T [),

for all φ ∈ C∞
c (R2). We can then apply lemma 5.1 with γkl = ρkl(ukl + pkl) this time and

ωkl = ukl (and also with vkl) and we get that ρkl(ukl + pkl)ukl ⇀ρk(uk + pk)uk and ρkl(ukl +
pkl)vkl ⇀ρk(uk+pk)v in L∞

w∗(]0, T [×R2). Similarly, we also have ρklukl(vkl+qkl)⇀ρkuk(vk+qk)
and ρkvk(vk + qkl)⇀ρkvk(vk + qk) in L∞

w∗(]0, T [×R2). We can now pass to the limit in the
weak formulation to get (1.17)-(1.19) with the initial data (ρ0, u0, v0). Now ρklpkl ⇀ρkpk and
pkl ⇀pk, thus pkl(ρkl − ρ∗)⇀pk(ρk − ρ∗). But we also have pkl(ρkl − ρ∗)⇀ 0. Then by unicity
of the limit, we get p(ρ− ρ∗) = 0. Similarly, we have q(ρ− ρ∗) = 0.

The first consequence of this result is that we will obtain solutions for any block initial
data (not explicit in every cases here contrary to the one-dimensional case). Then we will get
existence of solutions for any initial data.

4.2 Existence result

We prove here the existence theorem 1.1.

Proof of theorem 1.1. Let ρ0k, u
0
k, v

0
k, p

0
k, q

0
k (k ∈ N∗) be the block initial data defined by

(3.50)-(3.51) associated to ρ0, u0, v0, p0, q0 provided by proposition 3.2. Proposition 3.9 gives,
for any k, a sequence (ρkl, ukl, vkl, pkl, qkl)l such that

∂tρkl + ∂x(ρklukl) + ∂y(ρklvkl) = Rkl ⇀ 0,
∂t(ρkl(ukl + pkl)) + ∂x(ρklukl(ukl + pkl)) + ∂y(ρkl(ukl + pkl)vkl) = Skl ⇀ 0,
∂t(ρkl(vkl + qkl)) + ∂x(ρklukl(vkl + qkl)) + ∂y(ρklvkl(vkl + qkl)) = Tkl ⇀ 0

in the distributional sense. At k fixed, these functions satisfy the bounds of theorem 4.1 and
we can apply it to get that, up to subsequence, and making a diagonal Cantor process, the
convergence (ρkl, ukl, vkl, pkl, qkl) ⇀

l→+∞
(ρk, uk, vk, pk, qk) holds in the distributional sense for any

k. The previous obtained limits (ρk, uk, vk, pk, qk), with regularities (1.15)-(1.16), are weak
solutions of (1.10), with constraints (1.11)-(1.12) and initial data (ρ0k, u

0
k, v

0
k, p

0
k, q

0
k), and satisfy

the bounds (4.82)-(4.90). We can now adapt the proof of Theorem 4.1, it is easier here because
we have 0 instead of the terms Rl, Sl and Tl, to this sequence, and get, up to a subsequence
when k → ∞, (ρk, uk, vk, pk, qk)⇀(ρ, u, v, p, q), where (ρ, u, v, p, q), are weak solutions of (1.10),
with constraints (1.11)-(1.12) and initial data (ρ0, u0, v0, p0, q0), and satisfy the bounds (1.22)-
(1.30).

5 Appendix: technical results

The first result is to help us passing to the limit in the products. It is an extension in dimension
two of a similar lemma in dimension one proved in [3]. The proof can be found in [4]. Notice
that we also have to consider locally BV bounds.

31



Lemma 5.1 Consider for any k ∈ N, some functions γk ∈ L∞(]0, T [×R2), ωk ∈ L∞(]0, T [, BVloc(R2))
and γ ∈ L∞(]0, T [×R2), ω ∈ L∞(]0, T [, BVloc(R2)) . Let us assume that (γk)k∈N is a bounded
sequence in L∞(]0, T [×R2) that tends to γ in L∞

w∗(]0, T [×R2), and satisfies, for any Γ ∈ C∞
c (R2),∫∫

R2

(γk − γ)(t, x, y)Γ(x, y) dx dy →
k→+∞

0, (5.1)

either i) a.e. t ∈]0, T [ or ii) in L1
t (]0, T [). Let us also assume that (ωk)k∈N is a bounded sequence

in L∞(]0, T [×R2) that tends to ω in L∞
w∗(]0, T [×R2), and assume that, for any a > 0, there exists

Ca > 0 such that, for any t ∈ [0, T ],∫∫
[−a,a]2

|∂xωk(t, x, y)| ≤ Ca,
∫∫

[−a,a]2

|∂yωk(t, x, y)| ≤ Ca, for any k. (5.2)

Then γkωk ⇀γω in L∞
w∗(]0, T [×R2), as k → +∞.

Remark 5.1 This is a result of compensated compactness, which uses the compactness in (x, y)
for (ωk)k given by (5.2) and the weak compactness in t for (γk)k given by (5.1) to pass to the
weak limit in the product γkωk.

The second result gives some continuity in time. The proof is an easy adaptation in dimension
two of lemma 4.4 of [7]. The main idea is to use a countable dense set in C∞

c (R2) for the
L1-norm and Ascoli’s theorem. Since there is no new difficulty, we skip the proof here.

Lemma 5.2 Let (nk)k∈N∗ be a bounded sequence in L∞(]0, T [×R2) which satisfies:
for all φ ∈ C∞

c (R2), the sequence (
∫
R nk(t, x, y)φ(x, y) dx dy)k is uniformly Lipschitz continuous

on [0, T ], i.e. ∃Cφ > 0, ∀k ∈ N∗, ∀s, t ∈ [0, T ],∣∣∣∣∣∣
∫∫
R2

(nk(t, x, y)− nk(s, x, y))φ(x, y) dx dy

∣∣∣∣∣∣ ≤ Cφ|t− s|.

Then, up to a subsequence, it exists n ∈ L∞(]0, T [×R2) such that nk → n in C([0, T ], L∞
w∗(R

2)),
i.e.

∀Γ ∈ L1(R2), sup
t∈[0,T ]

∣∣∣∣∣∣
∫∫
R2

(nk(t, x, y)− n(t, x, y))Γ(x, y) dx dy

∣∣∣∣∣∣ →
k→+∞

0.

We conclude the Annex by the proof of Lemma 2.2.
Proof of Lemma 2.2. Notice that

d

dt

(∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
φ(t, x, y) dy dx

)

=
∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
∂tφ(t, x, y) dy dx

+
∫ b2(t)

b1(t)
(φ(t, a2(t), y)a

′
2(t)− φ(t, a1(t), y)a

′
1(t)) dy

+
∫ a2(t)

a1(t)
(φ(t, x, b2(t))b

′
2(t)− φ(t, x, b1(t))b

′
1(t)) dx.
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Integrating this relation between σ and s, we have(∫ a2(s)

a1(s)

∫ b2(t)

b1(t)
φ(t, x, y) dy dx

)
−
(∫ a2(σ)

a1(σ)

∫ b2(t)

b1(t)
φ(t, x, y) dy dx

)

=
∫ s

σ

∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
∂tφ(t, x, y) dy dx dt

+
∫ s

σ

∫ b2(t)

b1(t)
(φ(t, a2(t), y)− φ(t, a1(t), y))u dy dt

+
∫ s

σ

∫ a2(t)

a1(t)
(φ(t, x, b2(t))− φ(t, x, b1(t)))v dx dt

=
∫ s

σ

∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
∂tφ(t, x, y) dy dx dt

+
∫ s

σ

∫ b2(t)

b1(t)

∫ a2(t)

a1(t)
∂xφ(t, x, y) dx u dy dt

+
∫ s

σ

∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
∂yφ(t, x, y) v dx dt

=
∫ s

σ

∫ a2(t)

a1(t)

∫ b2(t)

b1(t)
(∂tφ(t, x, y) + u∂xφ(t, x, y) + v∂yφ(t, x, y)) dy dx dt.
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