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. Wave propagation in one-dimensional random media: effective medium
theory

Homogenization theory

. Wave propagation in one-dimensional random media: the coherent wave
front, the incoherent wave fluctuations, time reversal.

Diffusion approximation, asymptotic theory for random differential

equations.
. Wave propagation and time reversal in a random waveguide.

. Wave propagation and time reversal in the parabolic regime.

Sema-classical analysis of the Schrodinger equation with a random potential



What is a random medium ?
Problem: Wave propagation in a highly heterogeneous medium.

Stochastic modeling: the medium is a realization of a random medium (a set of
possible media described statistically).

- takes into account the available data (mean, standard deviation of the
fluctuations, ...)

- completes the modeling by a statistical description (Gaussian process, ...).

Statistical distribution of the random medium = statistical distribution of

the wave (highly nonlinear problem).

What about a wave propagating in a “typical” realization 7
- Mean-field (or averaged) approach can be misleading.
- A complete statistical analysis is necessary.

- There exist statistically stable quantities.

Importance of scaled regimes and asymptotic theory.



Methodology

[ Identification of the phenomena and equations.

e Modeling: ¢ - Statistical description of the medium parameters.

| - Determination of the scales.

_ - Separation of scales.
e Asymptotics:

- Limit theorems.

. - Analysis of the physically relevant quantities.
e Limit problem:

- Use of stochastic calculus.



The acoustic wave equations

The acoustic pressure p(z,t) and velocity u(z,t) satisfy the continuity and

momentum equations
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where p(z) is the material density,

k(z) is the bulk modulus of the medium.



Propagation in homogeneous medium
Linear hyperbolic system with p, x constant.
Impedance: ( = /pk. Sound speed: ¢ = /k/p.
Right- and left-going modes:

A = C1/2U n C—1/2p7 B — C1/2U B C_l/Qp
ot 0z ot 0z
A: right-going wave B: left-going wave.

[ A
: A\

-1 0 1 2 3 4 z
Spatial profiles of the wave at different times for a pure right-going wave
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Propagation through an interface
pressure field
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Medium z < 0: ¢c=1, ( = 1. Medium z > 0: ¢ =2, ( = 2.



Propagation through a thick layer
pressure field

TRANSMITTED WAVE

| REFLECTED WAVE
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A numerical experiment in random medium

goo. reflected wave | transmitted wave
: —>

600 T T TR
400 I t
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Random medium: stack of thin layers composed of two materials.



The three scales

The acoustic pressure p(z,t) and velocity u(z,t) satisfy the continuity and

momentum equations
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where p(z) is the material density,

k(z) is the bulk modulus of the medium.

Three scales:
l.: correlation radius of the random process p and k.
A: typical wavelength of the incoming pulse.

L: propagation distance.



Effective medium theory L ~ A > [,

(p, W)ine(t) z\O0u  Op _
op A o
. o TH(Z)g, =0
0 L "

Model: p = p(z/¢e) and k = k(z/¢€), where 0 < ¢ < 1 and p, k are random
functions.

Perform a Fourier transform with respect to ¢:

1 i 1 i
u(t,z) = %/f&(w,z)e “dw, plt,2) = %/ﬁ(w,z)e “dw
so that we get a system of ordinary differential equations:
dX* z
= F(=,X°
dz (6’ )
where
D 0 z
xe=| P , F(z,X)=—iw pL2) X

S
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Method of averaging: Toy model

Let X°(z) € R be the solution of
dX°©
dz
with F(z) = >.°2, Fili_1.4(2), F; independent random variables E[F;] = F
and E[(F; — F)?] = o°.

F(Z)

(z — t, particle in a random velocity field)

1 1
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Random process

e Real random variable X = random number

Example: X ~ U(0,1) is a random number that can take any value in (0, 1)
with equiprobability.

Distribution of X characterized by moments of the form E[¢(X )] where

¢ € Cp(R,R).

Example: X ~U(0,1) — E[¢(X)] = f

Example: X ~ &£(1) — E[p(X )] = [, oz )e_f”dac.

Example: X ~ N(0,1) — E[p(X)] = mf o(x e d.

e Stochastic process (F'(z)).>0 = random function = random ”variable” taking
values in a functional space, e.g. C([0, 00), R%).

A realization of the process = a function from [0, 00) to R<.

Distribution of (F(z)).>0 characterized by moments of the form E[¢(F)],
where ¢ € Cp(E, R).

In fact, moments of the form E[¢(F(z1), ..., F'(2n))], for any n, z1, ..., 2z, > 0,

¢ € Cp(R™,R), are sufficient to characterize the distribution.

Example: Gaussian process.

15



Gaussian process

e Real Gaussian process (F'(z)).>0 characterized by its first two moments
m(z1) = E[F(z1)] and c(z1, 22) = E[F(21)F(22)].
Any linear combination F = > | \;F'(z;) has Gaussian distribution

2

Blo(P)] = = [ élaexp (- (@ ;(j;“) )da

where mx = Y ME[F(2:)] oX = ) MNE[F(2:)F(z)] — m3

i=1 i,5=1

e Simulation: in order to simulate (F'(z1),..., F(2n)):

- compute the mean vector M; = E[F(z;)] and the covariance matrix
Cij = E[F(2:)F(25)] — E[F(2:)|E[F(25)).

- generate a random vector X = (X1, ..., X;,) of n independent Gaussian

random variables with mean 0 and variance 1.
- compute Y =M + C 1/2 X The vector Y has the distribution of

(F(z1), .., F(2n))-

16



Brownian motion

e Brownian motion (W.),>0 (starting from 0)= real Gaussian process with

mean 0 and autocorrelation function

EW. W, ]| =2Az2

The realizations of the Brownian motion are continuous but not differentiable.

The increments of the Brownian motion are independent:
if 2 > 2p—1>...221>20=0,then (W,, — W, _,,..W,, —W, W, ) are

n

independent Gaussian random variables with mean 0 and variance

E[(sz — sz_l)ﬂ =Zj — Zj-1

e Simulation: in order to simulate (W}, Wap, ..., Wypn):
- generate a random vector X = (X1, ..., X;,) of n independent Gaussian

random variables with mean 0 and variance 1.
- compute Y; = Vh Zgzl X;. The vector Y has the distribution of

(Why, Wan, oo, Wan).
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Stationary random process

o (F(z)),cr+ is stationary if (F'(z + 20)),cr+ has the same distribution as
(F(2)),er+ for any zo > 0.
Sufficient and necessary condition:

E[p(F(z1), ..., F(2zn))] = E[¢p(F (20 + 21), .., F'(20 + 2n))]

for any n, zo, ..., zn > 0, ¢ € C,(R™,R).

Example: Gaussian process F'(z) with mean zero E[F'(z)] = 0 Vz and
autocorrelation function E[F(2")F (2" + 2)] = ¢(2).

e Spectral representation (of stationary Gaussian process):

F(z) = / e \/e(k)dWy,

with Wi complex Brownian motion, i.e.:

Wi = (W +iw?) /2 for k> 0

Wi = (WL — W) /2 for k >0

- Wk(:l) and W,f) independent real Brownian motions.

Formally: “Wj, = d;‘;’“ 7

Wi Gaussian, E [Wk} =0, E [Wka/} =6k — k).

complex Gaussian white noise, i.e.
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Simulation of F'(zg),..., F(z,_1), 2; = th

e First generate a random vector X = (X1, ..., X;,) of n independent Gaussian
random variables with mean 0 and variance 1.

e Second apply the discrete Fourier transform (FFT):

|
[t

n

A

. 2mju/n

Q.
I
o

e Third multiply (filter) X, = X,V C., where

n—1

Cu =Y _[e(jh) + e(n — j)m))e™ ™/

Note that C’u = Au = An_u.

e Forth apply the discrete inverse Fourier transform (IFFT):
1 n—1
X _ = Xu —i2wlu/n

e Result: (Xo, ey Xn_l) is a real-valued, GGaussian vector, with zero-mean and
covariance E[X; X,/] = c((l — l’)h) -+ c((n — (1 — l’))h)
— periodic version of (F(0),..., F((n —1)h))
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Ergodic theory
Ergodic Theorem. If F' satisfies the ergodic hypothesis, then

%/O F(z)dz gy a.s., where F' = E[F(0)] = E[F(2)]

Ergodic hypothesis = “the orbit (F'(z)).>0 visits all of phase space”.

Y

Ergodic theorem = ”the spatial average is equivalent to the statistical average”.

Counter-example for the ergodic hypothesis:

Let F1 and F» be stationary, both satisfy the ergodic theorem, F; = E[F;(z)],
j=1,2, with F} # Fb.

Flip a coin (independently of F;) — random variable x = 0 or 1 with
probability 1/2.

Let F(z) = xFi(z) + (1 — x) Fa(2).

F is a stationary process with mean F = %(F’l + ).

%/OZF@)CZZ _ X(% /OZFl(z)dz) (1) (% /OZFg(z)dz)

Z1>>o XFI -+ (1 — X)FQ

which is a random limit different from F.

The limit depends on x because F' has been trapped in a part of phase space.

20



Mean square theory

Let F' be a stationary process, E[F(0)?] < co. Its autocorrelation function is:
R(z) =E [(F(20) = F)(F(20 + 2) — F)]

e R is independent of zp by stationarity of F'.
e |R(z)| < R(0) by Cauchy-Schwarz:

R(2)] <E[(F(0) — F)?]*E[(F(z) — F)*]""* = R(0)
e R is an even function R(—z) = R(z):
R(-z) = E[(F(20—2)—F)(F(20) - F)]

Proposition. Assume [ |R(z)|dz < co. Let S(Z) = & fZ F(z)dz. Then
E[(S(Z) - F)?] =50
Corollary. For any 6 > 0

P (IS(2) — F| > 6) < =

21



We can show that

ZR[(S(Z) — F)?] =57 2 /OOO R(2)dz

Proof

= ﬁ le / dZ2R(Zl — 22)

2 L—z
= — dz/ dhR(z)
/ — 2

= = dz

Thus, denoting Rz(z) = £-2R(2)1}0,7(2), and using Lebesgue’s theorem:
ZE[(8(Z) - F)7] = 2/ Rz(z)dz i 2/ R(z)dz

22



Let F' be a stationary zero-mean random process. Denote

S (Z) = % /O e F(2)dz

We can show similarly
E[|Sk(Z)|?] iy 2/ R(z) cos(kz)dz :/ R(z)e"™*dz
0 — 00

Simplified form of Bochner’s theorem: If F' is a stationary process, then the

Fourier transform of its autocorrelation function is nonnegative.
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Averaging

Let us consider F(z,z), z € RT, x € R, such that:
1) for all z € R?, F(z,z) € R is a stochastic process in z.

2) there is a deterministic function F'(z) such that

B 1 zo+Z
F(zx) = Zh_r)noO > / E[F(z,x)|dz
=10

(limit independent of zp).

Let ¢ < 1 and X° be the solution of

dX°® z
— F(=. . X° X°¢ —
T = FEXT), X(0) =0

Let us define X solution of
dX _ _

— =F(X), X(0)=0

With some mild technical assumptions we have for any Z:

sup E || X®(2) — X (2)] =20
z€[0,Z]

24



The proof can be obtained with elementary calculations with the hypotheses :

L F(z,2)dz — F(z)|| Z=°0
Z Jo

2) For all z, F(z,.) and F(.) are Lipschitz with a deterministic constant c.
3) For any compact K C R%, SUP, cpt se ki |[F (2, 2)| + |F(z)] < oo.

1) F is stationary. For all x, E [

Remark: 1) is satisfied if for any z, the autocorrelation function R;(z) of
z +— F(z,x) is integrable [ |R;(z)|dz < .

We have:

so the error can be written:

X*(2) - X(2) = / (FC,X5(5) ~ F(2, X(s))) ds + 97 (2)

where ¢°(2) := /O F(S,)_{(s)) — F(X(s))ds.

25



X°(2) — X(2)| < / P,

X*(s)) — F<§,f<<s>> ds + |97 (2)|

< o [ X7 - X(o)lds + 19"
Take the expectation and apply Gronwall

E[|X°(2) = X(2)|] < e sup E[lg"(s)]

s€[0,z]

It remains to show that the last term goes to 0 as € — 0.
Let 6 >0

[2/8]—1

ACEEED S| :m)é @

k=0

X(s) = F(X(5))) ds

™ | ®

+/z (F(S,X(s))—ﬁ‘()_( s

6[z/4]

—~
~
~
N—
QL
V)

Denote Mz = sup,¢(g 71 |X X (2)|. Since F is Lipschitz and

Kz =SUp,e(_nr, my | ( )| is finite:

F(2, X(s)) - F( ,X(kd))‘ < c|X(s) - X(kd)| < cKzls — ko)

S
S
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Denoting Kz = Sup,cp+ se(—nry ., 1F (2, 7)]:

Thus

IA

IA

IA

|F(X(s)) — F(X(k6))| < cKzls — ké]

(/811 | (k+1)s s o
S [ (FEXE) - FE)) s
C(FCELR(s) - F(X(s))) ds

el (PE R - )

[2/0]=1 (k41)s . -

> /k(S (F(E,X(kd))—F(X(ké))>ds
[2/0] -1 (k+1)s

+e(Kz+Kz) Y / (s — kd)ds + (K7 + Kz)8
k=0 kO

S ERCERE _ o

€ /W (F(s, X(kd)) — F(X(kd))) ds

‘|—([_(Z -+ KZ)(cz -+ 1)5
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Take the expectation and the supremum :

(Z/5]
sup E[|g" (= < 4 Z E

z€[0,Z7]

(k+1)d/e 3 L
/W (F(s, X (k6)) — F(X(k5))) ds

|

—I—(KZ + Kz)(CZ + 1)5
Take the limit € — O :

limsup sup E[lg°(#)|] < (Kz+ Kz)(cZ +1)6

e—0  te[0,2]

Let 6 — 0.
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Method of averaging: Khasminskii theorem

dX*® z
— F(Z. X° X —
~ =P XY, X0 =m

x +— F(x,2) and  — F(x) are Lipschitz, z — F(z,z) is stationary and ergodic

sl

() = E[F(z, )]

Let X be the solution of

dX

E:F(X), X(O):ZEO

Theorem: for any Z > 0,

sup E[|X%(2) — X(2)]] =20
z€[0,Z]

[1] R. Z. Khasminskii, Theory Probab. Appl. 11 (1966), 211-228.



Equations for the Fourier components of the wave:

dX* z
— F(=Z. X°
dz (e’ )
where
g 0
xs=[ 7 ,  F(z,X)=—iw

>

A= O
R
|

p(z)
0

X

— deterministic “effective medium” with parameters p, k.



Let (p,u) be the solution of the homogeneous effective system

_ou  Op
Par T, =
op _ou
E—FK/%—O

The propagation speed of (p,u) is ¢ = \/K/p.
Compare p®(t, z) with p(¢, z):

E{lp=(t,2) — p(t, 2)|]

The dominated convergence theorem then gives the convergence in L' (P) of p

to p in the time domain.

<

3B || [ 107w, — e )|
1

E [|p°(w, z) — p(w, 2)|] dw

o

g

— the effective speed of the acoustic wave (p°,u°) as € — 0 is ¢.

This analysis is just a small piece of the homogenization theory.
cf book The theory of composites by G. Milton.



Propagation through a stack of random layers

Transmitted Signal

/\/R\eﬂected Signal
20 o

15M

10
5,
0 .
Incoming Pulse Random Medium
-8 -6 -4 -2 0 2 4 6 8 10

Sizes of the layers: i.i.d. with uniform distribution over [0.2,0.6] (mean 0.4).

Medium parameters p =1, 1/k, = 0.2, 1/kp = 1.8.



Propagation through a stack of random layers

Transmitted Signal

Reflected Signal __\/\/_
20r-
15F
»

107 A

5,

4
0 ’
Incoming Pulse Random Medium
-8 -6 -4 -2 0 2 4 6 8 10

Sizes of the layers: i.i.d. with uniform distribution over [0.04,0.12] (mean 0.08).



Example: bubbles in water

pa = 1.2 10° g/m*, k, = 1.4 10® g/s*/m, ¢, = 340 m/s.

pw = 1.0 10° g/m? Kk, = 2.0 10" g/s*/m, c,, = 1425 m/s.

If the typical pulse frequency is 10 Hz - 30 kHz, then the typical wavelength is
1 cm - 100 m. The bubble sizes are much smaller = the effective medium

theory can be applied.

9.9 10° g/m® if ¢ = 1%
9 10° g/m” if ¢ =10%

—1 10 2 i o
= (E[m_l])_lz (2—# 1—q§> _ 1.4 10" g/s*/m if ¢ = 1%
1.410° g/s®/m  if ¢ = 10%

p=Elp] = ¢ppa + (1 = ¢)pw =

KRa Rw

where ¢ = volume fraction of air.
Thus, ¢ = 120 m/s if ¢ = 1% and ¢ = 37 m/s if ¢ = 10 %.

— the average sound speed ¢ can be much smaller than ess inf(c).

The converse is impossible:

]E[c—l] —F [/46_1/2,01/2} < E[R_1]1/2E[p]1/2 _ !

Thus ¢ < E[c™']™! < ess sup(c).



Long distance propagation

goo. reflected wave | transmitted wave
: —>

600 ST Ao Y
400 Wwwwwwww/\
200

O—incoming wave—>1_ ——
random medium

~500 0 500
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Toy model

dX*

dz

with F'(z) = > .2, Fil;;_1,4)(2), F; independent random variables
E[F;] = F = 0 and E[(F; — F)?] = o°.

= F(%)

0.5 ‘ ‘ ‘ 1.

0 0.5 1 15 2 0 0.5 1 15 2



For any z € [0, Z], we have

dX

— —F=0.
dz

X®(2) == X(2),
No macroscopic evolution is noticeable.

— it is necessary to look at larger z to get an effective behavior

o ~ s
— 2 X%(2)= X°(2
add (2) (2)

dxc 1
— (X
dz € (52)




Diffusion-approximation: Toy model

dxc 1 . z
S
dz £ (€2>
with F(z) = > .~ Filj—1,4)(2), F; independent random variables E[F;] = 0
2
=0

and E[F]

10

.

-10




i—1 =1
E
= /5] x = (XA + (G- A
=] \i=
s l;zvl(CLT) e
v N(0, %) ’

Thus: X°(z) converges in distribution as ¢ — 0 to the Gaussian statistics

N(0,0°2).

With some more work: The process (X°(z)),cr+ converges in distribution to a

Brownian motion oW (z).



Next goal: determine the limit lim._,o X°(z) where

= —F
dz €

B L3 x0)
when

E[F(z,x)] =0 Vx



Markov process

A stochastic process Y, with state space S is Markov if V0 < s < z and
feL=(S)
ELf(YV2)[Yu,u < s] = E[f(Y2)|Ys]

“the state Y at time s contains all relevant information for calculating

probabilities of future events”.
The processus is stationary if Vz > s > 0, E[f(Y>)|Ys] = E[f(Yz—s)|Yo].
Define the family of operators on L (S):

T-f(y) = E[f(Y2)[Yo = y]

Proposition.

1) Ty = I

2)Vs,2 <0, Tyys =TT

3) T, is a contraction |77 f|lcc < || f|lco-

Proof of 2):
Tovsf(y) = E[f(Yags)|Yo =yl =E[E[f(Yoys)|Yu, u < 2]|Yo = y]
— E[E[f(yz+s)|yz”Y0 — y] — E[Tsf(yzﬂ% = y]
= T:Tsf(y)



Feller process: T is strongly continuous from Cy to Cy (for any f € Co,
z—0
|T%f = flleo = 0).

The generator of the Markov process is:

T, — 1,4
= i
Q lim —

It is defined on a subset of C°, supposed to be dense.

Proposition. If f € Dom(Q), then the function u(z,y) = T, f(y) satisfies the

Kolmogorov equation

= Qu. u(z=0,9) = f)
Proof.

- _ - =T, ; fly) — T2Qf(y)

because f € Dom(Q) and T is continuous. This shows that w is differentiable
and 0,u = T,Q f. Besides

Ty — 1g . Terhf(y) - Tzf(y) _ u(z + hay) _ u(zay)

has a limit as h — 0, which shows that T, f € Dom(Q) and d,u = QT. f = Qu.




Example: Brownian motion

W.: Gaussian process with independent increments

E[(W.tn — W) = h

The semi-group T is the heat kernel:

T.f(zx) = E[f(:chWZSO))]:/f(a;er)\/;Tzexp(—;U—’:) dz

— /f(y)\/zlw—zexp (—%) dy

It is a Markov process with the generator:




Example: Two-state Markov process

The process Y, takes values in S = {—1,1}.

The time intervals are independent
with the common exponential distribution

with mean 1.

Functions f € L°°(S) are vectors. The semigroup (7%),>0 is a family of

matrices:
B P(Y,=1Yo=1) P(Y.=1|Yo = -1) R lem2= L1
O\ P =Y =1) B(Y. = —1]Yp = —1) F-3e 3+

The generator is a matrix:

- -1 1
@ = lim Th—1 =
h—0  h 1 -1




Martingale property

For any function f € Dom(Q), the process

My(2) = f(Y2) - / T Qf(Ya)du

is a martingale.

Denoting Fs = 0(Y,,0 <wu < s),
EIM; ()| = My(s)+E [f(i@) s [ Qf(Yu)dUIYs]
— My + T (V) — £(V) - [ TueQf(Vo)du

= My(9)+ TS (V) = 1Y) - CTLQf(YV)du

The function T f(y) satisfies the Kolmogorov equation, which shows that the

last three terms of the r.h.s. cancel:

E|Mj(2)|Fs] = My(s)

Reciprocal: If () is non-degenerate, and M is a martingale for all test

functions f, then Y is a Markov process with generator ().



Ordinary differential equation driven by a Feller process

Proposition. Let Y be a S-valued Feller process with generator () and X be

the solution of:
dX

— =F(.,X(2)), X(0)=xeR

2

where F': S x R* — R is a bounded Borel function such that x — F(y,z) has
bounded derivatives uniformly with respect to y € S. Then X = (Y, X) is a

Markov process with generator:

d
0
L= Q+2Fj(y,x)%
j=1 /

Formal proof. Let f be a test function.

diZE[f(yz, X (2))|¥o =y, X(0) = a

=E[Qf(Yz, X(2))[Yo =y, X(0) = ]
+E[Va f(Yz, X(2)) F(Yz, X (2))[Yo = y, X(0) = ]
) =

=E[Lf(Yz, X(2))[Yo =y, X(0) = ]



Ergodic Markov process

Ergodicity is related to the null spaces of () and Q.

With some additional hypotheses (irreducibility):

A Markov process is ergodic iff there is a unique invariant probability measure
P satisfying Q*IP = 0, i.e.

/ T. f(y)dP(y) = / F()dP(y) <= Ee[f(Y2)] = Ep[f(Yo)

Ergodicity: T, f(y) converges to Ep[f(Yo)] as 2z — oco. The spectrum of @

gives the convergence (mixing) rate. The existence of a spectral gap

inf — f fQdE
f.f fap=o0 [ f2dP

ensures the exponential convergence of T f(y) to Ep[f(Y0)].

> 0

Also: Since T,;1 =1, we have Q1 = 0, so that 1 € Null(Q).
Thus Null(Q™) is at least one-dimensional.
A Markov process is ergodic iff Null(Q) = Span({1})



Example: Two-state Markov process

1 - |

The process Y, takes values in S = {—1,1}.

The time intervals are independent
with the common exponential distribution

with mean 1.

The semigroup (7%).>0 is a family of matrices:

SO\ B = =1 BOY: =¥ = 1) P-ae

The generator is a matrix:

_ -1 1
Q) = lim Ih =1 =
h—0 h 1 —1

It is ergodic. The invariant probability (QTﬁ = () is the uniform probability
p=(1/2,1/2)" over S.



Example: Brownian motion

W.: Gaussian process with independent increments
E[(Wesn — W2)’] = h

The semi-group 17, is the heat kernel:

1@ = [ Sy, pley) = e (L

It is a Markov process with the generator:

It is not ergodic.



Example: Ornstein-Uhlenbeck process

Solution of the stochastic differential equation dX (z) = —AX (2)dz + dW, :
X(2) = Xoe +/ e M g,
0

where W, is a Brownian motion, A > 0.

(if z — t, this process describes the motion of a particle in a quadratic
potential)

The semi-group 1 is

T.f(z) = / fW)p=(x,y)dy

y — p.(x,y) is a Gaussian density with mean xe™** and variance o?(2):
1 (y . CE@AZ)Q) 5 1 — 6—2>\Z
Pz\X, = eEXp |\ — , o lz)=
The generator is:
1 9° 0
- - - )\ -
¢ 2 0x? g

X (z) is ergodic. Its invariant probability density (Q*p = 0) is

ply) = \/g exp (—Ay?)



Diffusion processes

e Let o and b be C*(R,R) functions with bounded derivatives.
Let W, be a Brownian motion.
The solution X (z) of the 1D stochastic differential equation:

dX (2) = o(X(2))dW, + b(X (2))dz

is a Markov process with the generator

Q= 50* (@) 5 +b(x) o

X

o Let 0 € C'(R",R™) and b € C' (R™,R"™) with bounded derivatives.
Let W, be a m-dimensional Brownian motion.

The solution X (z) of the stochastic differential equation:
dX (z) =0(X(2))dW, + b(X(2))dz

is a Markov process with the generator

with ¢ = oo,



Poisson equation Qu = f
Let us consider an ergodic Markov process with generator ().
Null(Q™*) has dimension 1 and is spanned by the invariant probability P.

By Fredholm alternative, the Poisson equation has a solution iff f 1 Null(Q™),
ie. [ fdP =0 or E[f(Yo)] =0 where E is the expectation w.r.t. the invariant
probability P.

Proposition. If E[f(Yo)] = 0, a solution of Qu = f 1is

u(y) = — /Ooo T.f(y)d=

Remember that T f(y) = E[f(Y>)|Yo = y].



Proof.
u(y) = — / T. f(y)dz = — / (T-1(y) — ELf(Y0)]} d=

The convergence of this integral requires some mixing.

Using Kolmogorov equation

Qu=- [ Qrfiz = [ Zlas— — iy = r-BlO0) = 5

Moreover E[u(Yp)] = 0 because E[f(Y.)] = E[f(Yo)] = 0.

Finally:
{_/ dZTz] : D — D is the inverse of Q on D = (Null(Q*))".
0



Diffusion-approximation

= 1r(viS

dz £ g2
Y stationary and ergodic, F' centered: E[F (Y (0),x)] = 0.

zZ

), X‘s(z)), X°(0) = zo € RY.

Theorem: The processes (X°(z)).>0 converge in distribution in
C°([0, 00),R?) to the diffusion (Markov) process X with generator L.

Lf(x)= /Ooo duE [F(Y(0),2).V (F(Y(u),z).Vf(x))].

£— Z 5 (0) g + g
with
aij(z) = / " QR [FA(Y(0), 2)F; (Y (u), 2)]

(@) = 3 [ AERY(0),2)0, B (w).0)



Formal proof. Assume that Y is Markov, with generator @, ergodic (+

technical conditions for the Fredholm alternative).
The joint process X¢(z) := (Y (z/e?), X¢(2)) is Markov with

1 1
L = 8—2Q + EF(y,x).V

The Kolmogorov backward equation for this process is

oU*
0z

Let us take an initial condition at z = 0 independent of y:

U(z =0,y,7) = f(z)

where f is a smooth test function. We solve (1) as ¢ — 0 by assuming the

= L°U° (1)

multiple scale expansion:

U = anUn(z,y,x) (2)
n=0
Then Eq. (1) becomes
oU* 1 1
= —QU*+ -F.VU*® 3
0z 62Q i £ v (3)



We obtain a hierarchy of equations:

QUo =0 (4)

QU, + F.VUy =0 (5)
Uy

QU2 + FNU = == (6)

Y (2) is ergodic i.e. Null(Q) = Span({1}). Thus Eq. (4) = Uy does not
depend on y.

U1 must satisfy

QUl = —F(y,x).VUo(Z,J?) (7)

@ is not invertible, we know that Null(Q)) = Span({1}).
Null(Q*) has dimension 1 and is generated by the invariant probability P.

By Fredholm alternative, the Poisson equation QU = g has a solution U if g
satisfies g L Null(Q™), i.e. [gdP =0, i.e. E[g(Y(0))] =0.

Since the r.h.s. of Eq. (7) is centered, this equation has a solution U

Ul(Z,y,CE) — —Q_lF(y,CU).VUo(Z,QZ‘)



Ui(z,y,2) = —Q ' [F(y,x)].VUo(z, z) (8)
up to an additive constant, where —Q ™" = [ dzT%.

Substitute (8) into (6): % = QUsz + F.VU; and take the expectation w.r.t P.
We get that Uy must satisfy

oUy
0z
This is the solvability condition for (6) and this is the limit Kolmogorov

=E[F.V(-Q ' F.VU)]

equation for the process X°©:

oU,
@ = ,CUO

with the limit generator
= / E[F.V(T.F.V)] d
0

Q

Using the probabilistic representation of the semi-group e** we get

L= /OOO E[F(Y(0),z).VF(Y(z),z).V]dz



Rigorous proof: The generator

o1 1
L5 = 6—2Q + EF(y,x).V

of (X°(.),Y(z)) is such that
FOV (50, X)) = £V (5). X5 - [ L7 (YV(55). X5 (w)du

is a martingale for any test function f.

—> Convergence of martingale problems.



Convergence of martingale problems

Assume for a while: Vf € C;°, there exists f° such that:

sup | f*(y,x) — f(z)] == 0, sup L5 f*(y,x) — Lf(z)] == 0.

reK,yesS reK,yeSsS
Assume tightness and extract €, — 0 such that X°? — X.

Take 21 < ... < zn, < s < z and h1, ..., h, € C;°:
E|(f(V(5)X°(2) = FF (Y (5), X7 ()=
/: Esfe(Y(g%),XE(u))du> hl(XE(zl))...hn(Xs(zn))] =0
Take €, — 0 so that X°» — X:
E|(F(X(2) = f(X(s))
- / Lf(X(u))du) hl(X(zl))...hn(X(zn))] =0

X is solution of the martingale problem associated to L.



Perturbed test function method

Proposition: Vf € C;°, there exists a family f° such that:

sup | f(y,2) — f(z)] =20, sup  |[LEf(y,x) — Lf(x)] =20,

reK,yeSsS reK,yeSsS

Proof: Define fe(y7x> — f(LU) + €f1(y,33) + €2f2(yax>'
Applying L = a%Q + %F(y,x).v to f°, one gets:

L5F* = 2 (Qfi + F(y,2).Vf(2)) + (@2 + FV£i(3,2) + O(e),

Define the corrections f; as follows:
1. fily,2) = -Q7 (F(y, ). Vf(2)).

(2 has an inverse on the subspace of centered functions.

fily, ) = / " E[F(Y (u), 7).V {(2)[Y (0) = y].

2. faly,2) = -Q " (F.Vfi(y,2) — E[FVfi(y,)]).
It remains: L£°f° = E[F.V fi(y,x)] + O(e).



One-dimensional case

d)(8 1 < € € S —
- _EF<Y(€—2),X (Z)>, X°(z=0) =z € R

Then X° =% X where X is the diffusion process with generator

= a(az)% + b(az)(%
with
a(x) = /OOO dulE [F (Y (0),x)F(Y (u),x)]
bz) = /O T B [F(Y(0), 2)0 F(Y (u), 2)

The limit process can be identified as the solution of the stochastic

differential equation

dX = b(X)dz + \/2a(X)dW.

where W is a Brownian motion.



Limit theorems - Random vs. periodic

dX*® 1 Z
— ZF(Y
dz() . ( (52

F(y,x, ¢) is periodic with respect to ¢.

<
? 82—|—c)’

), X°(2) X°(0) = 2o € R%.

Case 1. Slow phase: —2 < ¢ < 0 and E[F(Y(0),z )] = 0.
Case 2. Fast phase: ¢ =0 and (E[F(Y (0),z, ¢9)]), =
Case 3. Ultra-fast phase: ¢ > 0 and (E[F'(Y(0),z,¢)]), = 0.

The processes (X°(z)).>0 converge to X with generator L;:

Lif(x) = </OOO duE [F(Y(0),z,.).V (F(Y (u),x, )Vf(a:))]> ,



The averaging theorem revisited

Consider the random differential equation

djj = (Y (f) ’Xs(z)) , X7(0) = o

where we do not assume that F(y,x) is centered. We denote its mean by
F(z) = E[F(Y(0),2)]

Then (Y (z/¢), X®(2)) is a Markov process with generator
e 1

Let f(x) be a test function. Define f¢(y,x) = f(x) + ¢fi(y, z) where fi solves
the Poisson equation

Qfi(y,x) + [F(y,z) - Vf(z) — F(z) - Vf(z)] =0

We get L°f*(y,x) = F(x) - Vf(x) + O(g). Therefore the processes X°(z)
converge to the solution of the martingale problem associated with the
generator Lf(x) = F(x) -V f(z). The solution is the deterministic process X (z)

dX

— = F(X(z)), X(0)=xo.



