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Abstract. Random media have material properties with such complicated spatial vari-
ations that they can only be described statistically. When looking at waves propagating
in these media, we can only expect in general a statistical description of the wave. But
sometimes there exists a deterministic result: the wave dynamics only depends on the
statistics of the medium, and not on the particular realization of the medium. Such a phe-
nomenon arises when the different scales present in the problem (wavelength, correlation
length, and propagation distance) can be separated. In this lecture we restrict ourselves
to one-dimensional wave problems that arise naturally in acoustics and geophysics.
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1. Introduction

Wave propagation in linear random media has been studied for a long time by
perturbation techniques when the random inhomogeneities are small. One finds
that the mean amplitude decreases with distance traveled, since wave energy is
converted to incoherent fluctuations. The fluctuating part of the field intensity is
calculated approximatively from a transport equation, a linear radiative transport
equation. This theory is well-established [34], although a complete mathematical
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theory is still lacking (for recent developments, see for instance [23]). However
this theory is false in one-dimensional random media. This was first noted by
Anderson [1], who claimed that random inhomogeneities trap wave energy in a
finite region and do not allow it to spread as it would normally. This is the so-
called wave localization phenomenon. It was first proved mathematically in [32].
Extensions and generalizations follow these pioneer works so that the problem is
now well understood [18]. The mathematical statement is that the spectrum of
the reduced wave equation is pure point with exponentially decaying eigenfunc-
tions. However the authors did not give quantitative information associated with
the wave propagation as no exact solution is available. In this lecture we are not
interested in the study of the strongest form of Anderson localization. We actu-
ally address the simplest form of this problem: the wave transmission through a
slab of random medium. It is now well-known that the transmission of the slab
tends exponentially to zero as the length of the slab tends to infinity. Fursten-
berg first treated discrete versions of the transmission problem [30], and finally
Kotani gave a proof of this result with minimal hypotheses [42]. The connection
between the exponential decay of the transmission and the Anderson localization
phenomenon is clarified in [22]. Once again, these works deal with qualitative
properties. Quantitative information can be obtained only for some asymptotic
limits: large or small wavenumbers, large or small variances of the fluctuations of
the parameters of the medium, etc. A lot of work was devoted to the quantitative
analysis of the transmission problem, in particular by Rytov, Tatarski, Klyatskin
[39], and by Papanicolaou and its co-workers [40]. The tools for the quantitative
analysis are limit theorems for stochastic equations developed by Khasminskii [37],
by Papanicolaou-Stroock-Varadhan [54], and by Kushner [44].

There are three basic length scales in wave propagation phenomena: the typ-
ical wavelength λ, the typical propagation distance L, and the typical size of the
inhomogeneities lc. There is also a typical order of magnitude that characterizes
the standard deviation σ of the fluctuations of the parameters of the medium. It
is not always easy to identify the scale lc, but we may think of lc as a typical cor-
relation length. When the standard deviation of the relative fluctuations is small
σ ≪ 1, then the most effective interaction of the waves with the random medium
will occur when lc ∼ λ, that is, the wavelength is comparable to the correlation
length. Such an interaction will be observable when the propagation distance L is
large (L ∼ λσ−2). This is the typical configuration in optics and in optical fibers.

Throughout this lecture we shall consider scales arising in acoustics and geo-
physics. The main differences with optics are that the fluctuations are not small.
However, in geophysics, the typical wavelength of the pulse λ ∼ 150 m is small
compared to the probing depth L ∼ 10− 50 km, but large compared to the corre-
lation length lc ∼ 2 − 3 m [69]. Accordingly we shall introduce a small parameter
0 < ε ≪ 1 and consider lc ∼ ε2, λ ∼ ε, and L ∼ 1. The parameter ε is the ratio
of the typical wavelength to propagation depth, as well as the ratio of correlation
length to wavelength. This is a particularly interesting scaling limit mathemati-
cally because it is a high frequency limit with respect to the large scale variations
of the medium, but it is a low frequency limit with respect to the fluctuations,
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whose effect acquires a canonical form independent of details. We shall study
the asymptotic behavior of the transmitted and reflected waves in the framework
introduced by Papanicolaou based on the separation of these scales.

The lecture is organized as follows. In Section 2 we present the method of
averaging for stochastic processes that is an extension of the law of large numbers
for the sums of independent random variables. These results provide the tools
for the effective medium theory developed in Section 3. We give a review of
the properties of Markov processes in Section 4. We propose limit theorems for
ordinary differential equations driven by Markov processes that are applied in the
following sections. Section 5 is devoted to the O’Doherty-Anstey problem, that is
to say the spreading of a pulse traveling through a random medium. We compute
the localization length of a monochromatic pulse in Section 6.1. We study the
exponential localization phenomenon for a pulse in Section 6.2 and show that it
is a self-averaging process. We study the statistics of the incoherent reflected
waves in Section 7. Finally, we analyze time-reversal for waves in random media
in Section 8.

An (excellent...) support for this lecture is the book [26]. The topics treated
in these notes cover parts of Chapters 4-10.

2. Averages of stochastic processes

We begin by a brief review of the two main limit theorems for sums of independent
random variables.

• The Law of Large Numbers: If (Xi)i∈N is a sequence of independent identi-
cally distributed R-valued random variables, with E[|X1|] < ∞, then the normal-
ized partial sums

Sn =
1

n

n
∑

k=1

Xk

converge to the statistical average X̄ = E[X1] with probability one (write a.s. for
almost surely).

• The Central Limit Theorem: If (Xi)i∈N is a sequence of independent and
identically distributed R-valued random variables, with X̄ = E[X1] and E[X2

1 ] <
∞, then the normalized partial sums

S̃n =
1√
n

n
∑

k=1

(Xk − X̄)

converge in distribution to a Gaussian random variable with mean 0 and variance
σ2 = E[(X1− X̄)2]. This distribution is denoted by N (0, σ2). The above assertion
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means that, for any continuous bounded function f ,

E[f(S̃n)]
n→∞−→ 1√

2πσ2

∫ ∞

−∞
f(x) exp

(

− x2

2σ2

)

dx

or, for any interval I ⊂ R,

P

(

S̃n ∈ I
)

n→∞−→ 1√
2πσ2

∫

I

exp

(

− x2

2σ2

)

dx

2.1. A toy model

Let us consider a particle moving on the line R. Assume that it is driven by
a random velocity field εF (t) where ε is a small dimensionless parameter, F is
stepwise constant

F (t) =
∞
∑

i=1

Fi1[i−1,i)(t),

and Fi are independent and identically distributed random variables that are
bounded, E[Fi] = F̄ and E[(Fi − F̄ )2] = σ2. The position of the particle starting
from 0 at time t = 0 is:

X(t) = ε

∫ t

0

F (s)ds.

Clearly X(t)
ε→0−→ 0. The problem consists in finding the adequate asymptotic, that

is to say the time scale which leads to a macroscopic motion of the particle.
Regime of the Law of Large Numbers. At the scale t → t/ε, Xε(t) :=

X( tε) reads as:

Xε(t) = ε

∫ t
ε

0

F (s)ds

= ε







[ t
ε ]
∑

i=1

Fi






+ ε

∫ t
ε

[ t
ε ]
F (s)ds

= ε

[

t

ε

]

↓
t

× 1
[

t
ε

]







[ t
ε ]
∑

i=1

Fi







a.s. ↓
E[F ] = F̄

+ ε

(

t

ε
−
[

t

ε

])

F[ t
ε ]

a.s. ↓
0
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The convergence of
1
[

t
ε

]







[ t
ε ]
∑

i=1

Fi






is determined by the Law of Large Numbers.

Thus the motion of the particle is ballistic in the sense that it has constant effective
velocity:

Xε(t)
ε→0−→ F̄ t.

However, in the case F̄ = 0, the random velocity field seems to have no effect,
which means that we have to consider a different scaling.

Regime of the Central Limit Theorem F̄ = 0. At the scale t → t/ε2,
Xε(t) = X( tε2 ) reads as:

Xε(t) = ε

∫ t

ε2

0

F (s)ds

= ε







[ t

ε2 ]
∑

i=1

Fi






+ ε

∫ t

ε2

[ t

ε2 ]
F (s)ds

= ε

√

[

t

ε2

]

↓√
t

× 1
√

[

t
ε2

]







[ t

ε2 ]
∑

i=1

Fi







distribution ↓
N (0, σ2)

+ ε

(

t

ε2
−
[

t

ε2

])

F[ t

ε2 ]

a.s. ↓
0

The convergence of
1

√

[

t
ε

]







[ t

ε2 ]
∑

i=1

Fi






is determined by the Central Limit Theorem.

Xε(t) converges in distribution as ε→ 0 to the Gaussian statistics N (0, σ2t). The
motion of the particle in this regime is diffusive.

2.2. Stationary and ergodic processes

A stochastic process (F (t))t≥0 is an application from some probability space to a
functional space. This means that for any fixed time t the quantity F (t) is a ran-
dom variable with values in E = R (or C, or Cd). Furthermore we shall only con-
sider configurations where the functional space is either the set of the continuous
functions C([0,∞), E) equipped with the topology associated to the sup norm over
the compact sets or the set of the càd-làg functions (right-continuous functions with
left hand limits) equipped with the Skorokhod topology [9, 24]. This means that
the realizations of the random process are either continuous or càd-làg functions.
The statistical distribution of a stochastic process is characterized by its finite-
dimensional distributions, that are moments of the form E [φ(F (t1), ..., F (tn))] for
n ∈ N∗, t1, ..., tn ≥ 0, and φ ∈ Cb(En,R).
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(F (t))t∈R+ is a stationary stochastic process if the statistics of the process is
invariant to a shift in the time origin: for any t0 ≥ 0,

(F (t0 + t))t∈R+
distribution

= (F (t))t∈R+

It is a statistical steady state. A necessary and sufficient condition is that, for
any n ∈ N∗, for any t0, t1, ..., tn ∈ R+, for any bounded continuous function
φ ∈ Cb(En,R), we have

E [φ(F (t0 + t1), ..., F (t0 + tn))] = E [φ(F (t1), ..., F (tn))]

Let us consider a stationary process such that E[|F (t)|] <∞. We set F̄ = E[F (t)].
The ergodic theorem claims that the time average can be replaced by the statistical
average under the so-called ergodic hypothesis [12].

Theorem 2.1. If F satisfies the ergodic hypothesis, then

1

T

∫ T

0

F (t)dt
T→∞−→ F̄ P a.s.

The ergodic hypothesis requires that the orbit (F (t))t visits all of phase space.
It is not easy to state and to understand (see Remark 2.3 below), although it seems
an intuitive notion. The following example presents an example of a non-ergodic
process.

Example 2.2. Let F1 and F2 be two ergodic processes (satisfying Theorem 2.1),
and denote F̄j = E[Fj(t)], j = 1, 2. Assume F̄1 6= F̄2. Now flip a coin inde-
pendently of F1 and F2, whose result is χ = 1 with probability 1/2 and 0 with
probability 1/2. Let F (t) = χF1(t) + (1 − χ)F2(t), which is a stationary process
with mean F̄ = 1

2 (F̄1 + F̄2). The time-averaged process satisfies

1

T

∫ T

0

F (t)dt = χ

(

1

T

∫ T

0

F1(t)dt

)

+ (1 − χ)

(

1

T

∫ T

0

F2(t)dt

)

T→∞−→ χF̄1 + (1 − χ)F̄2

which is a random limit different from F̄ . The time-averaged limit depends on χ
because F has been trapped in a part of phase space. The process F (t) is not
ergodic.

Remark 2.3 (Complement on the ergodic theory). Here we give a rigorous state-
ment of an ergodic theorem (it is not necessary for the sequel). Let (Ω,A,P) be a
probability space, that is:
- Ω is a non-empty set,
- A is a σ-algebra on Ω,
- P : A → [0, 1] is a probability (i.e. P(Ω) = 1 and P(∪jAj) =

∑

j P(Aj) for any
numerable family of disjoint sets Aj ∈ A).

Let θt : Ω → Ω, t ≥ 0, be a measurable semi-group of shift operators (i.e.
θ−1
t (A) ∈ A for any A ∈ A and t ≥ 0, θ0 = Id and θt+s = θt ◦ θs for any t, s ≥ 0)

that preserves the probability P (i.e. P(θ−1
t (A)) = P(A) for any A ∈ A and t ≥ 0).
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The semi-group (θt)t≥0 is said to be ergodic if the invariant sets are negligible or
of negligible complementary, i.e.

θ−1
t (A) = A ∀t ≥ 0 =⇒ P(A) = 0 or 1

We then have the following proposition.
Proposition. Let f : (Ω,A,P) → R and F (t, ω) = f(θt(ω)).
1. F is a stationary random process.
2. if f ∈ L1(P) and (θt)t≥0 is ergodic, then

1

T

∫ T

0

F (t, ω)dt
T→∞−→ E[f ] =

∫

Ω

fdP P − a.s.

2.3. Mean square theory

In this subsection we introduce a weaker form of the ergodic theorem, that holds
true under a simple and explicit condition. Let (F (t))t≥0 be a stationary process,
E[F 2(0)] <∞. We introduce the autocorrelation function

R(τ) = E
[

(F (t) − F̄ )(F (t + τ) − F̄ )
]

By stationarity, R is an even function

R(−τ) = E
[

(F (t) − F̄ )(F (t − τ) − F̄ )
]

= E
[

(F (t′ + τ) − F̄ )(F (t′) − F̄ )
]

= R(τ)

By Cauchy-Schwarz inequality, R reaches its maximum at 0:

R(τ) ≤ E
[

(F (t) − F̄ )2
]1/2

E
[

(F (t+ τ) − F̄ )2
]1/2

= R(0) = Var(F (0))

Proposition 2.4. Assume that
∫∞
0 |R(τ)|dτ < ∞. Let S(T ) = 1

T

∫ T

0 F (t)dt.
Then

E
[

(S(T ) − F̄ )2
] T→∞−→ 0

more exactly

TE
[

(S(T ) − F̄ )2
] T→∞−→ 2

∫ ∞

0

R(τ)dτ

One should interpret the condition
∫∞
0

|R(τ)|dτ < ∞ as “the autocorrelation
function R(τ) decays to 0 sufficiently fast as τ → ∞.” This hypothesis is a mean
square version of mixing: F (t) and F (t+ τ) are approximatively independent for
long time lags τ . Mixing substitutes for independence in the law of large numbers.
An example of mixing process is the piecewise constant process defined by:

F (s) =
∑

k∈N

fk1[Lk,Lk+1)(s)

with independent and identically distributed random variables fk, L0 = 0, Lk =
∑k

j=1 lj and independent exponential random variables lj with mean 1. Here we
have R(τ) = Var(f1) exp(−|τ |).
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Proof. The proof consists in a straightforward calculation.

E
[

(S(T ) − F̄ )2
]

= E

[

1

T 2

∫ T

0

dt1

∫ T

0

dt2(F (t1) − F̄ )(F (t2) − F̄ )

]

symmetry
=

2

T 2

∫ T

0

dt1

∫ t1

0

dt2R(t1 − t2)

τ = t1 − t2

h = t2
=

2

T 2

∫ T

0

dτ

∫ T−τ

0

dhR(τ)

=
2

T 2

∫ T

0

dτ(T − τ)R(τ) =
2

T

∫ ∞

0

dτRT (τ)

where RT (τ) = R(τ)(1 − τ/T )1[0,T ](τ). By Lebesgue’s convergence theorem:

TE
[

(S(T ) − F̄ )2
] T→∞−→ 2

∫ ∞

0

R(τ)dτ

⊓⊔

Note that the L2(P) convergence implies convergence in probability as the limit
is deterministic. Indeed, by Chebychev inequality, for any δ > 0,

P
(

|S(T )− F̄ | ≥ δ
)

≤ E
[

(S(T ) − F̄ )2
]

δ2
T→∞−→ 0

2.4. Averaging theorem

Let us revisit our toy model and consider a more general model for the velocity
field. Let 0 < ε≪ 1 be a small parameter and Xε satisfies:

dXε

dt
= F (

t

ε
), Xε(0) = 0

where F is a stationary process with a decaying autocorrelation function such that
∫∞
0

|R(τ)|dτ < ∞. F (t) is a process on its own natural time scale. F (t/ε) is the

speeded-up process. The solution is Xε(t) =
∫ t

0
F (s/ε)ds = t 1

T

∫ T

0
F (s)ds where

T = t/ε→ ∞ as ε→ 0. So Xε(t) → F̄ t as ε→ 0, or else Xε → X̄ solution of:

dX̄

dt
= F̄ , X̄(t = 0) = 0

We can generalize this result to more general configurations.

Proposition 2.5. [37, Khaminskii] Assume that, for each fixed value of x ∈ Rd,
F (t, x) is a stochastic Rd-valued process in t. Assume also that there exists a
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deterministic function F̄ (x) such that

F̄ (x) = lim
T→∞

1

T

∫ t0+T

t0

E[F (t, x)]dt

with the limit independent of t0. Let ε > 0 and Xε be the solution of

dXε

dt
= F (

t

ε
,Xε), Xε(0) = 0

Define X̄ as the solution of

dX̄

dt
= F̄ (X̄), X̄(0) = 0

Then under mild technical hypotheses on F and F̄ , we have for any T :

sup
t∈[0,T ]

E
[

|Xε(t) − X̄(t)|
] ε→0−→ 0

Proof. The proof requires only elementary tools under the hypotheses:

1) F is stationary and E

[∣

∣

∣

∣

∣

1

T

∫ T

0

F (t, x)dt− F̄

∣

∣

∣

∣

∣

]

T→∞−→ 0 (to check this, we can

use the mean square theory since E[|Y |] ≤
√

E[Y 2]).
2) For any t , F (t, .) and F̄ (.) are uniformly Lipschitz with a non-random Lipschitz
constant c.
3) For any compact subset K ⊂ Rd, supt∈R+,x∈K |F (t, x)| + |F̄ (x)| <∞.

We have

Xε(t) =

∫ t

0

F (
s

ε
,Xε(s))ds, X̄(t) =

∫ t

0

F̄ (X̄(s))ds

so the difference reads:

Xε(t) − X̄(t) =

∫ t

0

(

F (
s

ε
,Xε(s)) − F (

s

ε
, X̄(s))

)

ds+ gε(t)

where gε(t) :=
∫ t

0
F ( sε , X̄(s)) − F̄ (X̄(s))ds. Taking the modulus:

|Xε(t) − X̄(t)| ≤
∫ t

0

∣

∣

∣
F (
s

ε
,Xε(s)) − F (

s

ε
, X̄(s))

∣

∣

∣
ds+ |gε(t)|

≤ c

∫ t

0

|Xε(s) − X̄(s)|ds+ |gε(t)|

Taking the expectation and applying Gronwall’s inequality:

E
[

|Xε(t) − X̄(t)|
]

≤ ect sup
s∈[0,t]

E[|gε(s)|]
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It remains to show that the last term goes to 0 as ε→ 0. Let δ > 0

gε(t) =

[t/δ]−1
∑

k=0

∫ (k+1)δ

kδ

(

F (
s

ε
, X̄(s)) − F̄ (X̄(s))

)

ds

+

∫ t

δ[t/δ]

(

F (
s

ε
, X̄(s)) − F̄ (X̄(s))

)

ds

Denote MT = supt∈[0,T ] |X̄(t)|. As KT = supx∈[−MT ,MT ],t∈R+ |F (t, x)| + |F̄ (x)| is
finite, the last term of the right-hand side is bounded by 2KT δ. Furthermore F is
Lipschitz, so that

∣

∣

∣F (
s

ε
, X̄(s)) − F (

s

ε
, X̄(kδ))

∣

∣

∣ ≤ c
∣

∣X̄(s) − X̄(kδ)
∣

∣ ≤ cKT |s− kδ|

We have similarly:
∣

∣F̄ (X̄(s)) − F̄ (X̄(kδ))
∣

∣ ≤ cKT |s− kδ|

Thus

|gε(t)| ≤

∣

∣

∣

∣

∣

∣

[t/δ]−1
∑

k=0

∫ (k+1)δ

kδ

(

F (
s

ε
, X̄(kδ)) − F̄ (X̄(kδ))

)

ds

∣

∣

∣

∣

∣

∣

+2cKT

[t/δ]−1
∑

k=0

∫ (k+1)δ

kδ

(s− kδ)ds+ 2KT δ

≤ ε

[t/δ]−1
∑

k=0

∣

∣

∣

∣

∣

∫ (k+1)δ/ε

kδ/ε

(

F (s, X̄(kδ)) − F̄ (X̄(kδ))
)

ds

∣

∣

∣

∣

∣

+ 2KT (ct+ 1)δ

Taking the expectation and the supremum:

sup
t∈[0,T ]

E[|gε(t)|] ≤ δ

[T/δ]
∑

k=0

E

[∣

∣

∣

∣

∣

ε

δ

∫ (k+1)δ/ε

kδ/ε

(

F (s, X̄(kδ)) − F̄ (X̄(kδ))
)

ds

∣

∣

∣

∣

∣

]

+2KT (cT + 1)δ

Taking the limit ε→ 0:

lim sup
ε→0

sup
t∈[0,T ]

E[|gε(t)|] ≤ 2KT (cT + 1)δ

Letting δ → 0 completes the proof. ⊓⊔

A more elegant and quick proof of this proposition is given in Appendix B.

3. Effective medium theory
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This section is devoted to the computation of the effective speed of an acoustic
pulse traveling through a random medium. The material presented in this section
is a shortened version of [26, Chapter 4].

3.1. Acoustic waves in random media

The acoustic pressure field pε(t, z) and velocity field uε(t, z) satisfy the continuity
and momentum equations

ρε
∂uε

∂t
+
∂pε

∂z
= 0 (3.1)

∂pε

∂t
+ κε

∂uε

∂z
= 0 (3.2)

where ρε is the material density and κε is the bulk modulus of the medium.
Assume that ρε(z) = ρ(z/ε) and κε(z) = κ(z/ε) are stationary random func-

tions of position on spatial scale of order ε, 0 < ε≪ 1. They are piecewise smooth
and also uniformly bounded such that ‖ρ‖∞ ≤ C, ‖ρ−1‖∞ ≤ C, ‖κ‖∞ ≤ C, and
‖κ−1‖∞ ≤ C a.s..

Assume conditions so that the system admits a solution, for instance a Dirichlet
condition at z = 0 of the type uε(t, z = 0) = f(t) and pε(t, z = 0) = g(t) with

f, g ∈ L2. We also assume for simplicity that the Fourier transforms f̂ and ĝ decay
faster than any exponential (say for instance that f and g are Gaussian pulses).

Note that the fluctuations of the medium parameters are not assumed to be
small. This corresponds to typical situations in acoustics and geophysics. The es-
timation of the vertical correlation length of the inhomogeneities in the lithosphere
from well-log data is considered in [69]. They found that 2 − 3 m is a reasonable
estimate of the correlation length of the fluctuations in sound speed. The typical
pulse width is about 50 ms or, with a speed of 3 km/s, the typical wavelength is
150 m. So ε = 10−2 is our framework.

We perform a Fourier analysis with respect to t. So we Fourier transform uε

and pε

uε(t, z) =
1

2π

∫

ûε(ω, z)e−iωtdω, pε(t, z) =
1

2π

∫

p̂ε(ω, z)e−iωtdω

so that we get a system of ordinary differential equations (ODE):

dXε

dz
= F (

z

ε
,Xε),

where

Xε =

(

p̂ε

ûε

)

, F (z,X) = M(z)X, M(z) = iω

(

0 ρ(z)
1

κ(z) 0

)

Note first that a straightforward estimate shows that |Xε(ω, z)| ≤ |X0(ω)| exp(Cωz).
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3.2. Homogenization

We now apply the method of averaging. We get that Xε(ω, z) converges in L1(P)
to X̄(ω, z) solution of

dX̄

dz
= M̄X̄, M̄ = iω

(

0 ρ̄
1
κ̄ 0

)

, ρ̄ = E[ρ], κ̄ =
(

E[κ−1]
)−1

We now come back to the time domain. We introduce the deterministic “effective
medium” with parameters ρ̄, κ̄ and the solution (p̄, ū) of

ρ̄
∂ū

∂t
+
∂p̄

∂z
= 0

∂p̄

∂t
+ κ̄

∂ū

∂z
= 0

The parameters are constant, so p̄ satisfies the closed form equation ∂2p̄
∂t2 −

c̄2 ∂
2p̄
∂z2 = 0, which is the standard wave equation with the effective wave speed

c̄ =
√

κ̄/ρ̄.
We now compare pε(t, z) with p̄(t, z):

E [|pε(t, z) − p̄(t, z)|] =
1

2π
E

[∣

∣

∣

∣

∫

e−iωt(p̂ε(ω, z) − ˆ̄p(ω, z))dω

∣

∣

∣

∣

]

≤ 1

2π

∫

E
[

|p̂ε(ω, z)− ˆ̄p(ω, z)|
]

dω

The dominated convergence theorem then gives the convergence in L1(P) of pε to
p̄ in the time domain. Thus the effective speed of the acoustic wave (pε, uε) as
ε→ 0 is c̄.

Example: bubbles in water. Air and water are characterized by the following
parameters:
ρa = 1.2 103 g/m3, κa = 1.4 108 g/s2/m, ca = 340 m/s.
ρw = 1.0 106 g/m3, κw = 2.0 1018 g/s2/m, cw = 1425 m/s.
If we consider a pulse whose frequency content is in the range 10 Hz - 30 kHz,
then the wavelengths lie in the range 1 cm - 100 m. The bubble sizes are much
smaller, so the effective medium theory can be applied. Let us denote by φ the
volume fraction of air. The averaged density and bulk modulus are

ρ̄ = E[ρ] = φρa + (1 − φ)ρw =

{

9.9 105 g/m3 if φ = 1%
9 105 g/m3 if φ = 10%

κ̄ =
(

E[κ−1]
)−1

=

(

φ

κa
+

1 − φ

κw

)−1

=

{

1.4 1010 g/s2/m if φ = 1%
1.4 109 g/s2/m if φ = 10%

Accordingly c̄ = 120 m/s if φ = 1% and c̄ = 37 m/s if φ = 10 %.
The above example demonstrates that the average velocity may be much smaller

than the minimum of the velocities of the medium components. However it cannot
happen in such a configuration that the velocity be larger than the maximum (or
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the essential supremum) of the velocities of the medium components. Indeed,

E[c−1] = E

[

κ−1/2ρ1/2
]

≤ E[κ−1]1/2E[ρ]1/2 = c̄−1

Thus c̄ ≤ E[c−1]−1 ≤ ess sup(c).

3.3. Bibliographic notes

The theory and the results presented in these notes rely heavily on modeling and
analysis with separation of scales, which has been developed in the past thirty-five
years. The main probabilistic tool for the homogenization theory of the equations
considered in these notes is the law of large numbers or, more generally, the er-
godic theorem. We introduce this basic result in Section 2. We refer to the book
of Breiman [12] for a more complete introduction to probabilistic tools at the level
used in these lecture notes. In Section 2 we reformulate homogenization as an av-
eraging theorem for random differential equations. Such averaging theorems were
first given by Khasminskii [37]. A review of different averaging techniques can
be found in the book by Holmes [33]. Multi-dimensional homogenization theory
for periodic media is extensively treated by Milton [48] and Bensoussan–Lions–
Papanicolaou [7]. A review of results on homogenization for random media is
presented in [52]. Acoustic waves in bubbly liquids were analyzed in [17]. Electro-
magnetic waves in composite materials are discussed in [63].

4. Diffusion-approximation

In this section we give a brief presentation of the asymptotic analysis of random
differential equations in the form that they have in models of wave propagation
in one-dimensional random media. The section serves two purposes: It provides
an introduction to Markovian models of random media. It gives a treatment of
the theory of diffusion approximations for random differential equations in a form
that can be readily used for the asymptotic analysis of reflected and transmitted
waves in one-dimensional random media. This section is a shortened version of
the extensive treatment proposed in [26, Chapter 6]. In a first lecture, Subsection
4.2 can be skipped.

4.1. Markov processes
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A stochastic process (Xt)t≥0 with state space E is a Markov process if ∀0 ≤ s < t
and B ∈ B(E) (the σ-algebra of Borel sets of E)

P(Xt ∈ B|Xu, u ≤ s) = P(Xt ∈ B|Xs)

“the state Xs at time s contains all relevant information for calculating proba-
bilities of future events”. The rigorous definition needs σ-algebras of measurable
sets. This is a generalization to the stochastic case of the dynamical deterministic
systems without memory of the type dx

dt = f(t, x(t)).
The distribution of Xt starting from x at time s is the transition probability

P(Xt ∈ B|Xs = x) = P (s, x; t, B) =

∫

y∈B
P (s, x; t, dy)

Definition 4.1. A transition probability P is a function from R+×E×R+×B(E)
such that
1) P (s, x; t, A) is measurable in x for fixed s ∈ R+, t ∈ R+, A ∈ B(E),
2) P (s, x; t, A) is a probability measure in A for fixed s ∈ R

+, t ∈ R
+, x ∈ E,

3) P satisfies the Chapman Kolmogorov equation:

P (s, x; t, A) =

∫

E

P (s, x; τ, dz)P (τ, z; t, A) ∀0 ≤ s < τ < t

Note that the Chapman-Kolmogorov equation can be deduced heuristically
from a disintegration formula:

P(Xt ∈ A|Xs = x) =

∫

E

P(Xt ∈ A|Xs = x,Xτ = z)P(Xτ ∈ dz|Xs = x)

and the application of the Markov property.
A Markov process is temporally homogeneous if the transition probability de-

pends only on t − s: P (s, x; t, A) = P (0, x; t − s,A). This function is denoted by
Pt(x,A). From now on, we only consider homogeneous Markov processes.

We can now define the family of operators defined on the space of measurable
bounded functions L∞(E):

Ttf(x) = E[f(Xt)|X0 = x] =

∫

E

Pt(x, dy)f(y)

Proposition 4.2. 1) T0 = Id
2) ∀s, t ≤ 0 Ts+t = TsTt
3) Tt is a contraction ‖Ttf‖∞ ≤ ‖f‖∞ ∀f ∈ L∞(E).

Proof. The second point follows from the Chapman-Kolmogorov relations, and the
third one from the fact that Pt(x, ·) is a probability:

|Ttf(x)| ≤
∫

E

Pt(x, dy)‖f‖∞ = ‖f‖∞

⊓⊔
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The famility (Tt) is a semi-group, but it is not a group as Tt does not possess
an inverse. We shall consider Feller processes defined as follows. We denote by
C the set of continuous functions from E to R (if E is not compact, we should
define C as the set of continuous function f such that lim|x|→∞ f(x) exists and
equals 0). We say that the process is Feller if, for any h > 0, Th maps C into C
and ‖Thf − f‖∞ → 0 as h ց 0. This continuity property goes from the family
operators (Tt) to the process itself. The exact assertion claims that this is true for
a modification of the process. A stochastic process X̃ is called a modification of a
process X if P(Xt = X̃t) = 1 for all t.

Proposition 4.3. Let (Xt) be a Feller Markov process. Then (Xt) has a modifi-
cation whose realizations are càd-làg functions.

From now on we shall always consider such a modification of the Markov pro-
cess. The generator of a Markov process is the operator

Q := lim
hց0

Th − Id
h

It is defined on the subset of C such that the above limit exists in C.

Proposition 4.4. Let f ∈ dom(Q). The function u(t, x) := Ttf(x) belongs to
dom(Q) for any t, it is differentiable with respect to t, and it satisfies the Kol-
mogorov equation

∂u

∂t
= Qu, t ≥ 0, u(t = 0, x) = f(x) (4.1)

Proof. We consider the increment

u(t+ h, x) − u(t, x)

h
= Tt

Th − Id
h

f(x)

Since f ∈ dom(Q), and Tt maps C into C, we get the existence and the value of
the limit

lim
hց0

u(t+ h, x) − u(t, x)

h
= TtQf(x)

which proves that u(t, x) is differentiable with respect to t and ∂tu = TtQf . We
can also write

u(t+ h, x) − u(t, x)

h
=
Th − Id

h
Ttf(x) =

Th − Id
h

u(t, x)

Since we have just shown that the left-hand side converges in C, this proves that
u(t, ·) belongs to dom(Q), and the limit is ∂tu = Qu. ⊓⊔

Example 4.5 (A two-state Markov process). Let (τj)j≥1 be a sequence of inde-
pendent and identically distributed random variables with exponential distribution
with parameter 1:

P(τ1 ≥ t) = e−t
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Let T0 = 0 and Tn =
∑n
j=1 τj , n ≥ 1.

Let us define Nt =
∑

n≥0 1Tn≤t. The process (Nt)t≥0 is a Poisson point process:
- it is right-continuous, non-decreasing, and takes values in N.
- (Nt)t≥0 has independent increments, Ns+t−Ns has the same distribution as Nt,
which is the Poisson distribution P(Nt = k) = e−ttk/k!, k ∈ N.

Let X0 ∈ {−1, 1} and set

Xt = X0(−1)Nt , t ≥ 0

The process (Xt)t≥0 takes values in E = {−1, 1}. In fact, the process (Xt)t≥0 is
stepwise constant, it takes alternatively the values ±1, and the time intervals are
independent with the common exponential distribution with mean 1.

The functions f ∈ L∞(E) are vectors in R2. The semigroup (Tt)t≥0 is a family
of 2 × 2 matrices:

Tt =

(

P(Xt = 1|X0 = 1) P(Xt = 1|X0 = −1)
P(Xt = −1|X0 = 1) P(Xt = −1|X0 = −1)

)

=

(

1
2 + 1

2e
−2t 1

2 − 1
2e

−2t

1
2 − 1

2e
−2t 1

2 + 1
2e

−2t

)

The generator is a matrix:

Q = lim
h→0

Th − Id
h

=

(

−1 1
1 −1

)

In this simple example, the analysis of the distribution of (Xt)t≥0 is reduced to
linear algebra.

The following Proposition is an application of the previous results to the case
of an ordinary differential equation driven by a Feller Markov process.

Proposition 4.6. Let (qt)t≥0 be a S-valued Feller process with generator Q and
X be the solution of:

dX

dt
= F (qt, X(t)), X(0) = x

where F : S × Rd → Rd is a bounded Borel function such that x 7→ F (q, x) has
bounded continuous derivatives uniformly with respect to q ∈ S.

1. Y = (q,X) is a Markov process with generator:

L = Q+
d
∑

j=1

Fj(q, x)
∂

∂xj

The domain of the generator is the subset of functions f ∈ L∞(Rd×S) such
that f has bounded continuous derivatives in x and belongs to dom(Q) for
any x.
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2. For any function f ∈ dom(L), the process

Mf(t) := f(Y (t)) −
∫ t

0

Lf(Y (s))ds

is a martingale, which means that, for any 0 ≤ s ≤ t:

E[Mf (t)|Fs] = Mf(s)

where Ft = σ(qs, 0 ≤ s ≤ t).

Proof. Step 1. (X(t)) is Ft-measurable, (and so is Y (t) = (X(t), qt)).
We introduce X(0) = x and for n ≥ 0

X(n+1)(t) = x+

∫ t

0

F (qs, X
(n)(s))ds

We check by a straightforward inductive argument that X(n)(t) is Ft-measurable
for all n. We also prove that X(n) is uniformly convergent to X . This shows that
X(t) = limn→∞X(n)(t) is Ft-measurable.

Step 2. Y = (X, q) is Markov, i.e. for any bounded Borel function f we have

E[f(Y (t+ h)) | Ft] = E[f(Y (t+ h)) | Y (t)]

We introduce the family of processes Zh,x that satisfy

dZh,x
dh

= F (qt+h, Zh,x), Z0,x = x

Note that Zh,X(t) = X(t + h) and, for any x ∈ R
d, Zh,x is σ(qs, t ≤ s ≤ t + h)-

measurable. Therefore

E[f(Y (t+ h)) | Ft, X(t) = x] = E[f(qt+h, Zh,X(t)) | Ft, X(t) = x]

= E[f(qt+h, Zh,x) | Ft, X(t) = x]

= E[f(qt+h, Zh,x) | qt, X(t) = x]

= E[f(Y (t+ h)) | qt, X(t) = x]

Step 3. Computation of the infinitesimal generator. Let f : S × Rd → R be a
smooth bounded test function (i.e. q 7→ f(q, x) ∈ dom(Q) ∀x ∈ Rd, and x 7→
f(q, x) is bounded with bounded continuous derivatives).
Let y = (q, x) ∈ S × Rd.

E [f(Y (t+ h)) | Y (t) = y] − f(y) = Ah +Bh (4.2)

where

Ah = E [f(qt+h, X(t+ h)) − f(qt+h, X(t)) | Y (t) = (q, x)]

Bh = E [f(qt+h, X(t)) − f(qt, X(t)) | Y (t) = (q, x)]
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We first consider Ah:

|f(qt+h, X(t+ h)) − f(qt+h, X(t)) −∇f(qt+h, X(t)).(X(t+ h) −X(t))| ≤ Ch2

We have

X(t+ h) −X(t) =

∫ t+h

t

F (qs, X(s))ds

so that
∣

∣

∣

∣

∣

X(t+ h) −X(t) −
∫ t+h

t

F (qs, X(t))ds

∣

∣

∣

∣

∣

≤ C

∫ t+h

t

|X(s) −X(t)|ds ≤ Ch2

Accordingly
∣

∣

∣

∣

∣

f(qt+h, X(t+ h)) − f(qt+h, X(t)) −∇f(qt+h, X(t)).

∫ t+h

t

F (qs, X(t))ds

∣

∣

∣

∣

∣

≤ Ch2

and
∣

∣

∣

∣

∣

Ah − E

[

∇f(qt+h, x).

∫ t+h

t

F (qs, x)ds | qt = q

]∣

∣

∣

∣

∣

≤ Ch2

We have

E [∇f(qt+h, x).F (qs, x) | qt = q] = Ts−t [Tt+h−s(∇f(·, x)).F (·, x)] (q)
‖Tt‖∞ ≤ 1 and q is assumed to be Feller so that Tan

(fn) → f if fn → f and
an → 0. This shows

E [∇f(qt+h, x).F (qs, x) | qt = q]
h→0−→ ∇f(q, x).F (q, x)

which implies

Ah
h

h→0−→ ∇f(q, x).F (q, x) (4.3)

We now consider Bh:

Bh
h

=
1

h
E [f(qt+h, x) − f(qt, x) | qt = q]

h→0−→ Qf(q, x) (4.4)

Substituting (4.3) and (4.4) into (4.2) yields the result.

Step 4. Mf is a martingale.

E[Mf (t)|Fs] = Mf (s) + E

[

f(Y (t)) − f(Y (s)) −
∫ t

s

Lf(Y (u))du|Y (s)

]

= Mf (s) + Tt−sf(Y (s)) − f(Y (s)) −
∫ t

s

Tt−uLf(Y (s))du

= Mf (s) + Tt−sf(Y (s)) − f(Y (s)) −
∫ t−s

0

TuLf(Y (s))du
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The function (t, y) 7→ Ttf(y) satisfies the Kolmogorov equation, which shows that
the last three terms of the r.h.s. cancel. ⊓⊔

4.2. Feller processes

In this section we consider a temporally homogeneous Feller process. The distribu-
tion Px of the Markov process starting from x ∈ E is described by the probability
transition. Indeed, by the Chapman-Kolmogorov equation, for any n ∈ N∗, for
any 0 < t1 < t2 < ... < tn <∞ and for any A1, ..., An ∈ B(E), we have:

Px(Xt1 ∈ A1, ..., Xtn ∈ An)

=

∫

A1

...

∫

An

Pt1(x, dx1)Pt2−t1(x1, dx2)...Ptn−tn−1(xn−1, dxn)

We shall denote by Ex the expectation with respect to Px. We have in particular
Ex[f(Xt)] = Ttf(x).

The Markov processes have been extensively studied and classified. This clas-
sification is based upon the notions of recurrence and transience. From this clas-
sification simple conditions for the ergodicity of the process can be deduced.

The main hypothesis that will insure most of the forthcoming results is that
the transition probability has a positive, continuous density function:

Hypothesis D. There exists a Borel measure µ on E supported by E, and a
strictly positive function pt(x, y) continuous in (t, x, y) ∈ R+∗ × E2 such that the
transition probability Pt(x, dy) equals pt(x, y)µ(dy).

The two-state process of Example 4.5 satisfies Hypothesis D with µ = the
counting measure on E = {−1, 1}.

4.2.1. Recurrent and transient properties The Feller process is called recur-
rent (in the sense of Harris) if

Px

(∫ ∞

0

1A(Xt)dt = ∞
)

= 1

for every x ∈ E and A ∈ B(E) such that µ(A) > 0. This means that the time
spent by the process in any subset is infinite, or else that it comes back an infinite
number of times in any subset.

The Feller process is called transient if

sup
x∈E

Ex

[∫ ∞

0

1A(Xt)dt

]

<∞

for every compact subset A of E. This means that the process spends only a finite
time in any compact subset, so that it goes to infinity. The classification result
holds as follows.

Proposition 4.7. A Feller process that satisfies Hypothesis D is either recurrent
or transient.
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The proof can be found in [60]. It consists in 1) introducing a suitable Markov
process with discrete time parameters, 2) showing a similar transient-recurrent
dichotomy for this process, and 3) applying this result to the Feller process.

4.2.2. Invariant measures Let π be a Borel measure on E. It is called an
invariant measure of the Feller semigroup (Tt) if

∫

E

Ttf(x)π(dx) =

∫

E

f(x)π(dx)

for every t ≥ 0 and for any nonnegative function f with compact support. The
following proposition (whose proof can be found for instance in [43]) shows that a
recurrent process possesses a unique invariant measure.

Proposition 4.8. Let (Xt) be a Feller process satisfying Hypothesis D. If it is
recurrent, then there exists an invariant measure π which is unique up to a multi-
plicative constant and mutually absolutely continuous with respect to the reference
Borel measure µ.

In the case where the state space is compact, the process cannot be transient,
hence it is recurrent and possesses an invariant measure, which has to be a bounded
Borel measure.

Corollary 4.9. Let (Xt) be a Feller process with compact state space satisfying
Hypothesis D. Then it is recurrent and has a unique invariant probability measure.

4.2.3. Ergodic properties The ergodic theorems that we are going to state are
based on the following proposition.

Proposition 4.10. Let (Xt) be a recurrent Feller process satisfying Hypothesis
D. For every pair of probabilities π1 and π2, we have

lim
t→∞

‖(π1 − π2)Pt‖ = 0

where π1Pt(.) =
∫

E π1(dx)Pt(x, .) and ‖.‖ is here the norm of the total variations.

The proposition means that the process forgets its initial distribution as t→ ∞.
Applying the proposition with π1 = δx and π2 = the invariant measure of the
process is the key to the proof of the ergodic theorem for Markov processes:

Proposition 4.11. Let (Xt) be a Feller process satisfying Hypothesis D.
1) If it is recurrent and has an invariant probability measure π, then the process
is ergodic and for any f ∈ L∞(E) and for any x ∈ E,

Ttf(x)
t→∞−→

∫

E

f(y)π(dy)

2) If it is recurrent and has an infinite invariant measure, then for any f ∈ L∞(E)
such that

∫

E |f(y)|π(dy) <∞ and for any x ∈ E:

Ttf(x)
t→∞−→ 0
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3) If it is transient, then for any f ∈ L∞(E) with compact support and for any x:

Ttf(x)
t→∞−→ 0

The ergodic theorem has also a pathwise version:

Proposition 4.12. Let (Xt) be a Feller process satisfying Hypothesis D.
1) If it is recurrent and has an invariant probability measure π, then for any
f ∈ L∞(E) and for any x ∈ E,

1

t

∫ t

0

f(Xt)
t→∞−→

∫

E

f(y)π(dy) Px almost surely

2) If it is recurrent and has an infinite invariant measure, then for any f ∈ L∞(E)
such that

∫

E |f(y)|π(dy) <∞ and for any x ∈ E:

f(Xt)
t→∞−→ 0 in L1(Px)

3) If it is transient, then for any f ∈ L∞(E) with compact support and for any x:

f(Xt)
t→∞−→ 0 Px almost surely

The two-state process of Example 4.5 is ergodic and its invaraint probability
meaure on E = {−1, 1} is the uniform distribution π(−1) = π(1) = 1/2.

4.2.4. Resolvent equations and potential kernels We consider a Feller pro-
cess satisfying Hypothesis D. We set, for α > 0,

uα(x, y) =

∫ ∞

0

e−αtpt(x, y)dt

which is a strictly lower semicontinuous function. The family of operators (Uα)α>0

Uα(x) =

∫

E

uα(x, y)f(y)µ(dy) =

∫ ∞

0

e−αtTtf(x)dt

is called the resolvent of the semigroup (Tt). It satisfies the resolvent equation:

(α − β)UαUβf + Uαf − Uβf = 0 (4.5)

for any α, β > 0.
A kernel U (i.e. a family of Borel measures {U(x, .), x ∈ E} such that U(x,A)

is measurable with respect to x for all A ∈ B(E)) is called a potential kernel if it
satisfies:

(I − αUα)Uf = Uαf (4.6)

for every α > 0 and f such that Uf ∈ Cb(E). The function Uf is called a potential
of f . Note that Eq. (4.6) is the limit form of Eq. (4.5) as β → 0.

If the process is transient, then

U(x,A) :=

∫ ∞

0

Pt(x,A)dt (4.7)
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is a potential kernel. Indeed if f ∈ L∞(E) with compact support, Uf ∈ Cb(E)
and satisfies Uf = limβ→0 Uβf . Therefore it satisfies (4.6) since (Uα) satisfies the
resolvent equation (4.5).

If the process is recurrent and has invariant measure π, then (4.7) diverges
as soon as π(A) > 0. However it is possible to construct a kernel W such that
Wf ∈ Cb(E) and satisfies (4.6) if f ∈ L∞(E) with compact support satisfying
∫

E f(y)π(dy) = 0. Such a kernel is called a recurrent potential kernel.

Proposition 4.13. Let (Xt) be a recurrent Feller process satisfying Hypothesis
D. There exists a recurrent potential W . Assume further that the process has an
invariant probability measure π. If f ∈ L∞(E) with compact support satisfies
∫

E f(y)π(dy) = 0, then
∫ t

0 Tsf(x)ds is bounded in (t, x) and

∫ t

0

Tsf(x)ds
t→∞−→ Wf(x) −

∫

E

Wf(y)π(dy)

Note that in the recurrent case with invariant probability measure, the recur-
rent potential kernel exists and is unique if one adds the condition that

∫

E
Wf(y)dπ(dy) =

0 for all f ∈ L∞(E) with compact support satisfying
∫

E f(y)π(dy) = 0. Further-
more, if Wf belongs to the domain of the infinitesimal generator of the semigroup
(Tt), then the potential kernel satisfies QWf = (α−U−1

α )Wf = −f . We can then
state the important following corollary.

Corollary 4.14. Let (Xt) be a recurrent Feller process with an invariant prob-
ability measure π satisfying Hypothesis D. If f ∈ L∞(E) with compact support
satisfies

∫

E f(y)π(dy) = 0, and if Wf belongs to the domain of the infinitesimal
generator of the semigroup (Tt), then Wf is a solution of the Poisson equation
Qu = −f .

In the case of the two-state process of Example 4.5, the Poisson equation reads
as the linear system

Qu = −f ⇐⇒
{

−u(−1) + u(1) = −f(−1)
u(−1) − u(1) = −f(1)

It has a solution if and only if f(−1) + f(1) = 0, that is,
∫

E
f(y)π(dy) = 0 where

π(−1) = π(1) = 1/2 is the invariant probability measure. Then

u =

∫ ∞

0

Ttfdt =

(

3
4

1
4

1
4

3
4

)(

f(−1)
f(1)

)

=
1

2

(

f(−1)
f(1)

)

=
1

2
f

is the unique solution such that
∫

E
u(y)π(dy) = 0, that is, u(−1) + u(1) = 0.

4.3. Diffusion Markov processes

Definition 4.15. Let P be a transition probability. It is associated to a diffusion
process if:
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1) ∀x ∈ Rd, ∀ε > 0,

∫

|y−x|>ε
Pt(x, dy) = o(t),

2) ∀x ∈ Rd, ∀ε > 0,

∫

|y−x|≤ε
(yi − xi)Pt(x, dy) = bi(s, x)t+ o(t) for i = 1, ..., d,

3) ∀x ∈ Rd, ∀ε > 0,

∫

|y−x|≤ε
(yi − xi)(yj − xj)Pt(x, dy) = aij(x)t + o(t) for

i, j = 1, ..., d.

The functions bi characterize the drift of the process, while aij describe the dif-
fusive properties of the diffusion process. We are going to see that these functions
completely characterize a diffusion Markov process with some additional technical
hypotheses.

We shall assume the following hypotheses:

(H)

aij are of class C2 with bounded derivatives,
bi are of class C1 with bounded derivatives,
a satisfies the strong ellipticity condition:

There exists some γ > 0 such that, for any x,
∑

ij

aij(x)ξiξj ≥ γ
∑

i

ξ2i .

We introduce the second-order differential operator L:

Lf(x) =

d
∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

d
∑

i=1

bi(x)
∂f(x)

∂xi
.

Proposition 4.16. Under Hypotheses H:
1) There exists a unique Green’s function pt(x, y) from Rd × R+ × Rd to R such
that
pt(x, y) > 0 ∀t > 0, x, y ∈ Rd,
p is continuous on Rd × R+∗ × Rd,
p is C2 in x and C1 in t,
as a function of t and x, p satisfies ∂p

∂t = Lp,
∀x,

∫

Rd pt(x, y)f(y)dy → f(x) as t→ 0+ for any continuous and bounded function
f .
2) There exists a unique positive function p̄ ∈ C1(Rd,R) such that L∗p̄ ≡ 0 up to
a multiplicative constant. If p̄ has finite mass, then we choose the normalization
∫

Rd p̄(y)dy = 1.

We refer to [28] for the proof. This proposition is obtained by means of PDE
tools. The first point is the key for the proof of the following proposition that
describes a class of Markov processes satisfying Hypothesis D.

Proposition 4.17. Under Hypotheses H, there exists a unique diffusion Markov
process with drift b and diffusive matrix a. It is Feller and it satisfies hypothesis D
with µ =the Lebesgue measure. It has continuous sample paths. L is its infinites-
imal generator. The Green’s function p is the transition probability density:

Pt(x,A) =

∫

A

pt(x, y)dy
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which satisfies the Kolmogorov backward equation as a function of t and x:

∂p

∂t
= Lp, pt=0(x, y) = δ(x− y)

and the Kolmogorov forward equation as a function of t and y:

∂p

∂t
= L∗p, pt=0(x, y) = δ(x− y)

where L∗ is the adjoint operator of L:

L∗f(x) =
d
∑

i,j=1

∂2

∂xi∂xj
(aij(x)f(x)) −

d
∑

i=1

∂

∂xi
(bi(x)f(x)) .

Note that the Kolmogorov backward equation is the same as Eq. (4.1). The
Kolmogorov forward equation is also known as the Fokker-Planck equation.

Remark: A diffusion process can be either transient or recurrent. A criterion
that insures recurrence is that there exists K > 0, α ≥ −1, r > 0 such that

d
∑

j=1

bj(x)
xj
|x| ≤ −r|x|α ∀|x| ≥ K

(r should be large enough in the case α = −1). In such a case the drift b plays the
role of a trapping force that pushes the process to the origin [68].

The following proposition expresses the Fredholm alternative for the operator
L in the ergodic case. It can be seen as a consequence of Proposition 4.13 and
Corollary 4.14 in the framework of diffusion processes.

Proposition 4.18. Under Hypotheses H, if the invariant measure has finite mass,
then the diffusion process is ergodic. If moreover f ∈ C2 with compact support
satisfies

∫

Rd f(y)p̄(y)dy = 0 then there exists a unique function χ which satis-
fies Lχ = −f and the centering condition

∫

Rd χ(y)p̄(y)dy ≡ 0. It is given by
∫∞
0 Tsf(x)ds =

∫∞
0

∫

Rd ps(x, y)f(y)dyds.

Example 1: The Brownian motion.
The d-dimensional Brownian motion is the Rd-valued homogeneous Markov pro-
cess with infinitesimal generator:

Q =
1

2
∆

where ∆ is the standard Laplacian operator. The probability transition density
pt(x, y) has the Gaussian density with mean x and covariance matrix tI:

pt(x, y) =
1

(2πt)d/2
exp

(

−|y − x|2
2t

)

An explicit calculation demonstrates that the Brownian motion is recurrent in
dimensions 1 and 2 and transient in higher dimensions. The Brownian motion
possesses an invariant measure which is simply the Lebesgue measure over Rd

which has infinite mass. Whatever the dimension is, the Brownian motion is not
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ergodic, it escapes to infinity. It will not be a suitable process for describing a
stationary ergodic medium. However if we add a trapping potential the Brownian
motion becomes ergodic, as shown in the next example.

Example 2: The Ornstein-Uhlenbeck process.
It is a R-valued homogeneous Markov process defined as the solution of the stochas-
tic differential equation dXt = −λXt+dWt that admits the closed form expression:

Xt = X0e
−λt +

∫ t

0

e−λ(t−s)dWs

where W is a standard one-dimensional Brownian motion. It describes the evolu-
tion of the position of a diffusive particle trapped in a quadratic potential. It is
the homogeneous Markov process with infinitesimal generator:

Q =
1

2

∂2

∂x2
− λx

∂

∂x

The probability transition pt(x, y) has a Gaussian density with mean xe−λt and
variance σ2(t):

pt(x, y) =
1

√

2πσ(t)2
exp

(

− (y − xe−λt)2

2σ2(t)

)

, σ2(t) =
1 − e−2λt

2λ

It is a recurrent ergodic process whose invariant probability measure has a density
with respect to the Lebesgue measure:

p̄(y) =

√

λ

π
exp

(

−λy2
)

(4.8)

Note that it may be more comfortable in some circumstances to deal with a
process with compact state space. For instance the process Yt = arctan(Xt) with
(Xt) an Ornstein-Uhlenbeck process is one of the models that can be used to
describe the fluctuations of the parameters of a random medium.

4.4. The Poisson equation and the Fredholm alternative

We consider in this section an ergodic Feller Markov process with infinitesimal
generator Q. The probability transitions converge to the invariant probability
measure by the ergodic theorem. The resolution of the Poisson equation Qu = f
requires fast enough mixing. A set of hypotheses for rapid convergence is stated
in the following proposition due to Doeblin [8]:

Proposition 4.19. Assume that the Markov process has a compact state space E,
it is Feller, and there exists t0 > 0, c > 0 and a probability ν over E such that
Pt(x,A) ≥ cν(A) for all t ≥ t0, x ∈ E, A ∈ B(E). Then there exists a unique
invariant probability p̄ and two positive numbers c1 > 0 and δ > 0 such that

sup
x∈E

sup
A∈B(E)

|Pt(x,A) − p̄(A)| ≤ c1e
−δt
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A Feller process with compact state space E satisfying Hypothesis D possesses
nice mixing properties. Indeed, if t0 > 0, then δ := infx,y∈E p(0, x; t0, y) is positive
as E is compact and p is continuous. Denoting by ν the uniform distribution
over E we have Pt0(x,A) ≥ δν(A) for all A ∈ B(E). This property also holds
true for any time t0 + t, t ≥ 0, as the Chapman-Kolmogorov relation implies
Pt+t0(x,A) =

∫

E
Pt(x, dz)Pt0(z,A) ≥ δ

∫

E
ν(A)Pt(x, dz) = δν(A). This proves

the following corollary:

Corollary 4.20. If a Feller process with compact state space satisfies Hypothesis
D, then it fulfills the hypotheses and conclusion of Proposition 4.19.

We end up the section by revisiting the problem of the Poisson equation in
terms of the Fredholm alternative. We consider an ergodic Feller Markov pro-
cess satisfying the Fredholm alternative. We first investigate the null spaces of the
generator Q. Considering Tt1 = 1, we have Q1 = 0, so that 1 ∈ Null(Q). As a con-
sequence Null(Q∗) is at least one-dimensional. As the process is ergodic Null(Q∗)
is exactly one-dimensional. In other words there exists a unique invariant probabil-
ity measure which satisfies Q∗p̄ = 0. In such conditions the probability transition
converges to p̄ as t → ∞. The spectrum of Q∗ gives the rate of forgetfulness, i.e.
the mixing rate. For instance the existence of a spectral gap

inf
f,

R

E
fdp̄=0

−
∫

E
fQfdp̄

∫

E
f2dp̄

> 0

insures an exponential convergence of Pt(x, .) to p̄. We now investigate the solu-
tions of the Poisson equation Qu = f . Of course Q is not invertible since it has
a nontrivial null space {1}. Null(Q∗) has dimension 1 and is generated by the in-
variant probability measure p̄. By the Fredholm alternative, the Poisson equation
admits a solution if f satisfies the orthogonality condition f ⊥ Null(Q∗) which
means that f has zero mean E[f(X0)] = 0 where E is the expectation with respect
to the distribution of the Markov process starting with the invariant measure p̄:

E[f(Xt)] =

∫

E

p̄(dx)Ex[f(Xt)]

In such a case, a particular solution of the Poisson equation Qu = f is

u0(x) = −
∫ ∞

0

dsTsf(x)

Remember that the following expressions are equivalent:

Tsf(x) =

∫

E

Ps(x, dy)f(y) = Ex[f(Xs)] = E[f(Xs)|X0 = x]

The convergence of the integral needs fast enough mixing. Also we have formally
(i.e. if the integrals are finite)

Qu0 = −
∫ ∞

0

dsQTsf = −
∫ ∞

0

ds
dTs
ds

f = − [Tsf ]
∞
0 = f − E[f(X0)] = f
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Note that another solution of the Poisson equation belongs to Null(Q) and is
therefore a constant. Here we have E[u0(X0)] = 0 as E[f(Xs)] = E[f(X0)] = 0,

so that we can claim that −
∫ ∞

0

dsTs : D → D is the inverse of Q restricted to

D = (Null(Q∗))⊥.

4.5. Diffusion-approximation for Markov processes

Proposition 4.21. Let us consider the system:

dXε

dt
(t) =

1

ε
F

(

Xε(t), q(
t

ε2
),
t

ε

)

, Xε(0) = x0 ∈ R
d. (4.9)

Assume that
1) q is a Markov, stationary, ergodic process on a compact space with generator
Q, satisfying the Fredholm alternative.
2) F satisfies the centering condition: E[F (x, q(0), τ)] = 0 for all x and τ where
E[.] denotes the expectation with respect to the invariant probability measure of q.
3) Assume that F is of class C2 and has bounded partial derivatives in x.
4) Assume that F is periodic with respect to τ with period T0.

If ε → 0 then the processes (Xε(t))t≥0 converge in distribution to the Markov
diffusion process X with generator:

Lf(x) =

∫ ∞

0

du 〈E [F (x, q(0), .).∇ (F (x, q(u), .).∇f(x))]〉τ . (4.10)

where 〈.〉τ stands for an averaging over a period in τ .

Remark 1: The infinitesimal generator also reads:

L =

d
∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d
∑

i=1

bi(x)
∂

∂xi

with

aij(x) =

∫ ∞

0

du 〈E [Fi(x, q(0), .)Fj(x, q(u), .)]〉τ .

bi(x) =

d
∑

j=1

∫ ∞

0

du

〈

E

[

Fj(x, q(0), .)
∂Fi
∂xj

(x, q(u), .)

]〉

τ

.

Remark 2: We can also consider the case when F depends continuously on
the macroscopic time variable t in (4.9). We then get the same result with the
limit process described as a time-inhomogeneous Markov process with generator
Lt defined as above.

Remark 3: The periodicity condition 4) can be removed if we assume instead
of 4):
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4bis) Assume that the limits

lim
T→∞

1

T

∫ T+t0

t0

dτE [Fi(x, q(0), τ)Fj(x, q(u), τ)]

lim
T→∞

1

T

∫ T+t0

t0

dτE

[

Fj(x, q(0), τ)
∂Fi
∂xj

(x, q(u), τ)

]

exist uniformly with respect to x in a compact, are independent on t0 and are
integrable with respect to u. We then denote

aij(x) =

∫ ∞

0

du

(

lim
T→∞

1

T

∫ T

0

dτE [Fi(x, q(0), τ)Fj(x, q(u), τ)]

)

bi(x) =

d
∑

j=1

∫ ∞

0

du

(

lim
T→∞

1

T

∫ T

0

dτE

[

Fj(x, q(0), τ)
∂Fi
∂xj

(x, q(u), τ)

]

)

and assume that a and b are smooth enough so that there exists a unique diffusion
process with generator L (assume Hypothese H for instance).

In the following we give a formal proof of Proposition 4.21 which contains the
key points. The strategy of the complete and rigorous proof is based of the theory
of martingales and is sketched out in Appendix B. It also relies on the perturbed
test function method.

The process X̄ε(.) := (Xε(.), q(./ε2)) is Markov with generator

Lε =
1

ε2
Q+

1

ε
F (x, q,

t

ε
).∇.

The backward Kolmogorov equation for this process can be written as follows:

∂V ε

∂t
= LεV ε, t ≥ 0, (4.11)

and we consider initial conditions that do not depend on q:

V ε(t = 0, q, x) = f(x)

where f is a smooth test function. We will solve (4.11) asymptotically as ε → 0
by assuming the multiple scale expansion:

V ε =

∞
∑

n=0

εn Vn(t, q, x, τ)|τ=t/ε (4.12)

To expand (4.11) in multiple scales we must replace ∂
∂t by ∂

∂t+
1
ε
∂
∂τ . Thus Eq. (4.11)

becomes

∂V ε

∂t
=

1

ε2
QV ε +

1

ε
F.∇V ε +

1

ε

∂V ε

∂τ
, t ≥ 0, (4.13)
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Substitution of (4.12) into (4.13) yields a hierarchy of equations:

QV0 = 0 (4.14)

QV1 + F.∇V0 +
∂V0

∂τ
= 0 (4.15)

QV2 + F.∇V1 +
∂V1

∂τ
− ∂V0

∂t
= 0 (4.16)

Taking into account the ergodicity of q Eq. (4.14) implies that V0 does not depend
on q. Taking the expectation of (4.15) the equation can be reduced to ∂V0

∂τ = 0
which shows that V0 does not depend on τ and V1 should satisfy:

QV1 = −F (x, q, τ).∇V0(t, x) (4.17)

We have assumed that q is ergodic and satisfies the Fredholm alternative, so Q
has an inverse on the subspace of the functions that have mean zero with respect
to the invariant probability measure P. The right-hand side of Eq. (4.17) belongs
to this subspace, so we can solve this equation for V1:

V1(t, x, q, τ) = −Q−1F (x, q, τ).∇V0(t, x) (4.18)

where −Q−1 =
∫∞
0
dtTt. We now substitute (4.18) into (4.16) and take the expec-

tation with respect to P and the averaging over a period in τ . We then see that
V0 must satisfy:

∂V0

∂t
=
〈

E
[

F.∇(−Q−1F.∇V0)
]〉

τ

This is the solvability condition for (4.16) and it is the limit backward Kolmogorov
equation for the process Xε, which takes the form:

∂V0

∂t
= LV0

with the limit infinitesimal generator:

L =

∫ ∞

0

dt 〈E [F.∇(TtF.∇]〉τ

Using the probabilistic interpretation of the semigroup Tt we can express L as
(4.10).

4.6. Bibliographic notes

In this section we have presented a self-contained summary of the basic tools of
the theory of stochastic processes needed for modeling one-dimensional random
media and for carrying out asymptotic analysis in various scaling limits. For
an introduction to Markov processes we refer to the book by Breiman [12]. An
advanced treatment of the theory of Markov processes, associated semigroups, and
limit theorems is in the book by Ethier and Kurtz [24]. The martingale approach
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to diffusions and limit theorems is in the book of Stroock and Varadhan [65]. An
introduction to stochastic calculus with Brownian motions can be found in the
book by Oksendal [50] and a more advanced treatment in the book by Karatzas
and Shreve [35]. The first diffusion-approximation results for random differential
equations were given by Khasminskii in 1966 [37, 38]. The martingale approach to
limit theorems for random differential equations was presented by Papanicolaou–
Stroock–Varadhan in 1976 [54] and in Blankenship–Papanicolaou [10], including
the perturbed-test-function method that is used extensively in these notes. Similar
methods are used in homogenization [7] and in stochastic stability and control [44].
We also refer to a recent series of papers by Pardoux and Veretennikov [56] for an
extended treatment of Poisson equations and diffusion approximation. We have
only considered Markovian models of random equations here for simplicity. The
results, however, can be extended to a large class of mixing processes as is done
in [36] and in the books by Ethier–Kurtz [24] and by Kushner [44].

5. Spreading of a pulse traveling through a
random medium

We are interested in the following question: how the shape of a pulse has been
modified when it emerges from a one-dimensional random medium ? This analysis
takes place in the general framework, based on separation of scales, introduced by
G. Papanicolaou and his co-authors (see for instance [15] for the one-dimensional
case or [4] for the three-dimensional case). We consider here the problem of acous-
tic propagation when the incident pulse wavelength is long compared to the cor-
relation length of the random inhomogeneities but short compared to the size of
the slab.

5.1. The boundary-value problem

The O’Doherty-Anstey theory states that a pulse traveling through a one-dimensional
random medium retains its shape up to a low spreading; furthermore, its shape is
deterministic when observed from the point of view of an observer traveling at the
same random speed as the wave while it is stochastic when the observer’s speed is
the mean speed of the wave. The main result of this section consists in a complete
description of the asymptotic law of the emerging pulse: we prove a limit theorem
which shows that the pulse spreads in a deterministic way and we identify the
statistical distribution of the random time delay. For simplicity we present the
proof in the one-dimensional case with no macroscopic variations of the medium
and the noise only appearing in the bulk modulus of the medium. We refer to
[19, 26] for the result for one-dimensional media with macroscopic variations.
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We consider an acoustic wave traveling in a one-dimensional random medium
located in the region 0 ≤ z ≤ L, satisfying the linear conservation laws:











ρε(z)
∂uε

∂t
(t, z) +

∂pε

∂z
(t, z) = 0

∂pε

∂t
(t, z) + κε(z)

∂uε

∂z
(t, z) = 0

(5.1)

Here uε(t, z) and pε(t, z) are respectively the speed and pressure of the wave,
whereas ρε(z) and κε(z) are the density and bulk modulus of the medium. In our
simplified model we suppose that the medium parameters are given by

1

κε(z)
=

{

1 + η(z/ε2) for z ∈ [0, L],
1 for z ∈ (−∞, 0) ∪ (L,∞),

ρε(z) = 1 for all z,

where η(z/ε2) is the rapidly varying random coefficient describing the inhomo-
geneities. Since these coefficients are positive we suppose that |η| is less than a
constant strictly less than 1. Furthermore we assume that η(z) is stationary, cen-
tered and mixing enough. We may think for instance that η(z) = f(Xz) where
(Xz)z≥0 is the Ornstein-Uhlenbeck process and f is a smooth function from R to
[−δ, δ], δ < 1, satisfying

∫

f(y)p̄(y)dy where p̄ is the invariant probability density
(4.8) of the Ornstein Uhlenbeck process.

In order to specify our boundary conditions we introduce the right- and left-
going waves Aε = uε + pε and Bε = uε − pε which satisfy the following system of
equations:

∂

∂z

(

Aε

Bε

)

=

((

−1 0
0 1

)

+
1

2
η(
z

ε2
)

(

−1 1
−1 1

))

∂

∂t

(

Aε

Bε

)

(5.2)

The slab of medium we are considering is located in the region 0 ≤ z ≤ L and at
t = 0 an incident pulse is generated at the interface z = 0 between the random
medium and the outside homogeneous medium. According to previous works [15]
or [4] we choose a pulse which is broad compared to the size of the random inho-
mogeneities but short compared to the macroscopic scale of the medium. There
is no wave entering the medium at z = L (see Fig. 1). Therefore the system (5.2)
is complemented with the boundary conditions:

Aε(t, 0) = f(
t

ε
), Bε(t, L) = 0 (5.3)

where f is a function whose Fourier transform f̂ belongs to L1 ∩ L2.

-

0 L z

Aε(t, 0) = f(
t

ε
)

-

Bε(t, 0)
�

-

Aε(t, L)(1 + η(
z

ε2
))pεtt − pεzz = 0

Figure 1: Spreading of a pulse.
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5.2. Asymptotic analysis of the transmitted pulse

We are interested in the transmitted pulse Aε(t, L) around the arrival time t = L
and in the same scale as the entering pulse Aε(t, 0); therefore the quantity of
interest is the windowed signal Aε(L + εs, L)s∈(−∞,∞) which will be given by the
following centered and rescaled quantities:

aε(s, z) = Aε(z + εs, z), bε(s, z) = Bε(−z + εs, z) (5.4)

The solution of (5.2)+(5.3) takes place in an infinite-dimensional space because of
the variable t. So we perform the scaled Fourier transforms:

âε(ω, z) =

∫

eiωsaε(s, z)ds, b̂ε(ω, z) =

∫

eiωsbε(s, z)ds

In the frequency domain, with the change of variables (5.4), Eq. (5.2) becomes:

d

dz

(

âε

b̂ε

)

=
iω

2ε
η(
z

ε2
)

(

1 −e−2iω z
ε

e2iω
z
ε −1

)(

âε

b̂ε

)

(5.5)

with the boundary conditions

âε(ω, 0) = f̂(ω), b̂ε(ω,L) = 0 (5.6)

We obtain the following representation for the transmitted pulse:

Aε(L+ εs, L) = aε(s, L) =
1

2π

∫

e−iωsâε(ω,L)dω (5.7)

The 2 × 2 propagator matrix Pε(ω, z) is the solution of equation (5.5) with the

initial condition Pε(ω, 0) = I. The process (âε(ω, z), b̂ε(ω, z)) can be deduced from

(âε(ω, 0), b̂ε(ω, 0)) through the identity:
(

âε(ω, z)

b̂ε(ω, z)

)

= Pε(ω, z)

(

âε(ω, 0)

b̂ε(ω, 0)

)

(5.8)

The structure of the propagator matrix can be exhibited. If (α̂ε, β̂ε)T is a solu-

tion of (5.5) with the initial condition α̂ε(0) = 1, β̂ε(0) = 0, then (β̂ε, α̂ε)T is
another solution linearly independent from the previous one 1 and we can thus
write Pε(ω, z) as:

Pε(ω, z) =

(

α̂ε(ω, z) β̂ε(ω, z)

β̂ε(ω, z) α̂ε(ω, z)

)

(5.9)

The trace of the matrix appearing in the linear equation (5.5) being 0, we deduce
that the determinant of Pε(ω, z) is constant and equal to 1 which implies that

|α̂ε(ω, z)|2 − |β̂ε(ω, z)|2 = 1 for every z. Using (5.8) and (5.9) at z = L and

1Here the bar · stands for complex conjugation
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boundary conditions (5.6) we deduce that:

âε(ω,L) =
1

α̂ε(ω,L)
f̂(ω), b̂ε(ω, 0) = − β̂

ε(ω,L)

α̂ε(ω,L)
f̂(ω) (5.10)

In particular we have the following relation of conservation of energy:

|âε(ω,L)|2 + |b̂ε(ω, 0)|2 = |f̂(ω)|2 (5.11)

Lemma 5.1. The transmitted pulse ((aε(s, L))−∞<s<∞)ε>0 is a tight (i.e. weakly
compact) family in the space of continuous trajectories equipped with the sup norm.

Proof. We must show that, for any δ > 0, there exists a compact subset K of the
space of continuous bounded functions such that:

sup
ε>0

P(aε(·, L) ∈ K) ≥ 1 − δ

On the one hand (5.11) yields that aε(s, L) is uniformly bounded by:

|aε(s, L)| ≤ 1

2π

∫

|f̂(ω)|dω

On the other hand the modulus of continuity

M ε(δ) = sup
|s1−s2|≤δ

|aε(s1, L) − aε(s2, L)|

is bounded by

M ε(δ) ≤
∫

sup
|s1−s2|≤δ

|1 − exp(iω(s1 − s2))||f̂ (ω)|dω

which goes to zero as δ goes to zero uniformly with respect to ε. ⊓⊔

Moreover the finite-dimensional distributions will be characterized by the mo-
ments

E[aε(s1, L)p1 . . . aε(sk, L)pk ] (5.12)

for every real numbers s1 < . . . < sk and every integers p1, . . . , pk.
Let us first address the first moment. Using the representation (5.7) and (5.10)

the expectation of aε(s, L) reads:

E[aε(s, L)] =
1

2π

∫

e−iωsf̂(ω)E[α̂ε(ω,L)−1]dω

We fix some ω and denote Xε
1(z) = Re(α̂ε(z, ω)), Xε

2(z) = Im(α̂ε(z, ω)), Xε
3(z) =

Re(β̂ε(z, ω)) and Xε
4(z) = Im(β̂ε(z, ω)). The R4-valued process Xε satisfies the

linear differential equation

dXε(z)

dz
=

1

ε
Fω

(

η(
z

ε2
),
z

ε

)

Xε(z), (5.13)



Wave propagation in one-dimensional random media 35

with the initial conditions Xε
1(0) = 1 and Xε

j′(0) = 0 if j′ = 2, 3, 4, where

Fω(η, h) =
ωη

2









0 −1 − sin(2ωh) cos(2ωh)
1 0 − cos(2ωh) − sin(2ωh)

− sin(2ωh) − cos(2ωh) 0 1
cos(2ωh) − sin(2ωh) −1 0









Applying the approximation-diffusion theorem 4.21, we get that Xε converges in
distribution to a Markov diffusion process X characterized by an infinitesimal
generator denoted by L:

L =

4
∑

i,j=1

aij(X)
∂2

∂Xi∂Xj
+

4
∑

i=1

bi(X)
∂

∂Xi

whose entries bi are all vanishing and:

a11 =
γω2

8

(

X2
2 +

X2
3 +X2

4

2

)

,

a22 =
γω2

8

(

X2
1 +

X2
3 +X2

4

2

)

,

a12 = a21 =
γω2

8
(−X1X2) ,

where

γ =

∫ ∞

−∞
E[η(0)η(z)]dz = 2

∫ ∞

0

E[η(0)η(z)]dz

The expectation φ(z) = E[(X1(z) − iX2(z))
−1] satisfies the equation

dφ

dz
= Lφ = −γω

2

4
φ, φ(0) = 1.

The solution of this ODE is: φ(L) = exp(−γω2L/4). The expectation of α̂ε(ω,L)−1

thus converges to φ(L) (remember that |α̂ε| ≥ 1). By Lebesgue’s theorem (remem-

ber that f̂ ∈ L1) the expectation of aε(s, L) converges to:

E[aε(s, L)]
ε→0−→ 1

2π

∫

e−iωsf̂(ω) exp(−γω2L/4)dω

Let us now consider the general moment (5.12). Using the representation (5.7)
for each factor aε, these moments can be written as multiple integrals over n =
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∑k
j=1 pj frequencies:

E [aε(s1, L)p1 ...aε(sk, L)pk ] =
1

(2π)n

∫

...

∫

∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsj

×E









∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

α̂ε(ωj,l, L)−1









∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

dωj,l

The dependency in ε and in the randomness only appears through the quantity
E[α̂ε(ω1, L)−1 . . . α̂ε(ωn, L)−1]. Our problem is now to find the limit, as ε goes to
0, of these moments for n distinct frequencies. In other words we want to study
the limit in distribution of (α̂ε(ω1, L), . . . , α̂ε(ωn, L)) which results once again from
the application of a diffusion-approximation theorem. We define the n-dimensional
propagator as the 2n× 2n matrix

Pε(ω1, ω2, . . . , ωn, z) = ⊕Nj=1P
ε(ωj , z)

which satisfies an equation similar to (5.5) with Pε(ω, z = 0) = I.
In order to be allowed to apply the diffusion-approximation theorem, we have

to take care to consider separately the real and imaginary parts of each coeffi-
cient α̂ε and β̂ε, so that we actually deal with a system with 4n linear differen-
tial equations. Denoting Xε

4j+1(z) = Re(α̂ε(ωj , z)), X
ε
4j+2(z) = Im(α̂ε(ωj , z)),

Xε
4j+3(z) = Re(β̂ε(ωj , z)) and Xε

4j+4(z) = Im(β̂ε(ωj , z)), j = 1, . . . , n, the R4n-
valued process Xε satisfies the linear differential equation

dXε(z)

dz
=

1

ε
F
(

η(
z

ε2
),
z

ε

)

Xε(z), (5.14)

with the initial conditions Xε
4j+j′ (0) = 1 if j′ = 1, Xε

4j+j′ (0) = 0 if j′ = 2, 3, 4,
where

F(η, h) = ⊕nj=1Fωj
(η, h)

Applying the approximation-diffusion theorem 4.21, we get that Xε converges in
distribution to a Markov diffusion process X characterized by an infinitesimal
generator denoted by L:

L =
n
∑

i,i′=1

4
∑

j,j′=1

a4i+j,4i′+j′(X)
∂2

∂X4i+j∂X4i′+j′

a4i+1,4i+1 =
γω2

i

8

(

X2
4i+2 +

X2
4i+3 +X2

4i+4

2

)

,

a4i+2,4i+2 =
γω2

i

8

(

X2
4i+1 +

X2
4i+3 +X2

4i+4

2

)

,

a4i+1,4i+2 = a4i+2,4i+1 =
γω2

i

8
(−X4i+1X4i+2) ,
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and for i 6= i′:

a4i+1,4i′+1 =
γωiωi′

8
(X4i+2X4i′+2) ,

a4i+2,4i′+2 =
γωiωi′

8
(X4i+1X4i′+1) ,

a4i+1,4i′+2 = a4i′+2,4i+1 =
γωiωi′

8
(−X4i+2X4i′+1) .

The quantity of interest E[α̂ε(ω1, z)
−1 . . . α̂ε(ωn, z)

−1] is denoted by φε(z). An
application of the infinitesimal generator to the expectation

E





n
∏

j=1

(X4j+1 − iX4j+2)
−1





gives the following equation for φ(z) = limε→0 φ
ε(z):

dφ(z)

dz
= −

2γ
∑

k ω
2
k + γ

∑

k 6=l ωkωl

8
φ(z)

with the initial condition φ(0) = 1. This linear equation has a unique solution but
instead of solving it and computing explicitly our moments one can easily see that

it is also satisfied by φ̃(z) = E

[

n
∏

k=1

T̃ (ωk, z)

]

where

T̃ (ω, z) = exp(i
ω
√
γ

2
Wz −

ω2γ

8
z)

and (Wz) is a standard one-dimensional Brownian motion (Wz is a Gaussian ran-
dom variable with zero-mean and variance z). Therefore φ(L) = φ̃(L) and using

(5.7) the limit in law of aε(s, L) is equal to (2π)
−1 ∫

e−iωsf̂(ω)T̃ (ω,L)dω. Inter-

preting
ω
√
γ

2 WL as a random phase and exp(−ω2γ
8 L) as the Fourier transform of

the centered Gaussian density with variance γL
4 denoted by G γL

4
:

G γL
4

(s) =

√
2√

πγL
exp

(

−2s2

γL

)

we get the main result of this section:

Proposition 5.2. The process (aε(s, L))s∈(−∞,∞) converges in distribution in the
space of the continuous functions to (ā(s, L))s∈(−∞,∞)

ā(s, L) = f ∗G γL
4

(

s−
√
γ

2
WL

)

(5.15)

which means that the initial pulse f spreads in a deterministic way through the con-
volution by a Gaussian density and a random Gaussian centering appears through
the Brownian motion WL.
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ā is the asymptotic pulse front. The energy of ā is non-random and given by:

Ecoh =

∫

|f ∗G γL
4

(s)|2ds

If f(t) is narrowband around a high-carrier frequency:

f(t) = cos(ω0t) exp(−t2δω2), δω ≪ ω0

then it is found that the energy of the front decays exponentially:

Ecoh(L) = Ecoh(0)
1

√

1 + γδω2L
exp

(

− γω2
0L

4(1 + γδω2L)

)

≃ Ecoh(0) exp

(

−γω
2
0L

4

)

(5.16)

We end this section by the following remarks:

• The previous analysis has been done at L fixed. It is not difficult to generalize
it to the convergence in distribution of aε(s, L) as a process in s and L (see
[19] for details). The limit is again given by (5.15) which means that the
random centering of the spread pulse follows the trajectory of a Brownian
motion as the pulse travels into the medium.

• In the ε-scale, the energy entering the medium at z = 0 is equal to
∫

|f(s)|2ds.
The energy exiting the medium at z = L, in a coherent way around time
t = L in the ε-scale, is equal to

∫

|f ∗ G γL
4

(s)|2ds which is strictly less

than
∫

|f(s)|2ds. We may ask the following question: do we have a part of
the missing energy exiting the medium in a coherent way somewhere else
or at a different time? In other words what is the limit in distribution of
Aε(L+ t0 + εs, L) for t0 6= 0 (energy exiting at z = L) or Bε(t0 + εs, 0) (en-
ergy reflected at z = 0). A similar analysis shows that these two processes
(in s) vanish as ε goes to 0 (see [19] for details). This means that there is
no other coherent energy in the ε-scale exiting the slab [0, L].

5.3. Bibliographic notes

The stabilization of the wave front in one-dimensional random media was first
noted by O’Doherty and Anstey in a geophysical context [49]. A time-domain in-
tegral equation approach to pulse stabilization is given in [13, 16]. The frequency-
domain approach presented in this section follows [19]. The use of the martingale
representation for the transmission coefficient is new. An approach using the Ric-
cati equation of Section 7 is in [46]. Generalizations to three-dimensional randomly
layered media are presented in [26, Chapter 14].
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6. Energy transmission through a random medium

6.1. Transmission of monochromatic waves

This section is devoted to the propagation of monochromatic waves. This is a
very natural approach since any wave can be described as the superposition of
such elementary wavetrains by Fourier transform. Let p̂ε(z) be the amplitude at
z ∈ R of a monochromatic wave pε(t, z) = exp(−iωεt)p̂ε(z) traveling in the one-
dimensional medium described in Fig. 2. The medium is homogeneous outside the
slab [0, L] and the wave pε obeys the wave equation pεtt − pεzz = 0. Accordingly p̂ε

satisfies

p̂εzz + ωε2p̂ε = 0

so that it has the form

p̂ε(z) = eiω
εz −Rεωe

−iωεz for z ≤ 0 (6.1)

and

p̂ε(z) = T εωe
iωεz for z ≥ L. (6.2)

The complex-valued random variables Rεω and T εω are the reflection and transmis-
sion coefficients, respectively. They depend on the particular realization of ηε, the
wavenumber ωε and the length of the slab L.
Inside the slab [0, L] the perturbation is nonzero. It is the realization of a random,
stationary, ergodic, and zero-mean process ηε. The dimensionless parameter ε > 0
characterizes the scale of the fluctuations of the random medium as well as the
wavelength of the wave. We assume that:

ηε(z) = η(
z

ε2
), ωε =

ω

ε

which means that the correlation length of the medium ∼ ε2 is much smaller than
the wavelength ∼ ε which is much smaller than the length of the medium ∼ 1.

The scalar field p̂ε satisfies, for z ∈ [0, L]:

p̂εzz + ωε2(1 + ηε(z))p̂ε = 0. (6.3)

The continuity of p̂ε and p̂εz at z = 0 and z = L implies that the solution p̂ε

satisfies the two-point boundary conditions:

iωεp̂ε + p̂εz = 2iωε at z = 0, iωεp̂ε − p̂εz = 0 at z = L. (6.4)



40 J. Garnier

-

0 L z

-

T εωe
i(ωεz−ωεt)

�

Rεωe
−i(ωεz+ωεt)

-

ei(ω
εz−ωεt)

(1 + ηε(z))pεtt − pεzz = 0

Figure 2: Scattering of a monochromatic pulse.

The following statements hold true when the perturbation η is a stationary
process that has finite moments of all orders and is rapidly mixing. We may think
for instance that η is a Markov, stationary, ergodic process on a compact space
satisfying the Fredholm alternative.

Proposition 6.1. There exists a length Lεloc such that, with probability one:

lim
L→∞

1

L
ln |T εω(L)|2 = − 1

Lεloc
. (6.5)

This length can be expanded as powers of ε:

1

Lεloc
=
γω2

4
+O(ε), γ := 2

∫ ∞

0

E[η(0)η(z)]dz. (6.6)

Proof. The study of the exponential behavior of the power transmission coefficient
|T εω|2 can be divided into two steps. First the localization length is shown to be
equal to the inverse of the Lyapunov exponent associated to the random oscillator
vzz +ωε2(1 + ηε(z))v = 0. Second the expansion of the Lyapunov exponent of the
random oscillator is computed.

We first transform the boundary value problem (6.3)+(6.4) into an initial value
problem. This step is similar to the analysis carried out in Section 5. Inside the
perturbed slab we expand p̂ε in the form

p̂ε(ω, z) =
1

2

(

âε(ω, z)eiω
εz − b̂ε(ω, z)e−iω

εz
)

, (6.7)

where âε and b̂ε are respectively the right-going and left-going modes:

âε =
iωεp̂ε + p̂εz

iωε
e−iω

εz, b̂ε =
−iωεp̂ε + p̂εz

iωε
eiω

εz

The process (âε, b̂ε) is solution of

d

dz

(

âε

b̂ε

)

= Hε(ω, z)

(

âε

b̂ε

)

, (6.8)

Hε(ω, z) =
iωε

2
ηε(z)

(

1 −e−2iωεz

e2iω
εz −1

)

=
iω

2ε
η(
z

ε2
)

(

1 −e−2iω z
ε

e2iω
z
ε −1

)

. (6.9)
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The boundary conditions (6.4) read in terms of âε and b̂ε:

âε(ω, 0) = 2, b̂ε(ω,L) = 0. (6.10)

We introduce the propagator Pε, i.e. the fundamental matrix solution of the linear
system of differential equations: d

dzP
ε = HεPε, Pε(0) = I. From symmetries in

Eq. (6.8), Pε is of the form

Pε(ω, z) =

(

α̂ε(ω, z) β̂ε(ω, z)

β̂ε(ω, z) α̂ε(ω, z)

)

, (6.11)

where (α̂ε, β̂ε)T is solution of (6.8) with the initial conditions:

α̂ε(ω, 0) = 1, β̂ε(ω, 0) = 0. (6.12)

The modes Âε and B̂ε can be expressed in terms of the propagator:
(

âε(ω, z)

b̂ε(ω, z)

)

= Pε(ω, z)

(

âε(ω, 0)

b̂ε(ω, 0)

)

. (6.13)

From the identity (6.13) applied for z = L and the boundary conditions (6.10) we
can deduce that

b̂ε(ω, 0) = −(2β̂ε/α̂ε)(ω,L), âε(ω,L) = (2/α̂ε)(ω,L),

and from (6.7), (6.1-6.2), we obtain

Rεω(L) = −(β̂ε/α̂ε)(ω,L), T εω(L) = (1/α̂ε)(ω,L). (6.14)

The power transmission coefficient |T εω|2 is equal to 1/|α̂ε|2(ω,L). We introduce

the slow process vε(ω, z) := α̂ε(ω, εz)eiω
εεz + β̂ε(ω, εz)e−iω

εεz. It satisfies the
equation

vεzz + ω2(1 + η(
z

ε
))vε = 0

with the initial condition vε(0) = 1, vεz(0) = −iω. Let us introduce the quantity
rε(ω, z) := |vε|2 + |vεz |2/ω2. A straightforward calculation shows that

rε(ω, z) = 1 + 2|α̂ε|2(ω, εz)
By Eq. (6.14) we get a relation between rε and T εω:

rε(ω, z) = 1 + 2|T εω(εz)|−2 (6.15)

If γε(ω) denotes the Lyapunov exponent that governs the exponential growth of
rε(ω, z):

γε(ω) = lim
z→∞

1

z
ln rε(ω, z)

then Eq. (6.15) insures that |T εω(L)|2 will decay as exp(−γε(ω)L/ε) as soon as
γε(ω) > 0. In Appendix A the existence of the Lyapunov exponent γε(ω) is
proved, and its expansion with respect to ε is derived. ⊓⊔
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Note that γ is a nonnegative real number since it is proportional to the power
spectral density of the stationary random process η (Wiener-Khintchine theorem
[47, p. 141]). The existence and positivity of the exponent 1/Lεloc can be obtained
with minimal hypotheses. Kotani [42] established that a sufficient condition is
that η is a stationary, ergodic process that is bounded with probability one and
nondeterministic. The expansion of the localization length requires some more hy-
potheses about the mixing properties of η. A discussion and sufficient hypotheses
are proposed in Appendix A.

Note also that the localization length of a monochromatic wave with frequency
ω0 is equal to the length that governs the exponential decay of the coherent trans-
mitted part of a narrowband pulse with carrier frequency ω0 (compare (6.6) and
(5.16)).

For a finite L it is possible to give the complete statistical description of the
power transmission coefficient in the limit ε→ 0.

Proposition 6.2. The power transmission coefficient |T εω(L)|2 converges in dis-
tribution as a continuous process in L to the Markov process Tω(L) whose infinites-
imal generator is:

Lω =
1

4
γω2T 2(1 − T )

∂2

∂T 2
− 1

4
γω2T 2 ∂

∂T . (6.16)

Proof. The power transmission coefficient |T εω|2 can be expressed in terms of a
random variable that is the solution of a Ricatti equation. Indeed, as a byprod-
uct of the proof of Proposition 6.1 we find that |T εω|2 = 1 − |Γεω|2 where Γεω(L) =

β̂ε/α̂ε(ω,L) and (α̂ε, β̂ε) are defined as the solutions of Eqs. (6.8)+(6.12). Differen-

tiating β̂ε/α̂ε with respect to L yields that the coefficient Γεω satisfies a closed-form
nonlinear equation:

dΓεω
dL

=
iω

2ε
η(
L

ε2
)
(

e2iω
L
ε − 2Γεω + e−2iω L

ε Γεω
2
)

, Γεω(0) = 0. (6.17)

One then consider the process Xε := (rε, ψε) := (|Γεω|2, arg(Γεω)) which satisfies:

dXε

dL
(L) =

1

ε
F

(

η(
L

ε2
), Xε(L),

L

ε

)

,

where F is defined by:

F (η, r, ψ, l) =
ωη

2

(

−2 sin(ψ − 2ωl)(r3/2 − r1/2)

−2 + cos(ψ − 2ωl)(r1/2 + r−1/2)

)

One then applies the diffusion-approximation theorem 4.21 to the process (rε, ψε)
which gives the result. ⊓⊔

In particular the expectation of the power transmission coefficient |T εω(L)|2
converges to T̄ω(L) := E[Tω(L)] (see [26, Section 7.1]):

T̄ω(L) =
4√
π

exp

(

−γω
2L

16

)∫ ∞

0

dx
x2e−x

2

cosh(
√

γω2L/(2
√

2)x)
. (6.18)
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This shows that:

1

L
ln T̄ω(L)

L≫1≃ −γω
2

16
(6.19)

We get actually that, for any n ∈ N∗:

E[Tω(L)n]
L≫1≃ cn(ω)

L3/2
exp

(

−γω
2L

16

)

.

By comparing Eq. (6.19) with Eqs. (6.5)+(6.6) we can see that the exponential
behavior of the expectation of the power transmission coefficient is different from
the sample behavior of the power transmission coefficient.

This is a quite common phenomenon when studying systems driven by random
processes. We now give some heuristic arguments to complete the discussion. Let
us set Tω(L) = 2/(1 + ρ(L)). ρ is a Markov process with infinitesimal generator:

L =
1

4
γω2(ρ2 − 1)

∂2

∂ρ2
+

1

2
γω2ρ

∂

∂ρ

Applying standard tools of stochastic analysis (Itô’s formula) we can represent the
process ρ as the solution of the stochastic differential equation:

dρ =

√
γ√
2
ω
√

ρ2 − 1dWL +
γ

2
ω2ρdL, ρ(0) = 1.

The long-range behavior is determined by the drift so that ρ≫ 1 and:

dρ ≃
√
γ√
2
ωρdWL +

γ

2
ω2ρdL

which can be solved as:

ρ(L) ∼ exp

(√
γ√
2
ωWL +

γ

4
ω2L

)

.

Please note that these identities are just heuristic ! As L ≫ 1, with probability
very close to 1, we have WL ∼

√
L which is negligible compared to L, so ρ(L) ∼

exp
(

γω2L/4
)

and Tω(L) ∼ exp
(

−γω2L/4
)

= exp(−L/Lloc).
But, if

√

γ/2ωWL < −γω2L/4, then ρ . 1 and Tω ∼ 1 ! This is a very rare event,

its probability is only P(
√

γ/2ωWL < −γω2L/4) = P(W1 < −
√

γω2L/(2
√

2)) ∼
exp(−γω2L/16). But this set of rare events (=realizations of the random medium)
imposes the values of the moments of the transmission coefficient.

Thus the expectation of the power transmission coefficient is imposed by ex-
ceptional realizations of the medium. Apparently the “right” localization length
is the “sample” one (6.6), in the sense that it is the one that will be observed for a
typical realization of the medium. Actually we shall see that this holds true only
for purely monochromatic waves.

6.2. Transmission of pulses
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We consider an incoming wave from the left:

pεinc(t, z) =
1

2π

∫

f̂ε(ω) exp i (ωz − ωt)dω, z ≤ 0, (6.20)

where f̂ε ∈ L2 ∩ L1 and contains frequencies of order ε−1 (i.e. wavelengths of
order ε):

f̂ε(ω) =
√
εf̂(εω) ⇐⇒ fε(t) =

1√
ε
f(
t

ε
)

The amplitude of the incoming pulse is normalized so that its energy is independent
of ε:

Einc :=

∫

|pεinc(t, 0)|2dt =
1

2π

∫

|f̂ε(ω)|2dω =
1

2π

∫

|f̂(ω)|2dω

The total field in the region z ≤ 0 thus consists of the superposition of the incoming
wave pεinc and the reflected wave:

pεref (t, z) = − 1

2π
√
ε

∫

f̂(ω)Rεω(L) exp i

(

−ωz
ε
− ω

t

ε

)

dω, z ≤ 0,

where Rεω(L) is the reflection coefficient for the frequency ω/ε. The field in the
region z ≥ L consists only of the transmitted wave that is right going:

pεtr(t, z) =
1

2π
√
ε

∫

f̂(ω)T εω(L) exp i

(

ω
z

ε
− ω

t

ε

)

dω, z ≥ L, (6.21)

where T εω(L) is the transmission coefficient for the frequency ω/ε. Inside the slab
the wave has the general form:

pε(t, z) =
1

2π

∫

p̂ε(ω, z) exp

(

−iω t
ε

)

dω, 0 ≤ z ≤ L,

where p̂ε satisfies the reduced wave equation:

p̂εzz + (1 + ηε(z))p̂ε = 0, 0 ≤ z ≤ L.

The total transmitted energy is:

EεT (L) =

∫

|pεtr(t, L)|2dt =
1

2π

∫

|f̂(ω)|2|T εω(L)|2dω.
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Figure 3: Scattering of a pulse.

We first compute the two-frequency correlation function. The following Lemma
is an extension of Proposition 6.2.

Lemma 6.3. Let ω1 = ω − hεa/2 and ω2 = ω + hεa/2.
1. If a = 0, then the power transmission coefficients (|T εω1

(L)|2, |T εω2
(L)|2) con-

verge in distribution to (Tω−h/2(L), Tω+h/2(L)) where Tω−h/2(L) and Tω+h/2(L)
are two independent Markov processes whose infinitesimal generators are respec-
tively Lω−h/2 and Lω+h/2 defined by (6.16).
2. If a = 1, then the power transmission coefficients (|T εω1

(L)|2, |T εω2
(L)|2) converge

in distribution to (T1(L), T2(L)) where (T1(L), T2(L), θ(L)) is the Markov process
whose infinitesimal generator is:

L =
γω2

4
T 2

1 (1 − T1)
∂2

∂T 2
1

− γω2

4
T 2

1

∂

∂T1
+
γω2

4
T 2

1 (1 − T2)
∂2

∂T 2
2

− γω2

4
T 2

2

∂

∂T2

+
γ

2
ω2 cos(θ)

√

(1 − T1)(1 − T2)T2T1
∂2

∂T1∂T2

+2h
∂

∂θ
+
γω2

8

(

(2 − T1)
2

1 − T1
+

(2 − T2)
2

1 − T2
− 2

(2 − T1)(2 − T2)
√

(1 − T1)(1 − T2)
cos(θ)

)

∂2

∂θ2

+
γω2

8

√
1 − T1T1(2 − T2)√

1 − T2

sin(θ)
∂2

∂T1∂θ

+
γω2

8

√
1 − T2T2(2 − T1)√

1 − T1

sin(θ)
∂2

∂T2∂θ
(6.22)

starting from T1(0) = 1, T2(0) = 1, and θ(0) = 0.

Proof. The most interesting case is a = 1, since this is the correct scaling that
describes the correlation of the transmission coefficients at two nearby frequencies.
Let us denote |T εωj

(L)|2 = 1 − |Γεj(L)|2 for j = 1, 2, where Γεj(L) = β̂ε/α̂ε(ωj, L).
We then introduce the four-dimensional process

Xε := (rε1, ψ
ε
1, r

ε
2, ψ

ε
2) := (|Γε1|2, arg(Γε1), |Γε2|2, arg(Γε2))

which satisfies:

dXε

dL
(L) =

1

ε
F

(

η(
L

ε2
), Xε(L),

L

ε
, L

)

,
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where F is defined by:

F (η, r1, ψ1, r2, ψ2, l, L) =
ωη

2











−2 sin(ψ1 − 2ωl− hL)(r
3/2
1 − r

1/2
1 )

−2 + cos(ψ1 − 2ωl− hL)(r
1/2
1 + r

−1/2
1 )

−2 sin(ψ2 − 2ωl+ hL)(r
3/2
2 − r

1/2
2 )

−2 + cos(ψ2 − 2ωl+ hL)(r
1/2
2 + r

−1/2
2 )











Applying the diffusion-approximation theorem 4.21 to the process Xε establishes
that Xε converges to a non-homogeneous Markov process X = (r1, ψ1, r2, ψ2)
whose infinitesimal generator (that depends on L) can be computed explicitly.
By introducing θ := ψ1 − ψ2 − 2hL it turns out that the process (r1, r2, θ) is a
homogeneous Markov process whose infinitesimal generator is given by (6.22). ⊓⊔

This Lemma shows that the transmission coefficients corresponding to two
nearby frequencies ω1 and ω2 are uncorrelated as soon as |ω1 − ω2| ≫ ε. Once
this result is known, it is easy to derive the asymptotic behavior of the pulse
transmittivity.

Proposition 6.4. The transmittivity EεT (L) converges in probability to ET (L):

ET (L) =
1

2π

∫

|f̂(ω)|2T̄ω(L)dω,

where T̄ω(L) is the asymptotic value (6.18) of the mean power transmission coef-
ficient.

Proof. Proposition 6.2 gives the limit value of the expectation of |T εω(L)|2 for one
frequency ω, so that:

E [EεT (L)]
ε→0−→ 1

2π

∫

|f̂(ω)|2T̄ω(L)dω.

Then one considers the second moment:

E
[

EεT (L)2
]

=
1

4π2

∫ ∫

|f̂(ω)|2|f̂(ω′)|2E
[

|T εω(L)|2|T εω′(L)|2
]

dωdω′.

The computation of this moment requires to study the two-frequency process
(|T εω(L)|, |T εω′(L)|) for ω 6= ω′. Applying Lemma 6.3 one finds that |T εω(L)| and
|T εω′(L)| are asymptotically uncorrelated as soon as ω 6= ω′, so that

E
[

EεT (L)2
] ε→0−→ 1

4π2

∫ ∫

|f̂(ω)|2|f̂(ω′)|2T̄ω(L)T̄ω′(L)

=

(

1

2π

∫

|f̂(ω)2T̄ω(L)dω

)2

,

which proves the convergence of EεT (L) to ET (L) in L2(P):

E

[

(EεT (L) − ET (L))2
]

= E
[

EεT (L)2
]

− 2E [EεT (L)] ET (L) + ET (L)2
ε→0−→ 0
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By the Chebychev inequality this implies a convergence in probability:

For any δ > 0, P (|EεT (L) − ET (L)| > δ) ≤
E

[

(EεT (L) − ET (L))
2
]

δ2
ε→0−→ 0

⊓⊔

Let us assume that the incoming wave is narrowband, that is to say that the
spectral content f̂ is concentrated around the carrier wavenumber ω0 and has
narrow bandwidth (smaller than 1, but larger than ε). Then ET (L) decays expo-
nentially with the length of the slab as:

1

L
ln ET (L)

L≫1≃ −γω
2
0

16

Note that this is the typical behavior of the expected value of the power trans-
mission coefficient of a monochromatic wave with wavenumber ω0. In the time
domain the localization process is self-averaging ! This self-averaging is implied
by the asymptotic decorrelation of the transmission coefficients at different fre-
quencies. Actually T εω(L) and T εω′(L) are correlated only if |ω − ω′| ≤ ε.

We can now describe the energy content of the transmitted wave. It consists of
a coherent part described by the O’Doherty-Anstey theory, with coherent energy
that decays quickly as exp(−γω2

0L/4). There is also an incoherent part in the
transmitted wave, whose energy decays as exp(−γω2

0L/16). Thus the incoherent
wave contains most of the energy of the total transmitted wave in the regime
γω2

0L ≥ 1.

6.3. Bibliographic notes

The presentation of power transmission through a slab of random medium of
Section 6.1 follows the treatment in [40]. A more physical approach to this problem
is given in Klyatskin’s book [39]. The self-averaging property presented in Section
6.2 does not seem to be well known. The analytical reason for the phenomenon
is the decorrelation of the power transmission coefficients at distinct frequencies,
which is well known [15].

The treatment of wave localization in Section 6.1 is limited to the analysis
of the exponential decay of the power transmission coefficient. The phenomenon
of wave localization was discovered in 1958 by Anderson [1] in connection with
electron waves in semiconductors. The mathematical theory was developed only
twenty years later, starting with the paper of Goldsheid–Molchanov–Pastur [32].
Since that paper there has been a great deal of research published on the subject,
in particular in the one-dimensional case, for which the theory of products of
random matrices is available. We cite here some books that also contain additional
references: Carmona–Lacroix [18], Pastur–Figotin [58], and the review papers by
Van Tiggelen, Lacroix, and Klein in the proceedings [25].
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Figure 4: The new scattering problem.

7. Incoherent wave fluctuations

This section is a self-contained statistical analysis of the time- and frequency-
domain properties of the incoherent waves reflected by a one-dimensional random
medium. We have shown in the previous section that the energy of the transmitted
wave front decays exponentially with the size of the random medium, which implies
that the incoherent waves carry most of the energy. The analysis of the incoherent
waves is therefore important in many applications, especially in time reversal, as
we will see in the next section. We have also seen that the total transmitted energy
decays exponentially with the size of the random medium, but that the decay rate
is slower than that of the wave front. We will therefore focus attention on the
incoherent reflected waves. For an extensive treatment we refer to [26, Chapter 9].

7.1. The reflected wave

It turns out that it is more convenient to reformulate the scattering problem as
shown in Figure 4 in order to deal with forward equations. The incident wave
comes from the right, and the reflected wave exits into the homogeneous half-
space on the right also.

We consider the acoustic equations (3.1-3.2). We assume that the medium
parameters are

1

κε(z)
=

{

1 + η(z/ε2) for z ∈ [−L, 0],
1 for z ∈ (−∞,−L) ∪ (0,∞),

ρε(z) = 1 for all z,

and an incoming left-going wave impinges on the interface z = 0. The pulse width
is of order ε, and its amplitude is scaled so that it has energy of order one. It is
given by

1√
ε
f

(

t

ε

)

,



Wave propagation in one-dimensional random media 49

where f is square-integrable, so that

∫ ∞

−∞

[

1√
ε
f

(

t

ε

)]2

dt =

∫ ∞

−∞
f(u)2du <∞.

As in previous sections, we introduce the right- and left-going modes

Aε(t, z) = uε(t, z) + pε(t, z), Bε(t, z) = uε(t, z) − pε(t, z).

We consider these modes in coordinates moving with the effective speed 1 and on
the time scale of the incoming pulse,

aε(s, z) = Aε(εs+ z, z), bε(s, z) = Bε(εs− z, z) .

In the Fourier domain the modes satisfy the differential equations

d

dz

(

âε

b̂ε

)

=
iω

2ε
η
( z

ε2

)

(

1 −e−2iωz/ε

e2iωz/ε −1

)(

âε

b̂ε

)

. (7.1)

The modes also satisfy boundary conditions corresponding to a left-going wave
impinging at z = 0 and the radiation condition at z = −L,

b̂ε(ω, 0) =
1√
ε
f̂(ω), âε(ω,−L) = 0. (7.2)

We first transform the boundary value problem (7.1–7.2) into an initial value
problem. This step is similar to the analysis carried out in Section 5. We introduce
the propagator Pε

ω(−L, z), that is, the fundamental solution matrix of the linear
system of differential equations (7.1) with initial condition Pε

ω(−L, z = −L) = I.
From symmetries in (7.1), Pε

ω is of the form

Pε
ω(−L, z) =

(

α̂εω(−L, z) β̂εω(−L, z)
β̂εω(−L, z) α̂εω(−L, z)

)

, (7.3)

where (α̂εω, β̂
ε
ω)T is a solution of (7.1) with the initial conditions

α̂εω(−L, z = −L) = 1, β̂εω(−L, z = −L) = 0. (7.4)

The modes âε and b̂ε can be expressed in terms of the propagator as
(

âε(ω, z)

b̂ε(ω, z)

)

= Pε
ω(−L, z)

(

âε(ω,−L)

b̂ε(ω,−L)

)

. (7.5)

We can now define the transmission and reflection coefficients T εω(−L, z) and
Rεω(−L, z), respectively, for a slab [−L, z] by (see Figure 5)

Pε
ω(−L, z)

(

0
T εω(−L, z)

)

=

(

Rεω(−L, z)
1

)

. (7.6)

In terms of the propagator entries they are given by

Rεω(−L, z) =
β̂εω(−L, z)
α̂εω(−L, z)

, T εω(−L, z) =
1

α̂εω(−L, z)
. (7.7)
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Figure 5: Reflection and transmission coefficients.

By (7.2) and (7.5) applied at z = 0, the reflected and transmitted mode amplitudes
can be expressed in terms of the reflection and transmission coefficients as

âε(ω, 0) =
1√
ε
f̂(ω)Rεω(−L, 0) , b̂ε(ω,−L) =

1√
ε
f̂(ω)T εω(−L, 0) .

We want to derive a closed equation for the reflection coefficient. By differen-
tiating Rεω(−L, z) and T εω(−L, z) with respect to z, we have

dRεω
dz

=
1

α̂εω

dβ̂εω
dz

− β̂εω
(α̂εω)2

dα̂εω
dz

,

dT εω
dz

= − 1

(α̂εω)2
dα̂εω
dz

.

From the equations (7.1) satisfied by (α̂εω, β̂
ε
ω), we get

dRεω
dz

= − iω
2ε
η
( z

ε2

)(

e−2iωz/ε − 2Rεω + (Rεω)2e2iωz/ε
)

, (7.8)

dT εω
dz

=
iω

2ε
η
( z

ε2

)(

1 −Rεωe
2iωz/ε

)

T εω . (7.9)

The initial conditions for these nonlinear differential equations are

Rεω(−L, z = −L) = 0, T εω(−L, z = −L) = 1,

at z = −L. This is because the medium is homogeneous for z < −L, and left-going
waves simply travels at constant speed to the left. Equation (7.8) is the Riccati
equation for the reflection coefficient, and (7.9) is the associated linear equation
for the transmission coefficient, which depends on the reflection coeffcient. From
these equations it is easy to check the conservation of energy relation

|Rεω(−L, z)|2 + |T εω(−L, z)|2 = 1, (7.10)

which is the same as (5.11).
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The reflected wave at z = 0 admits the following representation in terms of the
reflection coefficient:

Aε(t, 0) = aε
(

t

ε
, 0

)

=
1

2π

∫

âε(ω, 0)e−i
ωt
ε dω

=
1

2π
√
ε

∫

Rεω(−L, 0)f̂(ω)e−i
ωt
ε dω. (7.11)

The statistical description of the reflected wave is thus closely related to the statis-
tical distribution of the reflection coefficient. In this section we will focus attention
on:

1. The mean amplitude E[Aε(t, 0)], which describes the coherent reflected wave.

2. The mean intensity E[Aε(t, 0)2], which describes the energy distribution of
the reflected wave in the time domain.

3. The correlation function cεt (s) = E[Aε(t+ εs, 0)Aε(t, 0)], which describes the
time fluctuations in a time window of size of the order of ε.

We will also give the complete statistical distribution of the reflected wave. These
results will be derived from the integral representation (7.11).

The mean amplitude is

E[Aε(t, 0)] =
1

2π
√
ε

∫

E[Rεω(−L, 0)]f̂(ω)e−i
ωt
ε dω. (7.12)

Higher-order moments of the reflected wave involve an expansion in multiple inte-
grals and moments of products of reflection coefficients. Let us consider the second
moment, that is, the mean intensity. Since Aε(t, 0) is real-valued,

Aε(t, 0)2 = Aε(t, 0)Aε(t, 0)

=
1

4π2ε

(∫

Rεω1
(−L, 0)f̂(ω1)e

− iω1t

ε dω1

)(∫

Rεω2
(−L, 0)f̂(ω2)e

iω2t

ε dω2

)

=
1

4π2ε

∫ ∫

Rεω1
(−L, 0)Rεω2

(−L, 0)f̂(ω1)f̂(ω2)e
i
(ω2−ω1)t

ε dω1 dω2.

By taking the expectation we obtain an expression of the mean intensity in terms
of the frequency autocorrelation function of the reflection coefficient:

E[Aε(t, 0)2] =
1

4π2ε

∫ ∫

E

[

Rεω1
(−L, 0)Rεω2

(−L, 0)
]

×f̂(ω1)f̂(ω2)e
i
(ω2−ω1)t

ε dω1 dω2.

The presence of the fast phase (ω2 − ω1)t/ε suggests the change of variables

ω1 = ω + εh/2 , ω2 = ω − εh/2 ,
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which leads to the representation

E[Aε(t, 0)2] =
1

4π2

∫ ∫

E

[

Rεω+εh/2(−L, 0)Rεω−εh/2(−L, 0)
]

×f̂(ω + εh/2)f̂(ω − εh/2)e−ihtdω dh. (7.13)

This shows that the correlation between the reflection coefficients at two nearby
frequencies plays an important role. We shall thus carry out in the next subsection
a careful analysis of the distribution of the reflection coefficient at two nearby
frequencies in the asymptotic limit ε→ 0.

7.2. Statistics of the reflected wave in the frequency domain

7.2.1. Moments of the reflection coefficient We aim at computing the mo-
ments of the reflection coefficient. In view of (7.12) and (7.13), we are particularly
interested in the first and second moments. However, the Riccati equation (7.8)
satisfied by the reflection coefficient is nonlinear. As a result, we need to introduce
a complete family of moments in order to get a closed system of equations. We
introduce for p, q ∈ N,

Uεp,q(ω, h, z) =
(

Rεω+εh/2(−L, z)
)p (

Rεω−εh/2(−L, z)
)q

. (7.14)

The moments of interest to us are the first moment

E [Rεω(−L, 0)] = E
[

Uε1,0(ω, 0, 0)
]

(7.15)

and the two-frequency autocorrelation function

E

[

Rεω+εh/2(−L, z)Rεω−εh/2(−L, z)
]

= E
[

Uε1,1(ω, h, z)
]

. (7.16)

Using the Riccati equation (7.8) satisfied by Rεω, we see that the family (Uεp,q)p,q∈N

satisfies

∂Uεp,q
∂z

= iωηε(p− q)Uεp,q +
iω

2
ηεe

2iωz
ε

(

qe−ihzUεp,q−1 − peihzUεp+1,q

)

+
iω

2
ηεe−

2iωz
ε

(

qeihzUεp,q+1 − pe−ihzUεp−1,q

)

, −L ≤ z ≤ 0 ,

starting from

Uεp,q(ω, h, z = −L) = 10(p)10(q) .

Here 10(p) = 1 if p = 0 and is 0 otherwise, and we have set

ηε(z) =
1

ε
η
( z

ε2

)

.

The system of random ordinary differential equations for Uεp,q has a form that
is almost suitable for the application of a diffusion-approximation theorem. One
major problem is that we need an infinite-dimensional version of these theorems.
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This requires a weak formulation and the introduction of an appropriate space of
test functions. We refer to [55] for the details, and here we simply apply the result
as if it were in a finite-dimensional context. Another problem is the presence of
slow components of the form exp(±ihz). We first remove these terms by taking a
shifted and scaled Fourier transform with respect to h:

V εp,q(ω, τ, z) =
1

2π

∫

e−ih(τ−(p+q)z)Uεp,q(ω, h, z)dh. (7.17)

The system of equations satisfied by (V εp,q)p,q∈N is

∂V εp,q
∂z

= −(p+ q)
∂V εp,q
∂τ

+ iωηε(p− q)V εp,q +
iω

2
ηεe

2iωz
ε

(

qV εp,q−1 − pV εp+1,q

)

+
iω

2
ηεe−

2iωz
ε

(

qV εp,q+1 − pV εp−1,q

)

, (7.18)

starting from

V εp,q(ω, τ, z = −L) = δ(τ)10(p)10(q) .

We now apply the limit theorem B.2. This establishes that the process (V εp,q)p,q∈N

converges in distribution as ε→ 0 to a diffusion process (Vp,q)p,q∈N. The infinitesi-
mal generator is quite cumbersome, but the limit diffusion process can be identified
as the solution of the Itô stochastic differential equation

dVp,q = −(q + p)
∂Vp,q
∂τ

dz + i
√
γω(p− q)Vp,qdW0(z)

+
i
√
γω

2
√

2
(qVp,q−1 − pVp+1,q + qVp,q+1 − pVp−1,q) dW1(z)

+

√
γω

2
√

2
(qVp,q−1 − pVp+1,q − qVp,q+1 + pVp−1,q) dW2(z)

+
γω2

4

[

pq(Vp+1,q+1 + Vp−1,q−1 − 2Vp,q) − 3(p− q)2Vp,q
]

dz, (7.19)

whereWj , j = 0, 1, 2, are three independent Brownian motions and γ = 2
∫∞
0 E[η(0)η(z)]dz

is the integrated covariance of the process η. The form of these stochastic differen-
tial equations (7.19) can be derived from (7.18) by replacing the integrals of ηε(z),
ηε(z) cos(2ωz/ε) and ηε(z) sin(2ωz/ε) by the three independent Brownian motions√
γW0,

√

γ/2W1, and
√

γ/2W2. The last line in (7.19) is the Itô-Stratonovich cor-
rection.

Taking the expectation of the stochastic differential equation (7.19) yields a
closed system satisfied by the moments

∂E[Vp,q]

∂z
= −(q + p)

∂E[Vp,q ]

∂τ
− 3γω2

4
(p− q)2E[Vp,q ]

+
γω2

4
pq (E[Vp+1,q+1] + E[Vp−1,q−1] − 2E[Vp,q]) .

We now proceed with the computation of the moments.
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Consider first the family of moments fp(ω, τ, z) = E[Vp+1,p(ω, τ, z)], p ∈ N. It
satisfies the closed system

∂fp
∂z

= −(2p+ 1)
∂fp
∂τ

+
γω2

4
[p(p+ 1)(fp+1 + fp−1 − 2fp) − 3fp] ,

starting from fp(ω, τ, z = −L) = 0. This is a linear system of transport equations
starting from a zero initial condition. As a result, the solution is fp ≡ 0 for all p.
From f0 = 0 we see therefore that E[V ε1,0(ω, τ, 0)] converges to zero as ε → 0, so
that E[Uε1,0(ω, h, 0)] also converges to zero as ε→ 0. Note that the last implication
is rigorous in the weak formulation described in [55]. As a consequence, the first
moment (7.15) converges to zero:

E[Rεω(−L, 0)]
ε→0−→ 0. (7.20)

This result can be generalized as follows. For a fixed positive integer n0, con-
sider the family of moments fp(ω, τ, z) = E[Vp+n0,p(ω, τ, z)], p ∈ N. Proceeding as
above, the family of functions (fp(ω, τ, z))p∈N is a solution of a system of transport
equations with zero initial conditions. Thus fp ≡ 0, and consequently

E[Uεp,q(ω, h, 0)]
ε→0−→ 0, (7.21)

for p 6= q.
Consider now the diagonal family of moments gp(ω, τ, z) = E[Vp,p(ω, τ, z)],

p ∈ N. It satisfies the closed system

∂gp
∂z

= −2p
∂gp
∂τ

+
γω2

4
p2(gp+1 + gp−1 − 2gp),

starting from gp(ω, τ, z = −L) = δ(τ)10(p). This is a linear system of transport
equations that admits a nontrivial solution. We have thus identified the limits of
the expectations E[V εp,p(ω, τ, z)], p ∈ N. They converge to Wp(ω, τ,−L, z), which
obey the closed system of transport equations

∂Wp

∂z
+ 2p

∂Wp

∂τ
= (LωW)p , z ≥ −L , τ ∈ R , p ∈ N , (7.22)

(Lωφ)p =
1

Lloc(ω)
p2 (φp+1 + φp−1 − 2φp) , (7.23)

starting from

Wp(ω, τ,−L, z = −L) = δ(τ)10(p) .

Here Lloc(ω) is the localization exhibited in Proposition 6.1

Lloc(ω) =
4

γω2
.
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Using (7.16) and (7.17), we get the limit of the autocorrelation function of the
reflection coefficient

E

[

Rεω+εh/2(−L, 0)Rεω−εh/2(−L, 0)
]

= E [Uε11(ω, h, 0)]

=

∫

E [V ε11(ω, τ, 0)] eihτdτ

ε→0−→
∫

W1(ω, τ,−L, 0)eihτdτ. (7.24)

More generally, we get

E[Uεp,p(ω, h, 0)]
ε→0−→

∫

Wp(ω, τ,−L, 0)eihτdτ. (7.25)

We can summarize the results of this section in the following proposition.

Proposition 7.1. The expectation of the product of two reflection coefficients at
two nearby frequencies,

E

[(

Rεω+εh/2(−L, 0)
)p (

Rεω−εh/2(−L, 0)
)q]

,

has the following limit as ε→ 0:
(1) If p 6= q, then it converges to 0.
(2) If p = q, then it converges to

∫

Wp(ω, τ,−L, 0)eihτdτ,

where Wp(ω, τ,−L, z) is the solution of the system of transport equations (7.22).

It is possible to generalize this proposition to arbitrary moments, by using the
same method. We obtain the following proposition [26, Section 9.2].

Proposition 7.2. The expectation of the product of 2n reflection coefficients

E





n
∏

j=1

Rεωj+εhj/2
(−L, 0)Rεωj−εhj/2

(−L, 0)



 ,

where n is a positive integer, (ωj)1≤j≤n ∈ Rn are all distinct, and (hj)1≤j≤n ∈ Rn,
converges as ε→ 0 to the limit

n
∏

j=1

∫

eihjτjW1(ωj , τj ,−L, 0)dτj,

where W1 is the solution of the system of transport equations (7.22).
If there is one or several unmatched frequencies in the product of reflection

coefficients, then the limit of the moment is zero.

7.2.2. Probabilistic representation of the transport equations In this sec-
tion we give a probabilistic representation of the solution to the transport equations
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(7.22) in terms of a jump Markov process. This representation is helpful because
it leads to explicit solutions in some particular cases, and in the general case it
provides an efficient Monte Carlo method for numerical simulations.

We introduce the jump Markov process (Nz)z≥−L with state space N and
infinitesimal generator Lω given by (7.23). The construction of the jump process
is as follows. When it reaches the state n > 0, a random clock with exponential
distribution and parameter 2n2/Lloc(ω) starts running. When the clock strikes,
the process jumps to n + 1 or n − 1 with probability 1/2. Zero is an absorbing
state. Define the process

∂Sz
∂z

= −2Nz,

with S−L = s. The pair (Nz, Sz)z≥−L is Markovian with generator

Lω − 2n
∂

∂s
.

The probabilistic representation of the solution of the Kolmogorov equation

∂u

∂z
=

(

Lω − 2n
∂

∂s

)

u, z > −L, u(n, s, z = −L) = u0(n, s), (7.26)

is

u(n, s, z) = E [u0 (Nz, Sz) | N−L = n, S−L = s]

= E

[

u0

(

Nz, s− 2

∫ z

−L
Nz′dz

′
)

| N−L = n

]

. (7.27)

The solution of the transport equations (7.22) is exactly of the form (7.26), so
we can use the probabilistic representation in terms of the jump Markov process
(Nz)z≥−L. Taking u0(n, τ) = 10(n)δ(τ), we obtain u(p, τ, 0) = Wp(ω, τ,−L, 0),
which gives

∫ τ1

τ0

Wp(ω, τ,−L, 0)dτ = P

(

N0 = 0 , 2

∫ 0

−L
Nz′dz

′ ∈ [τ0, τ1] | N−L = p

)

,

(7.28)
after integrating in τ between τ0 and τ1.

From this probabilistic representation of the solution Wp of the system of trans-
port equations (7.22), we deduce the following hyperbolicity property. If τ1 < 2L,
then the only paths that can contribute to the probability (7.28) should satisfy

2

∫ 0

−L
Nzdz ≤ τ1 < 2L,

and thus Nz, which takes only integer values, has to vanish before reaching 0. We
recall that zero is an absorbing state, so that the process stays at zero afterwards.
As a result, Wp(ω, τ,−L, 0) does not depend on the value of L for L ≥ τ/2. This
result, derived from the probabilistic representation of the transport equations,
is consistent with the hyperbolic nature of the acoustic wave equations in the
homogenized medium with finite speed of propagation.
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We can give another application of the probabilistic representation (7.28). If
we take h = 0 in (7.24), then we obtain

E
[

|Rεω(−L, 0)|2
] ε→0−→

∫

W1(ω, τ,−L, 0)dτ.

We thus have a simple probabilistic representation of the limit of the mean-square
reflection coefficient

E
[

|Rεω(−L, 0)|2
] ε→0−→ P(N0 = 0 | N−L = 1).

This can be used to deduce an explicit integral representation of this limiting
moment. We have that

lim
ε→0

E
[

|Rεω(−L, 0)|2
]

=

∫

W1(ω, τ,−L, 0)dτ = 1 − T̄ω(L) , (7.29)

where T̄ω(L) is given by (6.18). We know that

lim
L→∞

lim
ε→0

E
[

|Rεω(−L, 0)|2
]

= 1 ,

which means total reflection by the random half-space, and implies

lim
L→∞

∫

W1(ω, τ,−L, 0)dτ = 1 . (7.30)

7.2.3. Explicit solution for a random half-space In the limit L → ∞, in
which the random slab occupies the full half-space z ≤ 0, we can compute explicitly
the solution of the transport equations (7.22). For this we shift the probabilistic
representation (7.28) of the solution:

∫ τ1

τ0

Wp(ω, τ,−L, 0)dτ = P

(

NL = 0 , 2

∫ L

0

Nz′dz
′ ∈ [τ0, τ1] | N0 = p

)

,

where (Nz)z≥0 is a jump Markov process with state space N and infinitesimal gen-
erator Lω given by (7.23). The process (Nz)z≥0 behaves like a symmetric random
walk on the set of positive integers. It is a well known result from probability
theory that it will eventually reach the state 0, and since 0 is an absorbing state,
Nz = 0 for z large enough. Therefore, the random variable

S∞ = 2

∫ ∞

0

Nzdz

is well defined. As a result
∫ τ1

τ0

Wp(ω, τ,−L, 0)dτ
L→∞−→ P (S∞ ∈ [τ0, τ1] | N0 = p) .

The probability density function P∞
p of the random variable S∞ (with the initial

condition N0 = p) satisfies the system of differential equations

∂P∞
p

∂τ
=
γω2

8
p
(

P∞
p+1 − 2P∞

p + P∞
p−1

)

,
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with P∞
0 (τ) = δ(τ) and P∞

p does not have a Dirac mass at τ = 0. The solution of
this system is

P∞
p (ω, τ) =

∂

∂τ

[(

γω2τ

8 + γω2τ

)p

1[0,∞)(τ)

]

Therefore, the solution for the system of transport equations (7.22) has the limit,
as L→ ∞,

lim
L→∞

Wp(ω, τ,−L, 0) = P∞
p (τ) . (7.31)

In particular, the function W1 that appears in the limit expression (7.24) of the
autocorrelation function of the reflection coefficient has the limit, as L→ ∞,

lim
L→∞

W1(ω, τ,−L, 0) =
8γω2

(8 + γω2τ)2
1[0,∞)(τ) (7.32)

By integrating the right-hand side in (7.32) with respect to τ , we recover the result
(7.30), which implies total reflection by the random half-space.

7.3. Statistics of the reflected wave in the time domain

7.3.1. Mean amplitude By (7.12) the mean amplitude of the reflected wave is

E[Aε(t, 0)] =
1

2π
√
ε

∫

E[Rεω(−L, 0)]f̂(ω)e−i
ωt
ε dω. (7.33)

By (7.20), we know that E[Rεω(−L, 0)] → 0 as ε→ 0. In fact, in we follow the proof
of the diffusion-approximation theorem, then we get that E[Rεω(−L, 0)] converges
to 0 with an error of order ε, which neutralizes the singular factor 1/

√
ε, and thus

we get the expected result

E[Aε(t, 0)]
ε→0−→ 0. (7.34)

The mean amplitude is vanishing in the limit ε→ 0, which means that the reflected
wave is incoherent.

7.3.2. Mean intensity We consider the representation (7.13) of the mean inten-
sity:

E[Aε(t, 0)2] =
1

4π2

∫ ∫

E[Uε11(ω, h, 0)]f̂(ω + εh/2)f̂(ω − εh/2)e−ihtdω dh.

From (7.24) we know the limit of the expectation that appears in this integral, so
that we can write

E[Aε(t, 0)2]
ε→0−→ I(t),
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with

I(t) =
1

4π2

∫ ∫ ∫

W1(ω, τ,−L, 0)|f̂(ω)|2eih(τ−t)dh dτ dω

=
1

4π2

∫ ∫

W1(ω, τ,−L, 0)|f̂(ω)|22πδ(τ − t)dτ dω

=
1

2π

∫

W1(ω, t,−L, 0)|f̂(ω)|2dω. (7.35)

Integrating (7.35) with respect to t we obtain the total reflected energy. Using
(7.29), we have the explicit expression

∫

I(t)dt =
1

2π

∫

[

1 − T̄ω(L)
]

|f̂(ω)|2dω,

where T̄ω(L) is given by (6.18).
For L large enough, the reflected intensity at a given time t does not depend on

L. This is a simple consequence of the hyperbolicity of the acoustic wave equation
with a bounded speed of propagation. This has also been pointed out in Section
7.2.2, where we have shown with the probabilistic representation of W1(ω, τ,−L, 0)
that it does not depend on L for L ≥ τ/2. In particular, the transmitted intensity
(7.35) does not depend on L for L large enough, and therefore it is equal to its
limit as L → ∞. In the case of the random half-space analyzed in Section 7.2.3
we have the explicit formula (7.32) for W1, leading to

I∞(t) =
1

2π

∫

2/Lloc(ω)

(2 + t/Lloc(ω))2
|f̂(ω)|2dω.

where Lloc(ω) = 4/(γω2) is the localization length exhibited in Proposition 6.1. As
noted in Section 7.2.3, the total reflected energy equals the total incident energy,

∫

I∞(t)dt =
1

2π

∫

|f̂(ω)|2dω =

∫

f(t)2dt ,

which confirms that the wave has been completely reflected by the random medium,
as predicted by the localization theory.

When the incident signal is a narrowband pulse with carrier frequency ω0 and
energy E0 =

∫

f(t)2dt, the mean reflected intensity is approximately

I∞(t) =
2E0/Lloc(ω0)

(2 + t/Lloc(ω0))2
=

E0/t0
(1 + t/t0)2

, (7.36)

where t0 = 2Lloc(ω0). This slow power law decay as t−2 is typical of one-
dimensional random media that produce reflections that continue for a long time.
Half the reflected energy is captured in the time interval [0, t0]. The rough picture
is that the wave penetrates into the medium up to the distance Lloc(ω0), and then
it is scattered back, which takes t0 = 2Lloc(ω0) time.

7.3.3. Autocorrelation and time-domain localization We now consider the
local time autocorrelation function of the reflected signal at a fixed time t with lag
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εs, on the scale of the incident pulse, which is defined by

cεt (s) = E[Aε(t, 0)Aε(t+ εs, 0)].

Using the integral representation (7.11), we have

cεt (s) =
1

4π2

∫ ∫

E[Uε11(ω, h, 0)]f̂(ω + εh/2)f̂(ω − εh/2)e−iht+iωs+iεhsdω dh.

Taking the limit ε → 0, using the finite energy of the pulse and Proposition 7.1,
we have that

cεt (s)
ε→0−→ ct(s),

where ct is given by

ct(s) =
1

4π2

∫ ∫ ∫

W1(ω, τ,−L, 0)|f̂(ω)|2eih(τ−t)eiωsdτ dω dh

=
1

2π

∫

W1(ω, t,−L, 0)|f̂(ω)|2eiωsdω. (7.37)

We see therefore that the local power spectral density of the reflected wave around
time t is W1(ω, t,−L, 0)|f̂(ω)|2.

In the case of a random half-space, W1 is given by (7.32), and so

W∞
1 (ω, t, 0) =

2/Lloc(ω)

(2 + t/Lloc(ω))2
1[0,∞)(t) .

For a fixed time t the maximum of this quantity over ω is attained at ω∗(t), where

t =
2

Lloc(ω∗(t))
, (7.38)

or

ω∗(t) =

√

2t

γ
.

We interpret this as follows. Assuming that |f̂(ω)| is flat over its bandwidth, then
the maximum of the local power spectral density of the reflected signal at time t is
at ω∗(t), which is defined by (7.38). This is the frequency for which waves travel
to a distance equal to the localization length Lloc(ω

∗) and back. This provides a
time-domain interpretation of the localization length as the distance from which
the most scattered energy is carried by the reflected waves.

It is also possible to show that the sequence of processes (Aε(t+εs, 0))−∞<s<∞,
with t fixed, converges as ε → 0 in distribution to a Gaussian process. This is
done by showing that for any smooth test function g(s), the sequence of random
variables

Aεt,g =

∫

Aε(t+ εs, 0)g(s)ds
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converges in distribution to a Gaussian random variable as ε → 0. This requires
to compute the limiting moments of Aεt,g. The final result is given in the following
proposition [26, Section 9.3].

Proposition 7.3. The reflected wave around some time t, on the scale ε,

Aε(t+ εs, 0),

converges as ε → 0 as a process in s to (At(s))−∞<s<∞, which is a stationary
Gaussian process with mean zero and autocorrelation function

E[At(s
′)At(s

′ + s)] =
1

2π

∫

W1(ω, t,−L, 0)|f̂(ω)|2eiωsdω .

Here W1 is the solution of the system of transport equations (7.22).

7.4. Bibliographic notes

The statistics of the incoherent waves presented here in a self-contained way have
been derived in the series of papers [4, 5, 14, 15, 16, 40, 41, 53, 55, 61, 62, 71, 70].
The analysis of the transmission coefficient can be found in [26, Chapter 9].

8. Time reversal

In this section we introduce the concept of time reversal of waves. We consider
the case of time reversal in reflection, in which a source emits a pulse at one end
of a one-dimensional slab, and a time-reversal mirror (TRM) placed at the same
location records the reflected signal. The mirror then reemits a part of the recorded
signal trace in the reverse direction of time, so that what is recorded last is sent
first (last-in-first-out at the mirror). This is in contrast to a standard mirror,
which corresponds to first-in-first-out. This basic time reversal setup is illustrated
in Figure 6. The remarkable properties of time reversal in random media are (i)
the refocusing (or recompression) of the wave field at a given deterministic time
(Section 8.2) (ii) the statistical stability of the refocused pulse (Section 8.3).
We will see that the degree or quality of refocusing and stability depends on how
much of the reflected signal is recorded. This section is a shortened version of [26,
Chapter 10].

8.1. Time-reversal setup

We again consider a random slab (−L, 0) embedded in a homogeneous medium
with no background discontinuities. A pulse of the form f(t/ε) incoming from the
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-

−L 0 z

�

Bε(t,−L)

-

yε(t) Aε(t, 0)

�

f(t/ε)

Random slab

(a) A left-going pulse f(t/ε) is on impinging the random slab (−L, 0)
and it generates a reflected signal Aε(t, 0). The time-reversal-mirror
(TRM), used in a passive mode, records a segment yε(t) of the reflected
signal.

-

−L 0 z

�

-

Aεnew(t, 0)

�

yε(t1 − t)

Random slab

(b) The TRM is used as an active device that sends back in the medium
the signal yε(t1 − t). We observe the new reflected signal Aεnew(t, 0).

Figure 6: Setup for a time reversal in reflection (TRR) experiment.
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right homogeneous half-space is scattered by the random slab. We have seen in
(7.11) that the reflected wave Aε(t, 0) has the form:

Aε(t, 0) =
1

2π

∫

Rεω(−L, 0)f̂(ω)e−
iωt
ε dω, (8.1)

where Rεω(−L, 0) is the reflection coefficient defined by (7.7). The first step in the
time-reversal consists in recording the reflected signal at z = 0. It turns out that
as ε→ 0, the interesting asymptotic regime arises when we record the signal up to
a large time of order one, which we denote by t1 (with t1 > 0). A segment of the
recorded signal with support of order one is clipped using a cutoff function G(t).
We denote the recorded part of the wave by yε so that

yε(t) = Aε(t, 0)G(t).

We then time-reverse this segment of signal about t1 and send it back into the
same medium as shown in Figure 6. This means that we have a new scattering
problem defined by the same acoustic equations, but with the new incoming signal

fεnew(t) = yε(t1 − t) = Aε(t1 − t, L)G(t1 − t),

which corresponds to a left-going wave incoming from the right homogeneous half-
space. Since we are dealing with real-valued signals, we can write

Aε(t, 0) = Aε(t, 0) =
1

2π

∫

Rεω(−L, 0) f̂(ω)e
iωt
ε dω ,

so that the scaled Fourier transform of the new incoming signal has the form

f̂εnew(ω) =

∫

e
iωt

ε Aε(t1 − t, 0)G(t1 − t) dt

= ε

∫

eiωsAε(t1 − εs, 0)G(t1 − εs) ds

= ε

∫

eiωs
{

1

2π

∫

e−iω
′s Rεω′(−L, 0) f̂(ω′)e

iω′t1
ε dω′

}

G(t1 − εs) ds

=
ε

2π

∫

Rεω′(−L, 0) f̂(ω′)

{∫

ei(ω
′−ω)(−s) G(t1 − εs) ds

}

e
iω′t1

ε dω′

=
1

2π

∫

Rεω′(−L, 0) f̂(ω′) Ĝ

(

ω − ω′

ε

)

e
iωt1

ε dω′ .

The new incoming signal is scattered by the random slab and gives rise to a
reflected wave Aεnew(t, 0) at z = 0 and a transmitted wave Bεnew(t,−L) at z = −L.
The reflected signal observed in the time domain around the observation time tobs

on the scale ε is given by

SεL(tobs + εs) := Aεnew(tobs + εs, 0) =
1

2πε

∫

e−iω(s+
tobs

ε
)Rεω(−L, 0)f̂εnew(ω) dω .
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Substituting the expression of f̂εnew into this equation gives the integral represen-
tation of the reflected signal

SεL(tobs + εs) =
1

(2π)2ε

∫ ∫

e−iω1sei
ω1(t1−tobs)

ε f̂(ω2) Ĝ

(

ω1 − ω2

ε

)

×Rεω2
(−L, 0)Rεω1

(−L, 0) dω1 dω2 .

Motivated by the scaled argument in Ĝ we use the change of variables ω1 =
ω + εh/2, ω2 = ω − εh/2 and get

SεL(tobs + εs) =
1

(2π)2

∫ ∫

e−iωsei
ω(t1−tobs)

ε eih(t1−tobs)/2−iεhs/2f̂(ω − εh/2)

×Ĝ (h)Rεω−εh/2(−L, 0)Rεω+εh/2(−L, 0) dh dω . (8.2)

We will analyze the behavior of this reflected signal in the limit ε→ 0.

8.2. Time-reversal refocusing

We first observe that the signal (8.2), recorded at z = 0, vanishes in the limit
ε → 0 if the time of observation tobs is not the time of recording t1. Indeed, the
rapid phase exp(iω(t1 − tobs)/ε) averages out the integral except when tobs = t1.
This means that

refocusing can be observed only at the time tobs = t1.

In other words, an observer located at z = 0 detects no coherent signal at any
time different from t1. The observed small incoherent wave fluctuations vanish in
the limit ε → 0. This is what is called time-reversal refocusing, and the precise
description of the refocused pulse observed at time t1 is carried out in the next
section. The refocused pulse at time tobs = t1 has the form

SεL(t1 + εs) =
1

(2π)2

∫ ∫

e−iωs−iεhs/2f̂(ω − εh/2) Ĝ (h)

×Rεω+εh/2(−L, 0)Rεω−εh/2(−L, 0)dh dω . (8.3)

Note that the product of reflection coefficients that appears in this integral has
been analyzed extensively in Section 7.

8.3. The limiting refocused pulse

The uniform boundedness of the reflection coefficient, which follows from the con-
servation of energy as given in (7.10), implies that the finite-dimensional distribu-
tions of the process SεL(t1 + ε·) will be characterized by the moments

E[SεL(t1 + εs1)
p1 · · ·SεL(t1 + εsk)

pk ] (8.4)
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for all real number in the range s1 < · · · < sk and all integer p1, . . . , pk.

8.3.1. First Moment We start by considering the first moment. Using the rep-
resentation (8.3), the expected value of SεL(t1 + εs) is

E[SεL(t1 + εs)] =
1

(2π)2

∫ ∫

e−iωse−iεhs/2f̂(ω − εh/2) Ĝ(h)

×E

[

Rεω+εh/2(−L, 0)Rεω−εh/2(−L, 0)
]

dh dω .

Taking the limit ε→ 0 and applying Proposition 7.1 gives

E[SεL(t1 + εs)]
ε→0−→ 1

(2π)2

∫ ∫

e−iωsf̂(ω)Ĝ(h)

[
∫

eihτW1(ω, τ,−L, 0) dτ

]

dh dω

=
1

(2π)2

∫ ∫

e−iωsf̂(ω)

[∫

Ĝ(h)eihτdh

]

W1(ω, τ,−L, 0) dτ dω

=
1

2π

∫ ∫

e−iωsf̂(ω)G(τ)W1(ω, τ,−L, 0) dτ dω ,

where the quantity W1(ω, τ,−L, 0) is obtained by solving the system of transport
equations (7.22). We have also used the fact that G is real-valued.

8.3.2. Higher Order Moments Let us now consider the general moments (8.4).
Using the representation (8.3) for each factor SεL(t1 + εsj), these moments can be

written as multiple integrals over p =
∑k
j=1 pj frequencies:

E





k
∏

j=1

SεL(t1 + εsj)
pj





=
1

(2π)2p

∫

· · ·
∫

∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsje−iεhj,lsj/2Ĝ(hj,l)

× E









∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

Rεωj,l+εhj,l/2
(−L, 0)Rεωj,l−εhj,l/2

(−L, 0)









∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

dωj,l dhj,l .

The important quantity is the expectation of the product of reflection coefficients,
whose limit as ε → 0 is given by Proposition 7.2. As a result, taking the limit
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ε→ 0 gives

E





k
∏

j=1

SεL(t1 + εsj)
pj





ε→0−→ 1

(2π)p

∫

· · ·
∫

∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

W1(ωj,l, τj,l,−L, 0)

∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

f̂(ωj,l)e
−iωj,lsjG(τj,l) dωj,l dτj,l

=
∏

1≤j≤k

(

1

2π

∫

W1(ω, τ,−L, 0)f̂(ω)e−iωsjG(τ)dω dτ

)pj

.

This shows that the expectation of a product of terms SLε (t1 + εs) converges to
the product of the limits of the expectations:

lim
ε→0

E





k
∏

j=1

SεL(t1 + εsj)
pj



 =
k
∏

j=1

lim
ε→0

E [SεL(t1 + εsj)
pj ] .

This result is in dramatic contrast to the statistical description of the reflected wave
before time reversal in terms of a Gaussian process (see Proposition 7.3). We have
therefore shown that the finite-dimensional distributions of (SLε (t1 + εs))s∈(−∞,∞)

converge to those of the deterministic function

1

2π

∫

W1(ω, τ,−L, 0)f̂(ω)e−iωsG(τ) dω dτ .

8.3.3. Tightness We have characterized the limiting refocused pulse in terms
of its finite-dimensional time distributions. In fact, a tightness argument shows
that this limit holds in the sense of the convergence in distribution for continuous
processes. This is done by showing that the sequence of processes SεL(t1 + ε·),
ε > 0, is precompact in the space of continuous functions (see [44]). On the one
hand, the conservation of energy relation yields that |Rεω| ≤ 1 and SεL(t1 + εs) is
uniformly bounded by

|SεL(t1 + εs)| ≤ 1

(2π)2

∫

|f̂(ω)| dω ×
∫

|Ĝ(h)| dh . (8.5)

On the other hand, the modulus of continuity

M ε(δ) = sup
|s1−s2|≤δ

|SεL(t1 + εs1) − SεL(t1 + εs2)|

is bounded by

M ε(δ) ≤ 1

(2π)2

∫

sup
|s1−s2|≤δ

|1 − exp(iω(s1 − s2))||f̂(ω)|dω ×
∫

|Ĝ(h)| dh ,

which goes to zero as δ goes to zero uniformly with respect to ε. As a result, the
refocused pulse ((SεL(t1 + εs))−∞<s<∞)ε>0 is a tight (i.e., weakly compact) family
in the space of continuous trajectories equipped with the supremum norm.
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8.3.4. Convergence of the refocused pulse We have just shown the tight-
ness of the process (SεL(t1 + εs))s∈(−∞,∞) as well as the convergence of its finite-
dimensional distributions. Accordingly, we have shown that this process converges
in probability as ε→ 0 to the deterministic function

SL(s) =
1

2π

∫

ΛLTRR(ω, τ)f̂(ω)e−iωsG(τ) dω dτ ,

where ΛLTRR(ω, τ) = W1(ω, τ,−L, 0) is given by (7.22) and TRR stands for “time
reversal in reflection.” We summarize this result in the following proposition.

Proposition 8.1. The refocused signal (SεL(t1 + εs))s∈(−∞,∞) converges in prob-
ability as ε→ 0 to the deterministic pulse shape

SL(s) = (f(− ·) ∗KTRR(·)) (s), (8.6)

where the Fourier transform of the refocusing kernel KTRR is given by

K̂TRR(ω) =

∫

G(τ)ΛLTRR(ω, τ) dτ , (8.7)

and the refocusing density ΛLTRR(ω, τ) = W1(ω, τ,−L, 0) is given by the system
(7.22).

If the medium is homogeneous, that is, γ = 0, then the refocusing kernel is
zero. Indeed, in this case nothing is recorded by the TRM, since the initial pulse
simply travels to the left without scattering. If the medium is random, γ > 0,
then we get the striking result that we observe a refocused pulse whose shape does
not depend on the particular realization of the medium, but only on its statistical
distribution through the parameter γ. This is the statistical stability property of
the refocused pulse. In the next paragraph we examine a particular case in which
an explicit formula can be derived for the refocusing kernel.

8.3.5. The refocusing kernel for a half-space We consider the case of a ran-
dom half-space, that is, L→ ∞. We have computed explicitly the solution for the
system of transport equations in this case (see (7.31)). We thus get a closed-form
expression for the refocusing local spectral density Λ∞

TRR in this case

Λ∞
TRR(ω, τ) =

8γω2

(8 + γω2τ)2
=

2/Lloc(ω)

(2 + τ/Lloc(ω))2
, (8.8)

where Lloc(ω) = 4/(γω2) is the localization length exhibited in Proposition 6.1. If
we also assume that G(t) = 1[0,t1](t), then by computing the integral in (8.7) we
find that the refocusing kernel is

K̂TRR(ω) =
γω2t1

8 + γω2t1
=

t1/Lloc(ω)

2 + t1/Lloc(ω)
.

Note that if we assume that we record everything at the mirror (t1 = ∞ and
G ≡ 1), then K̂TRR(ω) = 1. This is of course expected: the pulse has been
completely scattered back by the random half-space due to localization, as seen
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in Section 7. We have sent back everything that has been recorded, so we get a
perfect refocusing as a result of the time-reversibility of the wave equation.

If t1 < ∞, then the kernel K̂TRR has the form of a high-pass filter with cutoff
frequency

ω2
c =

8

γt1
.

Frequencies above ωc are recovered in the refocused pulse but frequencies below
ωc are lost. The reason is that even though the medium is completely reflecting
because of the localization effect, time does play a role. High frequencies have a
very short localization length, given by Lloc(ω) = 4/(γω2), so that they are scat-
tered back very quickly by the medium. Low frequencies have a large localization
length, so they can penetrate deep into the medium, and it takes more time for
them to be reflected. We saw in Section 7.3.2 that they spend an average time on
the order of 2Lloc(ω) in the medium. As a result, if this time is larger than t1,
then they are not recorded by the TRM during the recording time window. The
relation 2Lloc(ω) ≤ t1 gives the bandwidth of the refocusing kernel |ω| ≤ ωc.

8.4. Bibliographic notes

The reflected signal and its spectral content have been studied in the regime of
separation of scales in [4], [5], [14], [15], [16]. Refocusing and self-averaging for time
reversal in reflection in the one-dimensional case was derived in 1997 by Clouet and
Fouque in the article [20]. An iterative time-reversal method to estimate higher
moments is also presented in that reference.

Appendix A. The random harmonic oscillator

The random harmonic oscillator:

ytt + (κ+ ση(
t

ε
))y = 0 (A.1)

with η(t) a random process arises in many physical contexts such as solid state
physics [45, 29, 57], vibrations in mechanical and electrical circuits [64, 67], and
wave propagation in one-dimensional random media [39, 4]. The dimensionless pa-
rameter ε > 0 (resp. σ) characterizes the correlation length (resp. the amplitude)
of the random fluctuations.

A.1. Lyapunov exponents
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The sample Lyapunov exponent governs the exponential growth of the modulation:

G := lim
t→∞

1

t
ln r(t), r(t) =

√

|y(t)|2 + |yt(t)|2. (A.2)

Note that G could be random since η is random. So it should be relevant to study
the mean and fluctuations of the Lyapunov exponent. For this purpose we shall
analyze the normalized Lyapunov exponent which governs the exponential growth
of the p-th moment of the modulation:

Gp := lim
t→∞

1

pt
ln E [r(t)p] , (A.3)

where E stands for the expectation with respect to the distribution of the process
η. If the process were deterministic, then we would have Gp = G for every p. But
due to randomness this may not hold true since we can not invert the nonlinear
power function “|.|p” and the linear statistical averaging “E [.]”. The random
matrix products theory applies to the problem (A.1). For instance let us assume
that the random process η is piecewise constant over intervals [n, n+ 1) and take
random values on the successive intervals. Under appropriate assumptions on the
laws of the values taken by η, it is proved in Ref. [6, Theorem 4] that there exists
an analytic function g(p) such that:

lim
t→∞

1

t
ln E [|r(t)|p] = g(p), (A.4)

lim
t→∞

1

t
ln r(t) = g′(0) almost surely, (A.5)

ln r(t) − tg′(0)√
t

dist.−→ N (0, g′′(0)). (A.6)

Moreover the convergence is uniform for r(t = 0) with unit modulus, and the func-
tion p 7→ g(p)/p is monotone increasing. This proves in particular that G = g′(0) is
non-random. In case of non-piecewise constant processes η, various versions of the
above theorem exist which yield the same conclusion [30, 66, 11, 2]. Unfortunately
the expression of g(p) is very intricate, even for very simple random processes η.
In the following sections we shall derive closed form expressions for the expansion
of the sample Lyapunov exponent with respect to a small parameter.

We shall assume in the following that the driving random process η(t) is built
from a Markov process m(t) by a smooth bounded function η(t) = c(m(t)). As a
consequence η may be non-Markovian itself.

A.2. Small perturbations

We shall assume here that the perturbation is slow ε = 1, but weak σ ≪ 1. There
are two cases that should be distinguished: the case in which κ = σ and the case
in which κ = 1. Introducing polar coordinates (r(t), ψ(t)) as y(t) = r(t) cos(ψ(t))
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and yt(t) = r(t) sin(ψ(t)) the system (A.1) is equivalent to:

r(t) = r0 exp

(∫ t

0

q(ψ(s),m(s))ds

)

, (A.7)

ψt(t) = h(ψ(t),m(t)), (A.8)

with q(ψ,m) = q0(ψ) + σq1(ψ,m) and h(ψ,m) = h0(ψ) + σh1(ψ,m):

if κ = 1

{

q0(ψ) = 0, q1(ψ,m) = −c(m) sin(ψ) cos(ψ),
h0(ψ) = −1, h1(ψ,m) = −c(m) cos2(ψ)

if κ = σ

{

q0(ψ) = 0, q1(ψ,m) = −c(m) sin(ψ) cos(ψ),
h0(ψ) = 0, h1(ψ,m) = −1 − c(m) cos2(ψ).

Let us assume that the process m is an ergodic Markov process with infinitesimal
generator Q on a manifold M with invariant probability π(dm). From Eq. (A.8)
(ψ,m) is a Markov process on the state space S1 × M where S1 denotes the cir-
cumference of the unit circle with infinitesimal generator: L = Q+h(ψ,m) ∂

∂ψ and

with invariant measure p̄(ψ,m)dψπ(dm) where p̄ can be obtained as the solution
of L∗p̄ = 0. According to the theorem of Crauel [21] the long-time behavior of
r(t) can be expressed in terms of the Lyapunov exponent G which is given by:

G =

∫

S1×M

q(ψ,m)p̄(ψ,m)dψπ(dm). (A.9)

This result and the following ones hold true in particular under condition H1 [59]
or H2 [3]:
H1 M is a finite set and Q is a finite-dimensional matrix which

generates a continuous parameter irreducible, time-reversible
Markov chain.

H2 M is a compact manifold. Q is a self-adjoint elliptic diffusion
operator on M with zero an isolated, simple eigenvalue.

We have considered simple situations where Q∗ = Q. Note that the result can
be generalized. For instance one can also work with the class of the φ-mixing
processes with φ ∈ L1/2 (see [44, pp. 82-83]). The Lyapunov exponent G can be
estimated in case of small noise using the technique introduced by Pinsky [59]
under H1 and Arnold et al. [3] under H2. In the following we assume H2. The
invariant probability measure is then simply the uniform distribution over M.

We shall assume from now on that σ ≪ 1 and we look for an expansion of G
with respect to σ ≪ 1. The strategy follows closely the one developed in Ref. [3].
We first divide the generator L into the sum L = L0 + σL1 with:

L0 = Q+ h0(ψ)
∂

∂ψ
, L1 = h1(ψ,m)

∂

∂ψ
.

As shown in [3] the probability density p̄ can be expanded as p̄ = p̄0+σp̄1+σ
2p̄2+...

where p̄0, p̄1, and p̄2 satisfy L∗
0p̄0 = 0 and L∗

0p̄1 + L∗
1p̄0 = 0, L∗

0p̄2 + L∗
1p̄1 = 0,...

For once the expansion of p is known, it can be used in (A.9) to give the expansion



Wave propagation in one-dimensional random media 71

of G at order 2 with respect to σ:

G =

∫

S1×M

(

q0p̄0 + σ(q1p̄0 + q0p̄1) + σ2(q1p̄1 + q0p̄2)
)

(ψ,m)dψπ(dm) +O(σ3).

(A.10)
If κ = σ. p̄0 satisfies Q∗p̄0 = 0. Thus p̄0 is the density of the uniform

density on S1 × M: p̄0 ≡ (2π)−1. For p̄1 we have the equation Q∗p̄1 = −L∗
1p̄0 =

∂ψ(h1p̄0). Since Q = Q∗ this equation is of Poisson type Qp̄1 = ∂ψ(h1p̄0). Note
that ∂ψ(h1p̄0) has zero-mean with respect to the invariant probability π(dm) of Q,
so the Poisson equation admits a solution p̄1. Let p(0,m0; t,m) be the transition
probability density of the process m(t). It is defined by the equation ∂p

∂t = Q∗p,
p(0,m0; t = 0,m) = δ(m−m0). In terms of p we can solve the equation for p̄1 to
obtain:

p̄1(ψ,m0) = − 1

2π

∫ ∞

0

dt

∫

M

∂ψh1(ψ,m)p(0,m0; t,m)π(dm).

Hence

G = σ2

∫

S1×M

q1p̄1(ψ,m0)dψπ(dm0) +O(σ3)

= −σ
2

2π

∫

S1

dψ

∫

M

π(dm0)

∫

M

π(dm)

∫ ∞

0

dtq1(ψ,m0)∂ψh1(ψ,m)p(0,m0; t,m)

+O(σ3).

Taking into account that the autocorrelation function reads:

E[m(0)m(t)] =

∫

M

π(dm0)

∫

M

π(dm)c(m)c(m0)p(0,m0; t,m),

this can be simplified to give G = σ2γ0/8 with

γ0 = 2

∫ ∞

0

dsE[c(m(0))c(m(s))] = 2

∫ ∞

0

dsE[η(0)η(s)]. (A.11)

If κ = 1. Since h0 is constant = −1, p̄0 is the uniform density on S1 × M:
p̄0 ≡ (2π)−1. Further p̄1 satisfies L∗

0p̄1 = −L∗
1p̄0 = ∂ψ(h1p̄0). Note that ∂ψ(h1p̄0)

has zero-mean with respect to the invariant probability p̄0π(dm)dψ of L∗
0, so the

Poisson equation admits a solution p̄1. In terms of the transition probability p it
is given by:

p̄1(ψ,m) = − 1

2π

∫ ∞

0

dt

∫

M

∂ψh1(ψ + t)p(0,m0; t,m)π(dm)

Substituting into (A.10) we obtain that G = σ2γ1/8+O(σ3), where γ1 is nonneg-
ative and proportional to the power spectral density of the process m evaluated
at 2-frequency:

γ1 = 2

∫ ∞

0

ds cos(2s)E[c(m(0))c(m(s))] = 2

∫ ∞

0

ds cos(2s)E[η(0)η(s)]. (A.12)



72 J. Garnier

A.3. Fast perturbations

We consider the random harmonic oscillator:

ytt + ω2(1 + η(
t

ε
))y = 0 (A.13)

Proposition A.1. The Lyapunov exponent of the harmonic oscillator (A.13) can
be expanded as powers of ε:

G =
εω2γ0

8
+O(ε2)

Proof. We introduce the rescaled process ỹ(t) := y(εt) that satisfies:

ỹtt + ω2ε2(1 + η(t))ỹ = 0

Applying the above results establishes that the Lyapunov exponent of ỹ is G̃ =
ε2ω2γ0/8 +O(ε3) which gives the desired result. ⊓⊔

A.4. Bibliographic notes

The theory of random dynamical systems, including Lyapunov exponents and
the multiplicative ergodic theory, is presented in the book by Arnold [2]. The
asymptotic analysis of the Lyapunov exponent of the random harmonic oscillator
can be found in [3, 59].

Appendix B. Diffusion-approximation theorems

In this appendix we give the scheme for the rigorous proof of the diffusion ap-
proximation stated in Proposition 4.21. We first consider a simple case without
periodic modulation.

Proposition B.1. Let us consider the system:

dXε

dt
(t) =

1

ε
F

(

Xε(t), q(
t

ε2
)

)

, Xε(0) = x0 ∈ R
d.

Assume that q is a Markov, stationary, ergodic process on a compact space with
generator Q, satisfying the Fredholm alternative. F satisfies the centering con-
dition: E[F (x, q(0))] = 0 where E[.] denotes the expectation with respect to the
invariant probability measure of q. Instead of technical sharp conditions, assume
also that F is smooth and has bounded partial derivatives in x. Then the continu-
ous processes (Xε(t))t≥0 converge in distribution to the Markov diffusion process
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X with generator:

Lf(x) =

∫ ∞

0

duE [F (x, q(0)).∇ (F (x, q(u)).∇f(x))] .

Proof. For an extended version of the proof and sharp conditions we refer to
[44, 31] and [26, Chapter 6]. The process X̄ε(.) := (Xε(.), q(./ε2)) is Markov with
generator

Lε =
1

ε2
Q+

1

ε
F (x, q).∇.

This implies that, for any smooth function f , the process f(X̄ε(t)) − f(X̄ε(s)) −
∫ t

s Lεf(X̄ε(u))du is a martingale. The proof consists in demonstrating the con-
vergence of the corresponding martingale problems. It is based on the so-called
perturbed test function method.
Step 1. Perturbed test function method. ∀f ∈ C∞

b , ∀K compact subset of Rd, there
exists a family fε such that:

sup
x∈K,q

|fε(x, q) − f(x)| ε→0−→ 0, sup
x∈K,q

|Lεfε(x, q) − Lf(x)| ε→0−→ 0. (B.1)

Define fε(x, q) = f(x) + εf1(x, q) + ε2f2(x, q). Applying Lε to fε, one gets:

Lεfε =
1

ε
(Qf1 + F (x, q).∇f(x)) + (Qf2 + F.∇f1(x, q)) +O(ε).

One then defines the corrections fj as follows:
1. f1(x, q) = −Q−1 (F (x, q).∇f(x)). This function is well-defined since Q has
an inverse on the subspace of centered functions (Fredholm alternative). It also
admits the representation:

f1(x, q) =

∫ ∞

0

duE[F (x, q(u)).∇f(x) | q(0) = q].

2. f2(x, q) = −Q−1 (F.∇f1(x, q) − E[F.∇f1(x, q)]) is well defined since the argu-
ment of Q−1 has zero-mean. It thus remains: Lεfε = E[F.∇f1(x, q)]+O(ε) which
proves (B.1).
Step 2. Convergence of martingale problems. One first establishes the tightness of
the process Xε in the space of the càd-làg functions equipped with the Skorohod
topology by checking a standard criterion (see [44, Section 3.3]). Second one
considers a subsequence εp → 0 such that Xεp → X . One takes t1 < ... < tn <
s < t and h1, ..., hn ∈ C∞

b :

E

[(

fε(Xε(t), q(
t

ε2
)) − fε(Xε(s), q(

s

ε2
))−

−
∫ t

s

Lεfε(Xε(u), q(
u

ε2
))du

)

h1(X
ε(t1))...hn(Xε(tn))

]

= 0
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Taking the limit εp → 0:

E

[(

f(X(t)) − f(X(s)) −
∫ t

s

Lf(X(u))du

)

h1(X(t1))...hn(X(tn))

]

= 0

which shows that X is solution of the martingale problem associated to L. This
problem is well-posed (in the sense that it has a unique solution), which proves
the result. ⊓⊔

Proposition B.2. Let us consider the system:

dXε

dt
(t) =

1

ε
F

(

Xε(t), q(
t

ε2
),
t

ε

)

, Xε(0) = x0 ∈ R
d.

We assume the same hypotheses as in Proposition B.1. We assume also that
F (x, q, τ) is periodic with respect to τ with period T0 and F satisfies the centering
condition: E[F (x, q(0), τ)] = 0 for all x and τ . Then the continuous processes
(Xε(t))t≥0 converge in distribution to the Markov diffusion process X with gener-
ator:

Lf(x) =

∫ ∞

0

du 〈E [F (x, q(0), .).∇ (F (x, q(u), .).∇f(x))]〉τ ,

where 〈.〉τ stands for an averaging over a period in τ .

Proof. The proof is similar to the one of Proposition B.1. The key consists in
building a suitable family of perturbed functions from a given test function.
∀f ∈ C∞

b , ∀K compact subset of Rd, there exists a family fε such that:

sup
x∈K,q,τ

|fε(x, q, τ) − f(x)| ε→0−→ 0, sup
x∈K,q,τ

|Lεfε(x, q, τ) − Lf(x)| ε→0−→ 0. (B.2)

Let us introduce τ(t) := t mod T0. The process X̄ε(.) := (Xε(.), q(./ε2), τ(./ε)) is
Markov with generator

Lε =
1

ε2
Q+

1

ε
F (x, q, τ).∇ +

1

ε

∂

∂τ
.

Let f ∈ Cb. We define f1 = f11 + f12 where f11 is the same term as in the absence
of a periodic component:

f11(x, q, τ) = −Q−1(F (x, q, τ).∇f(x))

while f12 does not depend on q so that Qf12 = 0:

f12(x, τ) = −
∫ τ

0

(

E[F (x, q(0), s).∇f11(x, q(0), s)] − f̄1(x)
)

ds
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where f̄1(x) = 1
T0

∫ T0

0
E[F (x, q(0), u).∇f11(x, q(0), u)]du. Note that f12 is uni-

formly bounded because of the correction f̄1. We finally define:

f2(x, q, τ) = −Q−1

(

F (x, q, τ).∇f1(x, q, τ) +
∂f1
∂τ

−E[F (x, q, τ).∇f1(x, q, τ)] − E[
∂f1
∂τ

]

)

Now we set:

fε(x, q, h) = f(x) + εf1(x, q, τ) + ε2f2(x, q, τ)

Applying the infinitesimal generator Lε we get:

Lεfε = E[F (x, q, τ).∇f1(x, q, τ)] + E[
∂f1
∂τ

] +O(ε)

which simplifies into:

Lεfε(x, q, τ) = f̄1(x) +O(ε)

⊓⊔

Proposition B.3. Let us consider the system:

dXε

dt
(t) =

1

ε
F

(

Xε(t), q(
t

ε2
),
t

ε2

)

, Xε(0) = x0 ∈ R
d.

We assume the same hypotheses as in Proposition B.1. We assume also that
F (x, q, τ) is periodic with respect to τ with period T0 and F satisfies the centering
condition: 〈E[F (x, q(0), .)]〉τ = 0 for all x, where 〈.〉τ stands for an averaging over
a period in τ . Then the continuous processes (Xε(t))t≥0 converge in distribution
to the Markov diffusion process X with generator:

Lf(x) =

∫ ∞

0

du 〈E [F (x, q(0), .).∇ (F (x, q(u), .+ u).∇f(x))]〉τ .

Proof. The proof is similar to the one of Proposition B.1. The key consists in
building a family of perturbed functions satisfying (B.2) for any given test function.
The process X̄ε(.) := (Xε(.), q(./ε2), τ(./ε2)) is Markov with generator

Lε =
1

ε2
Q+

1

ε
F (x, q, τ).∇ +

1

ε2
∂

∂τ
.

Define fε(x, q, τ) = f(x)+ εf1(x, q, τ)+ ε2f2(x, q, τ). Applying Lε to fε, one gets:

Lεfε =
1

ε

((

Q+
∂

∂τ

)

f1 + F (x, q, τ).∇f(x)

)

+

((

Q+
∂

∂τ

)

f2 + F (x, q, τ).∇f1(x, q, τ)
)

+O(ε).
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One then defines the correction f1 as:

f1(x, q, τ) = −
(

Q+
∂

∂τ

)−1

(F (x, q, τ).∇f(x)) .

This function is well-defined although
(

Q+ ∂
∂τ

)

does not possess an inverse. In-
deed (q(t), τ(t))t≥0 is an ergodic process which satisfies the Fredholm alternative.
Its invariant probability measure over S ⊗ [0, T0] is P(dq) × 1

T0
1[0,T0](τ)dτ . As

a consequence
(

Q+ ∂
∂τ

)

has an inverse on the subspace of functions which have
zero-mean with respect to the invariant measure. This inverse admits the repre-
sentation:

f1(x, q, τ) =

∫ ∞

0

duE[F (x, q(u), τ + u).∇f(x)|q(0) = q].

The second correction f2 is defined as usual by

f2(x, q, τ) = −
(

Q+
∂

∂τ

)−1

(F.∇f1(x, q, τ) − 〈E[F.∇f1(x, q, .)]〉τ ) .

This function is well defined since the argument of
(

Q+ ∂
∂τ

)−1
has zero-mean. It

thus remains: Lεfε = 〈E[F (x, q, .).∇f1(x, q, .)]〉τ +O(ε) which proves (B.2). ⊓⊔

We refer to [31] and [26, Chapter 6] for other multi-scaled versions of these
propositions. We complete this appendix by revisiting the averaging theorem
stated in Proposition 2.5. Consider the random differential equation

dXε

dt
= F

(

Xε(t), q

(

t

ε

))

, Xε(0) = x0

where we do not assume that F (x, q) is centered. We denote its mean by F̄ (x) =
E[F (x, q(0))]. Then (Xε(·), q(·/ε)) is a Markov process with generator

Lε =
1

ε
Q+ F (x, q).∇

Let f(x) be a test function. Define fε(x, q) = f(x) + εf1(x, q) where f1 solves the
Poisson equation

Qf1(x, q) +
[

F (x, q).∇f(x) − F̄ (x).∇f(x)
]

= 0

We get Lεfε(x, q) = F̄ (x).∇f(x) + O(ε). Therefore the processes Xε(t) converge
to the solution of the martingale problem associated with the generator Lf(x) =
F̄ (x) · ∇f(x). The solution is the deterministic process X̄(t)

dX̄

dt
= F̄ (X̄(t)) , X̄(0) = x0.
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