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1. Wave propagation in one-dimensional random media: effective medium

theory

Homogenization theory

2. Wave propagation in one-dimensional random media: the coherent wave

front, the incoherent wave fluctuations, time reversal.

Diffusion approximation, asymptotic theory for random differential

equations.

3. Wave propagation and time reversal in a random waveguide.

4. Wave propagation and time reversal in the parabolic regime.

Semi-classical analysis of the Schrödinger equation with a random potential
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What is a random medium ?

Problem: Wave propagation in a highly heterogeneous medium.

Stochastic modeling: the medium is a realization of a random medium (a set of

possible media described statistically).

- takes into account the available data (mean, standard deviation of the

fluctuations, ...)

- completes the modeling by a statistical description (Gaussian process, ...).

Statistical distribution of the random medium =⇒ statistical distribution of

the wave (highly nonlinear problem).

What about a wave propagating in a “typical” realization ?

- Mean-field (or averaged) approach can be misleading.

- A complete statistical analysis is necessary.

- There exist statistically stable quantities.

Importance of scaled regimes and asymptotic theory.
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Methodology

• Modeling:

8

>

>

<

>

>

:

- Identification of the phenomena and equations.

- Statistical description of the medium parameters.

- Determination of the scales.

• Asymptotics:

8

<

:

- Separation of scales.

- Limit theorems.

• Limit problem:

8

<

:

- Analysis of the physically relevant quantities.

- Use of stochastic calculus.
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The acoustic wave equations

The acoustic pressure p(z, t) and velocity u(z, t) satisfy the continuity and

momentum equations

ρ
∂u

∂t
+

∂p

∂z
= 0

∂p

∂t
+ κ

∂u

∂z
= 0

where ρ(z) is the material density,

κ(z) is the bulk modulus of the medium.
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Propagation in homogeneous medium

Linear hyperbolic system with ρ, κ constant.

Impedance: ζ =
√

ρκ. Sound speed: c =
p

κ/ρ.

Right- and left-going modes:

A = ζ1/2u + ζ−1/2p, B = ζ1/2u − ζ−1/2p

∂A

∂t
+ c

∂A

∂z
= 0,

∂B

∂t
− c

∂B

∂z
= 0

A: right-going wave B: left-going wave.
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Spatial profiles of the wave at different times for a pure right-going wave
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Propagation through an interface
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Propagation through a thick layer
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A numerical experiment in random medium
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Random medium: stack of thin layers composed of two materials.
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The three scales

The acoustic pressure p(z, t) and velocity u(z, t) satisfy the continuity and

momentum equations

ρ
∂u

∂t
+

∂p

∂z
= 0

∂p

∂t
+ κ

∂u

∂z
= 0

where ρ(z) is the material density,

κ(z) is the bulk modulus of the medium.

Three scales:

lc: correlation radius of the random process ρ and κ.

λ: typical wavelength of the incoming pulse.

L: propagation distance.
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Effective medium theory L ∼ λ ≫ lc

-

0 L z

-

(p, u)inc(t) ρ(
z

ε
)
∂u

∂t
+

∂p

∂z
= 0

∂p

∂t
+ κ(

z

ε
)
∂u

∂z
= 0

Model: ρ = ρ(z/ε) and κ = κ(z/ε), where 0 < ε ≪ 1 and ρ, κ are random

functions.

Perform a Fourier transform with respect to t:

u(t, z) =
1

2π

Z

û(ω, z)e−iωtdω, p(t, z) =
1

2π

Z

p̂(ω, z)e−iωtdω

so that we get a system of ordinary differential equations:

dXε

dz
= F (

z

ε
, Xε),

where

Xε =

0

@

p̂

û

1

A , F (z, X) = −iω

0

@

0 ρ(z)

1
κ(z)

0

1

A X
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Method of averaging: Toy model

Let Xε(z) ∈ R be the solution of

dXε

dz
= F (

z

ε
)

with F (z) =
P∞

i=1 Fi1[i−1,i)(z), Fi independent random variables E[Fi] = F̄

and E[(Fi − F̄ )2] = σ2.

(z 7→ t, particle in a random velocity field)
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Xε(z) = ε

Z z
ε

0

F (s)ds = ε

0

B

@

[ z
ε ]

X

i=1

Fi

1

C

A
+ ε

Z z
ε

[ z
ε ]

F (s)ds

= ε
hz

ε

i

ε → 0 ↓
z

× 1
ˆ

z
ε

˜

0

B

@

[ z
ε ]

X

i=1

Fi

1

C

A

a.s. ↓ (LLN)

E[F (z)] = F̄

+ ε
“z

ε
−

hz

ε

i”

F[ z
ε ]

a.s. ↓
0

Thus:

Xε(z)
ε→0−→ X̄(z),

dX̄

dz
= F̄ .
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Random process

• Real random variable X = random number

Example: X ∼ U(0, 1) is a random number that can take any value in (0, 1)

with equiprobability.

Distribution of X characterized by moments of the form E[φ(X)] where

φ ∈ Cb(R, R).

Example: X ∼ U(0, 1) 7→ E[φ(X)] =
R 1

0
φ(x)dx.

Example: X ∼ E(1) 7→ E[φ(X)] =
R ∞
0

φ(x)e−xdx.

Example: X ∼ N (0, 1) 7→ E[φ(X)] = 1√
2π

R ∞
−∞ φ(x)e−

x2

2 dx.

• Stochastic process (F (z))z≥0 = random function = random ”variable” taking

values in a functional space, e.g. C([0,∞), Rd).

A realization of the process = a function from [0,∞) to R
d.

Distribution of (F (z))z≥0 characterized by moments of the form E[φ(F )],

where φ ∈ Cb(E, R).

In fact, moments of the form E[φ(F (z1), ..., F (zn))], for any n, z1, ..., zn ≥ 0,

φ ∈ Cb(R
n, R), are sufficient to characterize the distribution.

Example: Gaussian process.
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Gaussian process

• Real Gaussian process (F (z))z≥0 characterized by its first two moments

m(z1) = E[F (z1)] and c(z1, z2) = E[F (z1)F (z2)].

Any linear combination Fλ =
Pn

i=1 λiF (zi) has Gaussian distribution

E[φ(Fλ)] =
1√

2πσλ

Z ∞

−∞
φ(x) exp

“

− (x − mλ)2

2σ2
λ

”

dx

where mλ =
n

X

i=1

λiE[F (zi)] σ2
λ =

n
X

i,j=1

λiλjE[F (zi)F (zj)] − m2
λ

• Simulation: in order to simulate (F (z1), ..., F (zn)):

- compute the mean vector Mi = E[F (zi)] and the covariance matrix

Cij = E[F (zi)F (zj)] − E[F (zi)]E[F (zj)].

- generate a random vector X = (X1, ..., Xn) of n independent Gaussian

random variables with mean 0 and variance 1.

- compute Y = M + C1/2X. The vector Y has the distribution of

(F (z1), ..., F (zn)).
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Brownian motion

• Brownian motion (Wz)z≥0 (starting from 0)= real Gaussian process with

mean 0 and autocorrelation function

E[WzWz′ ] = z ∧ z′

The realizations of the Brownian motion are continuous but not differentiable.

The increments of the Brownian motion are independent:

if zn ≥ zn−1 ≥ ... ≥ z1 ≥ z0 = 0, then (Wzn − Wzn−1
, ..., Wz2

− Wz1
, Wz1

) are

independent Gaussian random variables with mean 0 and variance

E

h

(Wzj
− Wzj−1

)2
i

= zj − zj−1

• Simulation: in order to simulate (Wh, W2h, ..., Wnh):

- generate a random vector X = (X1, ..., Xn) of n independent Gaussian

random variables with mean 0 and variance 1.

- compute Yj =
√

h
Pj

i=1 Xi. The vector Y has the distribution of

(Wh, W2h, ..., Wnh).
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Stationary random process

• (F (z))z∈R+ is stationary if (F (z + z0))z∈R+ has the same distribution as

(F (z))z∈R+ for any z0 ≥ 0.

Sufficient and necessary condition:

E[φ(F (z1), ..., F (zn))] = E[φ(F (z0 + z1), ..., F (z0 + zn))]

for any n, z0, ..., zn ≥ 0, φ ∈ Cb(R
n, R).

Example: Gaussian process F (z) with mean zero E[F (z)] = 0 ∀z and

autocorrelation function E[F (z′)F (z′ + z)] = c(z).

• Spectral representation (of stationary Gaussian process):

F (z) =

Z

eikz
p

ĉ(k)dWk

with Wk complex Brownian motion, i.e.:

- Wk = (W
(1)
k + iW

(2)
k )/

√
2 for k ≥ 0

- Wk = (W
(1)
−k − iW

(2)
−k )/

√
2 for k ≥ 0

- W
(1)
k and W

(2)
k independent real Brownian motions.

Formally: “Ẇk = dWk

dk
” complex Gaussian white noise, i.e.

Ẇk Gaussian, E

h

Ẇk

i

= 0, E

h

ẆkẆk′

i

= δ(k − k′).
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Simulation of F (z0), ..., F (zn−1), zi = ih

• First generate a random vector X = (X1, ..., Xn) of n independent Gaussian

random variables with mean 0 and variance 1.

• Second apply the discrete Fourier transform (FFT):

X̂u =

n−1
X

j=0

Xje
i2πju/n

• Third multiply (filter) X̃u = X̂u

p

Ĉu, where

Ĉu =

n−1
X

j=0

[c(jh) + c(n − j)h)]ei2πju/n

Note that Ĉu = Ĉu = Ĉn−u.

• Forth apply the discrete inverse Fourier transform (IFFT):

X̌l =
1

n

n−1
X

u=0

X̃ue−i2πlu/n

• Result: (X̌0, ..., X̌n−1) is a real-valued, Gaussian vector, with zero-mean and

covariance E[X̌lX̌l′ ] = c
“

(l − l′)h
”

+ c
“

(n − (l − l′))h
”

→֒ periodic version of (F (0), ..., F ((n − 1)h))
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Ergodic theory

Ergodic Theorem. If F satisfies the ergodic hypothesis, then

1

Z

Z Z

0

F (z)dz
Z→∞−→ F̄ a.s., where F̄ = E[F (0)] = E[F (z)]

Ergodic hypothesis = “the orbit (F (z))z≥0 visits all of phase space”.

Ergodic theorem = ”the spatial average is equivalent to the statistical average”.

Counter-example for the ergodic hypothesis:

Let F1 and F2 be stationary, both satisfy the ergodic theorem, F̄j = E[Fj(z)],

j = 1, 2, with F̄1 6= F̄2.

Flip a coin (independently of Fj) → random variable χ = 0 or 1 with

probability 1/2.

Let F (z) = χF1(z) + (1 − χ)F2(z).

F is a stationary process with mean F̄ = 1
2
(F̄1 + F̄2).

1

Z

Z Z

0

F (z)dz = χ

„

1

Z

Z Z

0

F1(z)dz

«

+ (1 − χ)

„

1

Z

Z Z

0

F2(z)dz

«

Z→∞−→ χF̄1 + (1 − χ)F̄2

which is a random limit different from F̄ .

The limit depends on χ because F has been trapped in a part of phase space.
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Mean square theory

Let F be a stationary process, E[F (0)2] < ∞. Its autocorrelation function is:

R(z) = E
ˆ

(F (z0) − F̄ )(F (z0 + z) − F̄ )
˜

• R is independent of z0 by stationarity of F .

• |R(z)| ≤ R(0) by Cauchy-Schwarz:

|R(z)| ≤ E
ˆ

(F (0) − F̄ )2
˜1/2

E
ˆ

(F (z) − F̄ )2
˜1/2

= R(0)

• R is an even function R(−z) = R(z):

R(−z) = E
ˆ

(F (z0 − z) − F̄ )(F (z0) − F̄ )
˜

z0=z
= E

ˆ

(F (0) − F̄ )(F (z) − F̄ )
˜

= R(z)

Proposition. Assume
R ∞
0

|R(z)|dz < ∞. Let S(Z) = 1
Z

R Z

0
F (z)dz. Then

E
ˆ

(S(Z) − F̄ )2
˜ Z→∞−→ 0

Corollary. For any δ > 0

P
`

|S(Z) − F̄ | > δ
´

≤ E
ˆ

(S(Z) − F̄ )2
˜

δ2

Z→∞−→ 0
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We can show that

ZE
ˆ

(S(Z) − F̄ )2
˜ Z→∞−→ 2

Z ∞

0

R(z)dz

Proof:

E
ˆ

(S(Z) − F̄ )2
˜

= E

»

1

Z2

Z Z

0

dz1

Z Z

0

dz2(F (z1) − F̄ )(F (z2) − F̄ )

–

=
2

Z2

Z Z

0

dz1

Z z1

0

dz2R(z1 − z2)

=
2

Z2

Z Z

0

dz

Z Z−z

0

dhR(z)

=
2

Z

Z Z

0

Z − z

Z
R(z)dz

Thus, denoting RZ(z) = Z−z
Z

R(z)1[0,Z](z), and using Lebesgue’s theorem:

ZE
ˆ

(S(Z) − F̄ )2
˜

= 2

Z ∞

0

RZ(z)dz
Z→∞−→ 2

Z ∞

0

R(z)dz
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Let F be a stationary zero-mean random process. Denote

Sk(Z) =
1√
Z

Z Z

0

eikzF (z)dz

We can show similarly

E[|Sk(Z)|2] Z→∞−→ 2

Z ∞

0

R(z) cos(kz)dz =

Z ∞

−∞
R(z)eikzdz

Simplified form of Bochner’s theorem: If F is a stationary process, then the

Fourier transform of its autocorrelation function is nonnegative.
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Averaging

Let us consider F (z, x), z ∈ R
+, x ∈ R

d, such that:

1) for all x ∈ R
d, F (z, x) ∈ R

d is a stochastic process in z.

2) there is a deterministic function F̄ (x) such that

F̄ (x) = lim
Z→∞

1

Z

Z z0+Z

z0

E[F (z, x)]dz

(limit independent of z0).

Let ε ≪ 1 and Xε be the solution of

dXε

dz
= F (

z

ε
, Xε), Xε(0) = 0

Let us define X̄ solution of

dX̄

dz
= F̄ (X̄), X̄(0) = 0

With some mild technical assumptions we have for any Z:

sup
z∈[0,Z]

E
ˆ

|Xε(z) − X̄(z)|
˜ ε→0−→ 0
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The proof can be obtained with elementary calculations with the hypotheses :

1) F is stationary. For all x, E

»˛

˛

˛

˛

1

Z

Z Z

0

F (z, x)dz − F̄ (x)

˛

˛

˛

˛

–

Z→∞−→ 0

2) For all z, F (z, .) and F̄ (.) are Lipschitz with a deterministic constant c.

3) For any compact K ⊂ R
d, supz∈R+,x∈K |F (z, x)| + |F̄ (x)| < ∞.

Remark: 1) is satisfied if for any x, the autocorrelation function Rx(z) of

z 7→ F (z, x) is integrable
R

|Rx(z)|dz < ∞.

We have:

Xε(z) =

Z z

0

F (
s

ε
,Xε(s))ds, X̄(z) =

Z z

0

F̄ (X̄(s))ds

so the error can be written:

Xε(z) − X̄(z) =

Z z

0

“

F (
s

ε
, Xε(s)) − F (

s

ε
, X̄(s))

”

ds + gε(z)

where gε(z) :=

Z z

0

F (
s

ε
, X̄(s)) − F̄ (X̄(s))ds.
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|Xε(z) − X̄(z)| ≤
Z z

0

˛

˛

˛F (
s

ε
, Xε(s)) − F (

s

ε
, X̄(s))

˛

˛

˛ ds + |gε(z)|

≤ c

Z t

0

|Xε(s) − X̄(s)|ds + |gε(z)|

Take the expectation and apply Gronwall

E
ˆ

|Xε(z) − X̄(z)|
˜

≤ ect sup
s∈[0,z]

E[|gε(s)|]

It remains to show that the last term goes to 0 as ε → 0.

Let δ > 0

gε(z) =

[z/δ]−1
X

k=0

Z (k+1)δ

kδ

“

F (
s

ε
, X̄(s)) − F̄ (X̄(s))

”

ds

+

Z z

δ[z/δ]

“

F (
s

ε
, X̄(s)) − F̄ (X̄(s))

”

ds

Denote MZ = supz∈[0,Z] |X̄(z)|. Since F is Lipschitz and

KZ = supx∈[−MZ ,MZ ] |F̄ (x)| is finite:

˛

˛

˛F (
s

ε
, X̄(s)) − F (

s

ε
, X̄(kδ))

˛

˛

˛ ≤ c
˛

˛X̄(s) − X̄(kδ)
˛

˛ ≤ cK̄Z |s − kδ|
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Denoting KZ = supz∈R+,x∈[−MZ ,MZ ] |F (z, x)|:
˛

˛F̄ (X̄(s)) − F̄ (X̄(kδ))
˛

˛ ≤ cKZ |s − kδ|

Thus

|gε(z)| ≤
[z/δ]−1

X

k=0

˛

˛

˛

˛

˛

Z (k+1)δ

kδ

“

F (
s

ε
, X̄(s)) − F̄ (X̄(s))

”

ds

˛

˛

˛

˛

˛

+

˛

˛

˛

˛

˛

Z z

δ[z/δ]

“

F (
s

ε
, X̄(s)) − F̄ (X̄(s))

”

ds

˛

˛

˛

˛

˛

≤

˛

˛

˛

˛

˛

˛

[z/δ]−1
X

k=0

Z (k+1)δ

kδ

“

F (
s

ε
, X̄(kδ)) − F̄ (X̄(kδ))

”

ds

˛

˛

˛

˛

˛

˛

+c(K̄Z + KZ)

[z/δ]−1
X

k=0

Z (k+1)δ

kδ

(s − kδ)ds + (K̄Z + KZ)δ

≤ ε

[z/δ]−1
X

k=0

˛

˛

˛

˛

˛

Z (k+1)δ/ε

kδ/ε

`

F (s, X̄(kδ)) − F̄ (X̄(kδ))
´

ds

˛

˛

˛

˛

˛

+(K̄Z + KZ)(cz + 1)δ

27



Take the expectation and the supremum :

sup
z∈[0,Z]

E[|gε(z)|] ≤ δ

[Z/δ]
X

k=0

E

"˛

˛

˛

˛

˛

ε

δ

Z (k+1)δ/ε

kδ/ε

`

F (s, X̄(kδ)) − F̄ (X̄(kδ))
´

ds

˛

˛

˛

˛

˛

#

+(K̄Z + KZ)(cZ + 1)δ

Take the limit ε → 0 :

lim sup
ε→0

sup
t∈[0,Z]

E[|gε(t)|] ≤ (K̄Z + KZ)(cZ + 1)δ

Let δ → 0.
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Method of averaging: Khasminskii theorem

dXε

dz
= F (

z

ε
, Xε), Xε(0) = x0

x 7→ F (x, z) and x 7→ F̄ (x) are Lipschitz, z 7→ F (z, x) is stationary and ergodic

F̄ (x) = E[F (z, x)]

Let X̄ be the solution of

dX̄

dz
= F̄ (X̄), X̄(0) = x0

Theorem: for any Z > 0,

sup
z∈[0,Z]

E
ˆ

|Xε(z) − X̄(z)|
˜ ε→0−→ 0

[1] R. Z. Khasminskii, Theory Probab. Appl. 11 (1966), 211-228.



Equations for the Fourier components of the wave:

dXε

dz
= F (

z

ε
, Xε),

where

Xε =

0

@

p̂

û

1

A , F (z, X) = −iω

0

@

0 ρ(z)

1
κ(z)

0

1

A X

Apply the method of averaging =⇒ Xε(ω, z) converges in L1(P) to X̄(ω, z)

dX̄

dz
= −iω

0

@

0 ρ̄

1
κ̄

0

1

A X̄, ρ̄ = E[ρ], κ̄ =
`

E[κ−1]
´−1

→֒ deterministic “effective medium” with parameters ρ̄, κ̄.



Let (p̄, ū) be the solution of the homogeneous effective system

ρ̄
∂ū

∂t
+

∂p̄

∂z
= 0

∂p̄

∂t
+ κ̄

∂ū

∂z
= 0

The propagation speed of (p̄, ū) is c̄ =
p

κ̄/ρ̄.

Compare pε(t, z) with p̄(t, z):

E [|pε(t, z) − p̄(t, z)|] =
1

2π
E

»˛

˛

˛

˛

Z

e−iωt(p̂ε(ω, z) − ˆ̄p(ω, z))dω

˛

˛

˛

˛

–

≤ 1

2π

Z

E
ˆ

|p̂ε(ω, z) − ˆ̄p(ω, z)|
˜

dω

The dominated convergence theorem then gives the convergence in L1(P) of pε

to p̄ in the time domain.

→֒ the effective speed of the acoustic wave (pε, uε) as ε → 0 is c̄.

This analysis is just a small piece of the homogenization theory.

cf book The theory of composites by G. Milton.



Propagation through a stack of random layers
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Sizes of the layers: i.i.d. with uniform distribution over [0.2, 0.6] (mean 0.4).

Medium parameters ρ ≡ 1, 1/κa = 0.2, 1/κb = 1.8.



Propagation through a stack of random layers
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Sizes of the layers: i.i.d. with uniform distribution over [0.04, 0.12] (mean 0.08).



Example: bubbles in water

ρa = 1.2 103 g/m3, κa = 1.4 108 g/s2/m, ca = 340 m/s.

ρw = 1.0 106 g/m3, κw = 2.0 1012 g/s2/m, cw = 1425 m/s.

If the typical pulse frequency is 10 Hz - 30 kHz, then the typical wavelength is

1 cm - 100 m. The bubble sizes are much smaller =⇒ the effective medium

theory can be applied.

ρ̄ = E[ρ] = φρa + (1 − φ)ρw =

8

<

:

9.9 105 g/m3 if φ = 1%

9 105 g/m3 if φ = 10%

κ̄ =
`

E[κ−1]
´−1

=

„

φ

κa
+

1 − φ

κw

«−1

=

8

<

:

1.4 1010 g/s2/m if φ = 1%

1.4 109 g/s2/m if φ = 10%

where φ = volume fraction of air.

Thus, c̄ = 120 m/s if φ = 1% and c̄ = 37 m/s if φ = 10 %.

→֒ the average sound speed c̄ can be much smaller than ess inf(c).

The converse is impossible:

E[c−1] = E

h

κ−1/2ρ1/2
i

≤ E[κ−1]1/2
E[ρ]1/2 = c̄−1

Thus c̄ ≤ E[c−1]−1 ≤ ess sup(c).



Long distance propagation

−500 0 500
−200

0

200

400

600

800

z

t

random medium
incoming wave

reflected wave transmitted wave



Toy model

dXε

dz
= F (

z

ε
)

with F (z) =
P∞

i=1 Fi1[i−1,i)(z), Fi independent random variables

E[Fi] = F̄ = 0 and E[(Fi − F̄ )2] = σ2.
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For any z ∈ [0, Z], we have

Xε(z)
ε→0−→ X̄(z),

dX̄

dz
= F̄ = 0.

No macroscopic evolution is noticeable.

→ it is necessary to look at larger z to get an effective behavior

z 7→ z

ε
, X̃ε(z) = Xε(

z

ε
)

dX̃ε

dz
=

1

ε
F (

z

ε2
)



Diffusion-approximation: Toy model

dXε

dz
=

1

ε
F (

z

ε2
)

with F (z) =
P∞

i=1 Fi1[i−1,i)(z), Fi independent random variables E[Fi] = 0

and E[F 2
i ] = σ2.
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Xε(z) = ε

Z z

ε2

0

F (s)ds = ε

0

B

@

h

z

ε2

i

X

i=1

Fi

1

C

A
+ ε

Z z

ε2

h

z

ε2

i

F (s)ds

= ε

r

h z

ε2

i

ε → 0 ↓
√

z

× 1
q

ˆ

z
ε2

˜

0

B

@

h

z

ε2

i

X

i=1

Fi

1

C

A

law ↓ (CLT )

N (0, σ2)

+ ε
“ z

ε2
−

h z

ε2

i”

Fh

z

ε2

i

a.s. ↓
0

Thus: Xε(z) converges in distribution as ε → 0 to the Gaussian statistics

N (0, σ2z).

With some more work: The process (Xε(z))z∈R+ converges in distribution to a

Brownian motion σW (z).



Next goal: determine the limit limε→0 Xε(z) where

dXε

dz
=

1

ε
F

“ z

ε2
, Xε(z)

”

when

E[F (z, x)] = 0 ∀x



Markov process

A stochastic process Yz with state space S is Markov if ∀0 ≤ s ≤ z and

f ∈ L∞(S)

E[f(Yz)|Yu, u ≤ s] = E[f(Yz)|Ys]

“the state Ys at time s contains all relevant information for calculating

probabilities of future events”.

The processus is stationary if ∀z ≥ s ≥ 0, E[f(Yz)|Ys] = E[f(Yz−s)|Y0].

Define the family of operators on L∞(S):

Tzf(y) = E[f(Yz)|Y0 = y]

Proposition.

1) T0 = Id

2) ∀s, z ≤ 0, Tz+s = TzTs

3) Tz is a contraction ‖Tzf‖∞ ≤ ‖f‖∞.

Proof of 2):

Tz+sf(y) = E[f(Yz+s)|Y0 = y] = E[E[f(Yz+s)|Yu, u ≤ z]|Y0 = y]

= E[E[f(Yz+s)|Yz ]|Y0 = y] = E[Tsf(Yz)|Y0 = y]

= TzTsf(y)



Feller process: Tz is strongly continuous from C0 to C0 (for any f ∈ C0,

‖Tzf − f‖∞ z→0−→ 0).

The generator of the Markov process is:

Q := lim
zց0

Tz − Id

z

It is defined on a subset of C0, supposed to be dense.

Proposition. If f ∈ Dom(Q), then the function u(z, y) = Tzf(y) satisfies the

Kolmogorov equation

∂u

∂z
= Qu, u(z = 0, y) = f(y)

Proof.

u(z + h, y) − u(z, y)

h
=

Tz+hf(y) − Tzf(y)

h
= Tz

Th − Id

h
f(y)

h→0−→ TzQf(y)

because f ∈ Dom(Q) and Tz is continuous. This shows that u is differentiable

and ∂zu = TzQf . Besides

Th − Id

h
Tzf(y) =

Tz+hf(y) − Tzf(y)

h
=

u(z + h, y) − u(z, y)

h

has a limit as h → 0, which shows that Tzf ∈ Dom(Q) and ∂zu = QTzf = Qu.



Example: Brownian motion

Wz : Gaussian process with independent increments

E[(Wz+h − Wz)
2] = h

The semi-group Tz is the heat kernel:

Tzf(x) = E[f(x + W (0)
z )] =

Z

f(x + w)
1√
2πz

exp

„

−w2

2z

«

dz

=

Z

f(y)
1√
2πz

exp

„

− (y − x)2

2z

«

dy

It is a Markov process with the generator:

Q =
1

2

∂2

∂x2



Example: Two-state Markov process
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The process Yz takes values in S = {−1, 1}.

The time intervals are independent

with the common exponential distribution

with mean 1.

Functions f ∈ L∞(S) are vectors. The semigroup (Tz)z≥0 is a family of

matrices:

Tz =

0

@

P(Yz = 1|Y0 = 1) P(Yz = 1|Y0 = −1)
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@
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1
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− 1

2
e−2z 1
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+ 1

2
e−2z

1

A

The generator is a matrix:

Q = lim
h→0

Th − I

h
=

0

@

−1 1

1 −1

1

A



Martingale property

For any function f ∈ Dom(Q), the process

Mf (z) := f(Yz) −
Z z

0

Qf(Yu)du

is a martingale.

Denoting Fs = σ(Yu, 0 ≤ u ≤ s),

E[Mf (z)|Fs] = Mf (s) + E

»

f(Yz) − f(Ys) −
Z z

s

Qf(Yu)du|Ys

–

= Mf (s) + Tz−sf(Ys) − f(Ys) −
Z z

s

Tu−sQf(Ys)du

= Mf (s) + Tz−sf(Ys) − f(Ys) −
Z z−s

0

TuQf(Ys)du

The function Tzf(y) satisfies the Kolmogorov equation, which shows that the

last three terms of the r.h.s. cancel:

E[Mf (z)|Fs] = Mf (s)

Reciprocal: If Q is non-degenerate, and Mf is a martingale for all test

functions f , then Y is a Markov process with generator Q.



Ordinary differential equation driven by a Feller process

Proposition. Let Y be a S-valued Feller process with generator Q and X be

the solution of:
dX

dz
= F (Yz, X(z)), X(0) = x ∈ R

d

where F : S × R
d → R

d is a bounded Borel function such that x 7→ F (y, x) has

bounded derivatives uniformly with respect to y ∈ S. Then X̃ = (Y, X) is a

Markov process with generator:

L = Q +

d
X

j=1

Fj(y, x)
∂

∂xj

Formal proof. Let f be a test function.

d

dz
E[f(Yz , X(z))|Y0 = y, X(0) = x]

= E[Qf(Yz , X(z))|Y0 = y, X(0) = x]

+E[∇xf(Yz ,X(z))F (Yz, X(z))|Y0 = y, X(0) = x]

= E[Lf(Yz , X(z))|Y0 = y, X(0) = x]



Ergodic Markov process

Ergodicity is related to the null spaces of Q and Q∗.

With some additional hypotheses (irreducibility):

A Markov process is ergodic iff there is a unique invariant probability measure

P satisfying Q∗
P = 0, i.e.

Z

Tzf(y)dP(y) =

Z

f(y)dP(y) ⇐⇒ EP[f(Yz)] = EP[f(Y0)]

Ergodicity: Tzf(y) converges to EP[f(Y0)] as z → ∞. The spectrum of Q

gives the convergence (mixing) rate. The existence of a spectral gap

inf
f,

R

fdP=0

−
R

fQfdP
R

f2dP
> 0

ensures the exponential convergence of Tzf(y) to EP[f(Y0)].

Also: Since Tz1 = 1, we have Q1 = 0, so that 1 ∈ Null(Q).

Thus Null(Q∗) is at least one-dimensional.

A Markov process is ergodic iff Null(Q) = Span({1})



Example: Two-state Markov process
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The generator is a matrix:

Q = lim
h→0

Th − I

h
=

0

@
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1 −1

1

A

It is ergodic. The invariant probability (QT p̄ = 0) is the uniform probability

p̄ = (1/2, 1/2)T over S.



Example: Brownian motion

Wz : Gaussian process with independent increments

E[(Wz+h − Wz)
2] = h

The semi-group Tz is the heat kernel:

Tzf(x) =

Z

f(y)pz(x, y)dy , pz(x, y) =
1√
2πz

exp

„

− (y − x)2

2z

«

It is a Markov process with the generator:

Q =
1

2

∂2

∂x2

It is not ergodic.



Example: Ornstein-Uhlenbeck process

Solution of the stochastic differential equation dX(z) = −λX(z)dz + dWz :

X(z) = X0e
−λz +

Z z

0

e−λ(z−s)dWs

where Wz is a Brownian motion, λ > 0.

(if z 7→ t, this process describes the motion of a particle in a quadratic

potential)

The semi-group Tz is

Tzf(x) =

Z

f(y)pz(x, y)dy

y 7→ pz(x, y) is a Gaussian density with mean xe−λz and variance σ2(z):

pz(x, y) =
1

p

2πσ(z)2
exp

„

− (y − xe−λz)2

2σ2(z)

«

, σ2(z) =
1 − e−2λz

2λ

The generator is:

Q =
1

2

∂2

∂x2
− λx

∂

∂x

X(z) is ergodic. Its invariant probability density (Q∗p̄ = 0) is

p̄(y) =

r

λ

π
exp

`

−λy2´



Diffusion processes

• Let σ and b be C1(R, R) functions with bounded derivatives.

Let Wz be a Brownian motion.

The solution X(z) of the 1D stochastic differential equation:

dX(z) = σ(X(z))dWz + b(X(z))dz

is a Markov process with the generator

Q =
1

2
σ2(x)

∂2

∂x2
+ b(x)

∂

∂x

• Let σ ∈ C1(Rn, Rm) and b ∈ C1(Rn, Rn) with bounded derivatives.

Let Wz be a m-dimensional Brownian motion.

The solution X(z) of the stochastic differential equation:

dX(z) = σ(X(z))dWz + b(X(z))dz

is a Markov process with the generator

Q =
1

2

X

ij

aij(x)
∂2

∂xi∂xj
+

X

i

bi(x)
∂

∂xi

with a = σσT .



Poisson equation Qu = f

Let us consider an ergodic Markov process with generator Q.

Null(Q∗) has dimension 1 and is spanned by the invariant probability P.

By Fredholm alternative, the Poisson equation has a solution iff f ⊥ Null(Q∗),

i.e.
R

fdP = 0 or E[f(Y0)] = 0 where E is the expectation w.r.t. the invariant

probability P.

Proposition. If E[f(Y0)] = 0, a solution of Qu = f is

u(y) = −
Z ∞

0

Tzf(y)dz

Remember that Tzf(y) = E[f(Yz)|Y0 = y].



Proof.

u(y) = −
Z ∞

0

Tzf(y)dz = −
Z ∞

0

{Tzf(y) − E[f(Y0)]} dz

The convergence of this integral requires some mixing.

Using Kolmogorov equation

Qu = −
Z

QTzfdz = −
Z ∞

0

dTzf

dz
dz = − [Tzf ]∞0 = f − E[f(Y0)] = f

Moreover E[u(Y0)] = 0 because E[f(Yz)] = E[f(Y0)] = 0.

Finally:
»

−
Z ∞

0

dzTz

–

: D → D is the inverse of Q on D = (Null(Q∗))⊥.



Diffusion-approximation

dXε

dz
(z) =

1

ε
F

“

Y (
z

ε2
),Xε(z)

”

, Xε(0) = x0 ∈ R
d.

Y stationary and ergodic, F centered: E[F (Y (0), x)] = 0.

Theorem: The processes (Xε(z))z≥0 converge in distribution in

C0([0,∞), Rd) to the diffusion (Markov) process X with generator L.

Lf(x) =

Z ∞

0

duE [F (Y (0), x).∇ (F (Y (u), x).∇f(x))] .

L =
d

X

i,j=1

aij(x)
∂2

∂xi∂xj
+

d
X

j=1

bj(x)
∂

∂xj

with

aij(x) =

Z ∞

0

duE [Fi(Y (0), x)Fj(Y (u), x)]

bj(x) =
d

X

i=1

Z ∞

0

duE [Fi(Y (0), x)∂xi
Fj(Y (u), x)]



Formal proof. Assume that Y is Markov, with generator Q, ergodic (+

technical conditions for the Fredholm alternative).

The joint process X̃ε(z) := (Y (z/ε2), Xε(z)) is Markov with

Lε =
1

ε2
Q +

1

ε
F (y, x).∇

The Kolmogorov backward equation for this process is

∂Uε

∂z
= LεUε (1)

Let us take an initial condition at z = 0 independent of y:

Uε(z = 0, y, x) = f(x)

where f is a smooth test function. We solve (1) as ε → 0 by assuming the

multiple scale expansion:

Uε =

∞
X

n=0

εnUn(z, y, x) (2)

Then Eq. (1) becomes

∂Uε

∂z
=

1

ε2
QUε +

1

ε
F.∇Uε (3)



We obtain a hierarchy of equations:

QU0 = 0 (4)

QU1 + F.∇U0 = 0 (5)

QU2 + F.∇U1 =
∂U0

∂z
(6)

Y (z) is ergodic i.e. Null(Q) = Span({1}). Thus Eq. (4) =⇒ U0 does not

depend on y.

U1 must satisfy

QU1 = −F (y, x).∇U0(z, x) (7)

Q is not invertible, we know that Null(Q) = Span({1}).
Null(Q∗) has dimension 1 and is generated by the invariant probability P.

By Fredholm alternative, the Poisson equation QU = g has a solution U if g

satisfies g ⊥ Null(Q∗), i.e.
R

gdP = 0, i.e. E[g(Y (0))] = 0.

Since the r.h.s. of Eq. (7) is centered, this equation has a solution U1

U1(z, y, x) = −Q−1F (y, x).∇U0(z, x)



U1(z, y, x) = −Q−1[F (y, x)].∇U0(z, x) (8)

up to an additive constant, where −Q−1 =
R ∞
0

dzTz.

Substitute (8) into (6): ∂U0

∂z
= QU2 + F.∇U1 and take the expectation w.r.t P.

We get that U0 must satisfy

∂U0

∂z
= E

ˆ

F.∇(−Q−1F.∇U0)
˜

This is the solvability condition for (6) and this is the limit Kolmogorov

equation for the process Xε:
∂U0

∂z
= LU0

with the limit generator

L =

Z ∞

0

E [F.∇(TzF.∇)] dz

Using the probabilistic representation of the semi-group ezQ we get

L =

Z ∞

0

E[F (Y (0), x).∇F (Y (z), x).∇]dz



Rigorous proof: The generator

Lε =
1

ε2
Q +

1

ε
F (y, x).∇

of (Xε(.), Y ( .
ε2 )) is such that

f(Y (
z

ε2
),Xε(z)) − f(Y (

s

ε2
), Xε(s)) −

Z z

s

Lεf(Y (
u

ε2
),Xε(u))du

is a martingale for any test function f .

=⇒ Convergence of martingale problems.



Convergence of martingale problems

Assume for a while: ∀f ∈ C∞
b , there exists fε such that:

sup
x∈K,y∈S

|fε(y, x) − f(x)| ε→0−→ 0, sup
x∈K,y∈S

|Lεfε(y, x) − Lf(x)| ε→0−→ 0.

Assume tightness and extract εp → 0 such that Xεp → X.

Take z1 < ... < zn < s < z and h1, ..., hn ∈ C∞
b :

E

h“

fε(Y (
z

ε2
), Xε(z)) − fε(Y (

s

ε2
), Xε(s))−

Z z

s

Lεfε(Y (
u

ε2
), Xε(u))du

«

h1(X
ε(z1))...hn(Xε(zn))

–

= 0

Take εp → 0 so that Xεp → X:

E

h“

f(X(z)) − f(X(s))

−
Z z

s

Lf(X(u))du

«

h1(X(z1))...hn(X(zn))

–

= 0

X is solution of the martingale problem associated to L.



Perturbed test function method

Proposition: ∀f ∈ C∞
b , there exists a family fε such that:

sup
x∈K,y∈S

|fε(y, x) − f(x)| ε→0−→ 0, sup
x∈K,y∈S

|Lεfε(y, x) − Lf(x)| ε→0−→ 0.

Proof: Define fε(y, x) = f(x) + εf1(y, x) + ε2f2(y, x).

Applying Lε = 1
ε2 Q + 1

ε
F (y, x).∇ to fε, one gets:

Lεfε =
1

ε
(Qf1 + F (y, x).∇f(x)) + (Qf2 + F.∇f1(y, x)) + O(ε).

Define the corrections fj as follows:

1 . f1(y, x) = −Q−1 (F (y, x).∇f(x)) .

Q has an inverse on the subspace of centered functions.

f1(y, x) =

Z ∞

0

duE[F (Y (u), x).∇f(x)|Y (0) = y].

2 . f2(y, x) = −Q−1 (F.∇f1(y, x) − E[F.∇f1(y, x)]) .

It remains: Lεfε = E[F.∇f1(y, x)] + O(ε).



One-dimensional case

dXε

dz
=

1

ε
F

“

Y (
z

ε2
), Xε(z)

”

, Xε(z = 0) = x0 ∈ R

Then Xε ε→0−→ X where X is the diffusion process with generator

L = a(x)
∂2

∂x2
+ b(x)

∂

∂x

with

a(x) =

Z ∞

0

duE [F (Y (0), x)F (Y (u), x)]

b(x) =

Z ∞

0

duE [F (Y (0), x)∂xF (Y (u), x)]

The limit process can be identified as the solution of the stochastic

differential equation

dX = b(X)dz +
p

2a(X)dWz

where W is a Brownian motion.



Limit theorems - Random vs. periodic

dXε

dz
(z) =

1

ε
F (Y (

z

ε2
), Xε(z),

z

ε2+c
), Xε(0) = x0 ∈ R

d.

F (y, x, φ) is periodic with respect to φ.

Case 1. Slow phase: −2 < c < 0 and E[F (Y (0), x, φ)] = 0.

Case 2. Fast phase: c = 0 and 〈E[F (Y (0), x, φ)]〉φ = 0.

Case 3. Ultra-fast phase: c > 0 and 〈E[F (Y (0), x, φ)]〉φ = 0.

The processes (Xε(z))z≥0 converge to X with generator Lj :

L1f(x) =

fiZ ∞

0

duE [F (Y (0), x, .).∇ (F (Y (u), x, .).∇f(x))]

fl

φ

,

L2f(x) =

Z ∞

0

du 〈E [F (Y (0), x, .).∇ (F (Y (u), x, . + u).∇f(x))]〉φ ,

L3f(x) =

Z ∞

0

duE

h

〈F (Y (0), x, .)〉φ .∇
“

〈F (Y (u), x, .)〉φ .∇f(x)
”i

.



The averaging theorem revisited

Consider the random differential equation

dXε

dz
= F

“

Y
“z

ε

”

,Xε(z)
”

, Xε(0) = x0

where we do not assume that F (y, x) is centered. We denote its mean by

F̄ (x) = E[F (Y (0), x)]

Then (Y (z/ε),Xε(z)) is a Markov process with generator

Lε =
1

ε
Q + F (y, x) · ∇

Let f(x) be a test function. Define fε(y, x) = f(x) + εf1(y, x) where f1 solves

the Poisson equation

Qf1(y, x) +
ˆ

F (y, x) · ∇f(x) − F̄ (x) · ∇f(x)
˜

= 0

We get Lεfε(y, x) = F̄ (x) · ∇f(x) + O(ε). Therefore the processes Xε(z)

converge to the solution of the martingale problem associated with the

generator Lf(x) = F̄ (x) · ∇f(x). The solution is the deterministic process X̄(z)

dX̄

dz
= F̄ (X̄(z)) , X̄(0) = x0.


