Wave propagation in random media

J. Garnier (Université Paris VII)
http://www.proba.jussieu.fr/~garnier

1. Wave propagation in one-dimensional random media: effective medium theory
Homogenization theory
2. Wave propagation in one-dimensional random media: the coherent wave front, the incoherent wave fluctuations, time reversal.
Diffusion approximation, asymptotic theory for random differential equations.
3. Wave propagation and time reversal in a random waveguide.
4. Wave propagation and time reversal in the parabolic regime.

Semi-classical analysis of the Schrödinger equation with a random potential

What is a random medium?

Problem: Wave propagation in a highly heterogeneous medium.
Stochastic modeling: the medium is a realization of a random medium (a set of possible media described statistically).

- takes into account the available data (mean, standard deviation of the fluctuations, ...)
- completes the modeling by a statistical description (Gaussian process, ...).

Statistical distribution of the random medium \Longrightarrow statistical distribution of the wave (highly nonlinear problem).

What about a wave propagating in a "typical" realization ?

- Mean-field (or averaged) approach can be misleading.
- A complete statistical analysis is necessary.
- There exist statistically stable quantities.

Importance of scaled regimes and asymptotic theory.

Methodology

- Modeling: $\left\{\begin{array}{l}\text { - Identification of the phenomena and equations. } \\ \text { - Statistical description of the medium parameters. } \\ \text { - Determination of the scales. }\end{array}\right.$
- Asymptotics: $\left\{\begin{array}{l}\text { - Separation of scales. } \\ \text { - Limit theorems. }\end{array}\right.$
- Limit problem: $\left\{\begin{array}{l}\text { - Analysis of the physically relevant quantities. } \\ \text { - Use of stochastic calculus. }\end{array}\right.$

The acoustic wave equations

The acoustic pressure $p(z, t)$ and velocity $u(z, t)$ satisfy the continuity and momentum equations

$$
\begin{aligned}
& \rho \frac{\partial u}{\partial t}+\frac{\partial p}{\partial z}=0 \\
& \frac{\partial p}{\partial t}+\kappa \frac{\partial u}{\partial z}=0
\end{aligned}
$$

where $\rho(z)$ is the material density,
$\kappa(z)$ is the bulk modulus of the medium.

Propagation in homogeneous medium

Linear hyperbolic system with ρ, κ constant.
Impedance: $\zeta=\sqrt{\rho \kappa}$. Sound speed: $c=\sqrt{\kappa / \rho}$.
Right- and left-going modes:

$$
\left.\begin{array}{r}
\quad A=\zeta^{1 / 2} u+\zeta^{-1 / 2} p, \\
\frac{\partial A}{\partial t}+c \frac{\partial A}{\partial z}=0, \\
A: \text { right-going wave }
\end{array} \quad B: \zeta^{1 / 2} u-\zeta^{-1 / 2} p\right] \text { left-going wave. }
$$

Spatial profiles of the wave at different times for a pure right-going wave

Propagation through an interface pressure field

Medium $z<0: c=1, \zeta=1$.
Medium $z>0: c=2, \zeta=2$.

Medium $\left\{\begin{array}{l}z<0 \\ z>10\end{array}\right\}: c=1, \zeta=1 . \quad$ Medium $0<z<10: c=2, \zeta=2$.

A numerical experiment in random medium

Random medium: stack of thin layers composed of two materials.

The three scales

The acoustic pressure $p(z, t)$ and velocity $u(z, t)$ satisfy the continuity and momentum equations

$$
\begin{aligned}
& \rho \frac{\partial u}{\partial t}+\frac{\partial p}{\partial z}=0 \\
& \frac{\partial p}{\partial t}+\kappa \frac{\partial u}{\partial z}=0
\end{aligned}
$$

where $\rho(z)$ is the material density,
$\kappa(z)$ is the bulk modulus of the medium.
Three scales:
l_{c} : correlation radius of the random process ρ and κ.
λ : typical wavelength of the incoming pulse.
L : propagation distance.

Effective medium theory $L \sim \lambda \gg l_{c}$

Model: $\rho=\rho(z / \varepsilon)$ and $\kappa=\kappa(z / \varepsilon)$, where $0<\varepsilon \ll 1$ and ρ, κ are random functions.

Perform a Fourier transform with respect to t :

$$
u(t, z)=\frac{1}{2 \pi} \int \hat{u}(\omega, z) e^{-i \omega t} d \omega, \quad p(t, z)=\frac{1}{2 \pi} \int \hat{p}(\omega, z) e^{-i \omega t} d \omega
$$

so that we get a system of ordinary differential equations:

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}, X^{\varepsilon}\right)
$$

where

$$
X^{\varepsilon}=\binom{\hat{p}}{\hat{u}}, \quad F(z, X)=-i \omega\left(\begin{array}{cc}
0 & \rho(z) \\
\frac{1}{\kappa(z)} & 0
\end{array}\right) X
$$

Method of averaging: Toy model

Let $X^{\varepsilon}(z) \in \mathbb{R}$ be the solution of

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}\right)
$$

with $F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z), F_{i}$ independent random variables $\mathbb{E}\left[F_{i}\right]=\bar{F}$ and $\mathbb{E}\left[\left(F_{i}-\bar{F}\right)^{2}\right]=\sigma^{2}$.
($z \mapsto t$, particle in a random velocity field)

$$
\begin{aligned}
& X^{\varepsilon}(z)=\varepsilon \int_{0}^{\frac{z}{\varepsilon}} F(s) d s=\varepsilon\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon}\right]} F_{i}\right)+\varepsilon \int_{\left[\frac{z}{\varepsilon}\right]}^{\frac{z}{\varepsilon}} F(s) d s \\
&=\varepsilon\left[\frac{z}{\varepsilon}\right] \times \frac{1}{\left[\frac{z}{\varepsilon}\right]}\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon}\right]} F_{i}\right)+\varepsilon\left(\frac{z}{\varepsilon}-\left[\frac{z}{\varepsilon}\right]\right) F_{\left[\frac{z}{\varepsilon}\right]} \\
& \varepsilon \rightarrow 0 \downarrow \text { a.s. } \downarrow \\
& z \text { a.s. } \downarrow(L L N) \\
& \mathbb{E}[F(z)]=\bar{F}
\end{aligned}
$$

Thus:

$$
X^{\varepsilon}(z) \xrightarrow{\varepsilon \rightarrow 0} \bar{X}(z), \quad \frac{d \bar{X}}{d z}=\bar{F} .
$$

Random process

- Real random variable $X=$ random number

Example: $X \sim \mathcal{U}(0,1)$ is a random number that can take any value in $(0,1)$ with equiprobability.
Distribution of X characterized by moments of the form $\mathbb{E}[\phi(X)]$ where $\phi \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R})$.
Example: $X \sim \mathcal{U}(0,1) \mapsto \mathbb{E}[\phi(X)]=\int_{0}^{1} \phi(x) d x$.
Example: $X \sim \mathcal{E}(1) \mapsto \mathbb{E}[\phi(X)]=\int_{0}^{\infty} \phi(x) e^{-x} d x$.
Example: $X \sim \mathcal{N}(0,1) \mapsto \mathbb{E}[\phi(X)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(x) e^{-\frac{x^{2}}{2}} d x$.

- Stochastic process $(F(z))_{z \geq 0}=$ random function $=$ random "variable" taking values in a functional space, e.g. $\mathcal{C}\left([0, \infty), \mathbb{R}^{d}\right)$.
A realization of the process $=$ a function from $[0, \infty)$ to \mathbb{R}^{d}. Distribution of $(F(z))_{z \geq 0}$ characterized by moments of the form $\mathbb{E}[\phi(F)]$, where $\phi \in \mathcal{C}_{b}(E, \mathbb{R})$.
In fact, moments of the form $\mathbb{E}\left[\phi\left(F\left(z_{1}\right), \ldots, F\left(z_{n}\right)\right)\right]$, for any $n, z_{1}, \ldots, z_{n} \geq 0$, $\phi \in \mathcal{C}_{b}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, are sufficient to characterize the distribution.

Example: Gaussian process.

Gaussian process

- Real Gaussian process $(F(z))_{z \geq 0}$ characterized by its first two moments $m\left(z_{1}\right)=\mathbb{E}\left[F\left(z_{1}\right)\right]$ and $c\left(z_{1}, z_{2}\right)=\mathbb{E}\left[F\left(z_{1}\right) F\left(z_{2}\right)\right]$.

Any linear combination $F_{\lambda}=\sum_{i=1}^{n} \lambda_{i} F\left(z_{i}\right)$ has Gaussian distribution

$$
\begin{gathered}
\mathbb{E}\left[\phi\left(F_{\lambda}\right)\right]=\frac{1}{\sqrt{2 \pi} \sigma_{\lambda}} \int_{-\infty}^{\infty} \phi(x) \exp \left(-\frac{\left(x-m_{\lambda}\right)^{2}}{2 \sigma_{\lambda}^{2}}\right) d x \\
\text { where } m_{\lambda}=\sum_{i=1}^{n} \lambda_{i} \mathbb{E}\left[F\left(z_{i}\right)\right] \quad \sigma_{\lambda}^{2}=\sum_{i, j=1}^{n} \lambda_{i} \lambda_{j} \mathbb{E}\left[F\left(z_{i}\right) F\left(z_{j}\right)\right]-m_{\lambda}^{2}
\end{gathered}
$$

- Simulation: in order to simulate $\left(F\left(z_{1}\right), \ldots, F\left(z_{n}\right)\right)$:
- compute the mean vector $M_{i}=\mathbb{E}\left[F\left(z_{i}\right)\right]$ and the covariance matrix $C_{i j}=\mathbb{E}\left[F\left(z_{i}\right) F\left(z_{j}\right)\right]-\mathbb{E}\left[F\left(z_{i}\right)\right] \mathbb{E}\left[F\left(z_{j}\right)\right]$.
- generate a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ of n independent Gaussian random variables with mean 0 and variance 1.
- compute $Y=M+C^{1 / 2} X$. The vector Y has the distribution of $\left(F\left(z_{1}\right), \ldots, F\left(z_{n}\right)\right)$.

Brownian motion

- Brownian motion $\left(W_{z}\right)_{z \geq 0}$ (starting from 0$)=$ real Gaussian process with mean 0 and autocorrelation function

$$
\mathbb{E}\left[W_{z} W_{z^{\prime}}\right]=z \wedge z^{\prime}
$$

The realizations of the Brownian motion are continuous but not differentiable.
The increments of the Brownian motion are independent:
if $z_{n} \geq z_{n-1} \geq \ldots \geq z_{1} \geq z_{0}=0$, then ($W_{z_{n}}-W_{z_{n-1}}, \ldots, W_{z_{2}}-W_{z_{1}}, W_{z_{1}}$) are independent Gaussian random variables with mean 0 and variance

$$
\mathbb{E}\left[\left(W_{z_{j}}-W_{z_{j-1}}\right)^{2}\right]=z_{j}-z_{j-1}
$$

- Simulation: in order to simulate $\left(W_{h}, W_{2 h}, \ldots, W_{n h}\right)$:
- generate a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ of n independent Gaussian random variables with mean 0 and variance 1.
- compute $Y_{j}=\sqrt{h} \sum_{i=1}^{j} X_{i}$. The vector Y has the distribution of $\left(W_{h}, W_{2 h}, \ldots, W_{n h}\right)$.

Stationary random process

- $(F(z))_{z \in \mathbb{R}^{+}}$is stationary if $\left(F\left(z+z_{0}\right)\right)_{z \in \mathbb{R}^{+}}$has the same distribution as $(F(z))_{z \in \mathbb{R}^{+}}$for any $z_{0} \geq 0$.
Sufficient and necessary condition:

$$
\mathbb{E}\left[\phi\left(F\left(z_{1}\right), \ldots, F\left(z_{n}\right)\right)\right]=\mathbb{E}\left[\phi\left(F\left(z_{0}+z_{1}\right), \ldots, F\left(z_{0}+z_{n}\right)\right)\right]
$$

for any $n, z_{0}, \ldots, z_{n} \geq 0, \phi \in \mathcal{C}_{b}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Example: Gaussian process $F(z)$ with mean zero $\mathbb{E}[F(z)]=0 \forall z$ and autocorrelation function $\mathbb{E}\left[F\left(z^{\prime}\right) F\left(z^{\prime}+z\right)\right]=c(z)$.

- Spectral representation (of stationary Gaussian process):

$$
F(z)=\int e^{i k z} \sqrt{\hat{c}(k)} d W_{k}
$$

with W_{k} complex Brownian motion, i.e.:

- $W_{k}=\left(W_{k}^{(1)}+i W_{k}^{(2)}\right) / \sqrt{2}$ for $k \geq 0$
- $W_{k}=\left(W_{-k}^{(1)}-i W_{-k}^{(2)}\right) / \sqrt{2}$ for $k \geq 0$
- $W_{k}^{(1)}$ and $W_{k}^{(2)}$ independent real Brownian motions.

Formally: " $\dot{W}_{k}=\frac{d W_{k}}{d k}$ " complex Gaussian white noise, i.e.
\dot{W}_{k} Gaussian, $\mathbb{E}\left[\dot{W}_{k}\right]=0, \mathbb{E}\left[\dot{W}_{k} \overline{\dot{W}_{k^{\prime}}}\right]=\delta\left(k-k^{\prime}\right)$.

Simulation of $F\left(z_{0}\right), \ldots, F\left(z_{n-1}\right), z_{i}=i h$

- First generate a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ of n independent Gaussian random variables with mean 0 and variance 1.
- Second apply the discrete Fourier transform (FFT):

$$
\hat{X}_{u}=\sum_{j=0}^{n-1} X_{j} e^{i 2 \pi j u / n}
$$

- Third multiply (filter) $\tilde{X}_{u}=\hat{X}_{u} \sqrt{\hat{C}_{u}}$, where

$$
\left.\hat{C}_{u}=\sum_{j=0}^{n-1}[c(j h)+c(n-j) h)\right] e^{i 2 \pi j u / n}
$$

Note that $\hat{C}_{u}=\overline{\hat{C}_{u}}=\hat{C}_{n-u}$.

- Forth apply the discrete inverse Fourier transform (IFFT):

$$
\check{X}_{l}=\frac{1}{n} \sum_{u=0}^{n-1} \tilde{X}_{u} e^{-i 2 \pi l u / n}
$$

- Result: $\left(\check{X}_{0}, \ldots, \check{X}_{n-1}\right)$ is a real-valued, Gaussian vector, with zero-mean and covariance $\mathbb{E}\left[\check{X}_{l} \check{X}_{l^{\prime}}\right]=c\left(\left(l-l^{\prime}\right) h\right)+c\left(\left(n-\left(l-l^{\prime}\right)\right) h\right)$
\hookrightarrow periodic version of $(F(0), \ldots, F((n-1) h))$

Ergodic theory

Ergodic Theorem. If F satisfies the ergodic hypothesis, then

$$
\frac{1}{Z} \int_{0}^{Z} F(z) d z \xrightarrow{Z \rightarrow \infty} \bar{F} \quad \text { a.s., where } \bar{F}=\mathbb{E}[F(0)]=\mathbb{E}[F(z)]
$$

Ergodic hypothesis $=$ "the orbit $(F(z))_{z \geq 0}$ visits all of phase space".
Ergodic theorem $=$ "the spatial average is equivalent to the statistical average".
Counter-example for the ergodic hypothesis:
Let F_{1} and F_{2} be stationary, both satisfy the ergodic theorem, $\bar{F}_{j}=\mathbb{E}\left[F_{j}(z)\right]$, $j=1,2$, with $\bar{F}_{1} \neq \bar{F}_{2}$.
Flip a coin (independently of F_{j}) \rightarrow random variable $\chi=0$ or 1 with probability $1 / 2$.
Let $F(z)=\chi F_{1}(z)+(1-\chi) F_{2}(z)$. F is a stationary process with mean $\bar{F}=\frac{1}{2}\left(\bar{F}_{1}+\bar{F}_{2}\right)$.

$$
\begin{aligned}
\frac{1}{Z} \int_{0}^{Z} F(z) d z & \chi\left(\frac{1}{Z} \int_{0}^{Z} F_{1}(z) d z\right)+(1-\chi)\left(\frac{1}{Z} \int_{0}^{Z} F_{2}(z) d z\right) \\
& \xrightarrow{Z \rightarrow \infty} \\
& \chi \bar{F}_{1}+(1-\chi) \bar{F}_{2}
\end{aligned}
$$

which is a random limit different from \bar{F}.
The limit depends on χ because F has been trapped in a part of phase space.

Mean square theory

Let F be a stationary process, $\mathbb{E}\left[F(0)^{2}\right]<\infty$. Its autocorrelation function is:

$$
R(z)=\mathbb{E}\left[\left(F\left(z_{0}\right)-\bar{F}\right)\left(F\left(z_{0}+z\right)-\bar{F}\right)\right]
$$

- R is independent of z_{0} by stationarity of F.
- $|R(z)| \leq R(0)$ by Cauchy-Schwarz:

$$
|R(z)| \leq \mathbb{E}\left[(F(0)-\bar{F})^{2}\right]^{1 / 2} \mathbb{E}\left[(F(z)-\bar{F})^{2}\right]^{1 / 2}=R(0)
$$

- R is an even function $R(-z)=R(z)$:

$$
\begin{array}{lll}
R(-z) & = & \mathbb{E}\left[\left(F\left(z_{0}-z\right)-\bar{F}\right)\left(F\left(z_{0}\right)-\bar{F}\right)\right] \\
& \stackrel{z_{0}=z}{=} & \mathbb{E}[(F(0)-\bar{F})(F(z)-\bar{F})]=R(z)
\end{array}
$$

Proposition. Assume $\int_{0}^{\infty}|R(z)| d z<\infty$. Let $S(Z)=\frac{1}{Z} \int_{0}^{Z} F(z) d z$. Then

$$
\mathbb{E}\left[(S(Z)-\bar{F})^{2}\right] \xrightarrow{Z \rightarrow \infty} 0
$$

Corollary. For any $\delta>0$

$$
\mathbb{P}(|S(Z)-\bar{F}|>\delta) \leq \frac{\mathbb{E}\left[(S(Z)-\bar{F})^{2}\right]}{\delta^{2}} \xrightarrow{Z \rightarrow \infty} 0
$$

We can show that

$$
Z \mathbb{E}\left[(S(Z)-\bar{F})^{2}\right] \xrightarrow{Z \rightarrow \infty} 2 \int_{0}^{\infty} R(z) d z
$$

Proof:

$$
\begin{aligned}
\mathbb{E}\left[(S(Z)-\bar{F})^{2}\right] & =\mathbb{E}\left[\frac{1}{Z^{2}} \int_{0}^{Z} d z_{1} \int_{0}^{Z} d z_{2}\left(F\left(z_{1}\right)-\bar{F}\right)\left(F\left(z_{2}\right)-\bar{F}\right)\right] \\
& =\frac{2}{Z^{2}} \int_{0}^{Z} d z_{1} \int_{0}^{z_{1}} d z_{2} R\left(z_{1}-z_{2}\right) \\
& =\frac{2}{Z^{2}} \int_{0}^{Z} d z \int_{0}^{Z-z} d h R(z) \\
& =\frac{2}{Z} \int_{0}^{Z} \frac{Z-z}{Z} R(z) d z
\end{aligned}
$$

Thus, denoting $R_{Z}(z)=\frac{Z-z}{Z} R(z) \mathbf{1}_{[0, Z]}(z)$, and using Lebesgue's theorem:

$$
Z \mathbb{E}\left[(S(Z)-\bar{F})^{2}\right]=2 \int_{0}^{\infty} R_{Z}(z) d z \xrightarrow{Z \rightarrow \infty} 2 \int_{0}^{\infty} R(z) d z
$$

Let F be a stationary zero-mean random process. Denote

$$
S_{k}(Z)=\frac{1}{\sqrt{Z}} \int_{0}^{Z} e^{i k z} F(z) d z
$$

We can show similarly

$$
\mathbb{E}\left[\left|S_{k}(Z)\right|^{2}\right] \xrightarrow{Z \rightarrow \infty} 2 \int_{0}^{\infty} R(z) \cos (k z) d z=\int_{-\infty}^{\infty} R(z) e^{i k z} d z
$$

Simplified form of Bochner's theorem: If F is a stationary process, then the Fourier transform of its autocorrelation function is nonnegative.

Averaging

Let us consider $F(z, x), z \in \mathbb{R}^{+}, x \in \mathbb{R}^{d}$, such that:

1) for all $x \in \mathbb{R}^{d}, F(z, x) \in \mathbb{R}^{d}$ is a stochastic process in z.
2) there is a deterministic function $\bar{F}(x)$ such that

$$
\bar{F}(x)=\lim _{Z \rightarrow \infty} \frac{1}{Z} \int_{z_{0}}^{z_{0}+Z} \mathbb{E}[F(z, x)] d z
$$

(limit independent of z_{0}).
Let $\varepsilon \ll 1$ and X^{ε} be the solution of

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}, X^{\varepsilon}\right), \quad X^{\varepsilon}(0)=0
$$

Let us define \bar{X} solution of

$$
\frac{d \bar{X}}{d z}=\bar{F}(\bar{X}), \quad \bar{X}(0)=0
$$

With some mild technical assumptions we have for any Z :

$$
\sup _{z \in[0, Z]} \mathbb{E}\left[\left|X^{\varepsilon}(z)-\bar{X}(z)\right|\right] \xrightarrow{\varepsilon \rightarrow 0} 0
$$

The proof can be obtained with elementary calculations with the hypotheses :

1) F is stationary. For all $x, \mathbb{E}\left[\left|\frac{1}{Z} \int_{0}^{Z} F(z, x) d z-\bar{F}(x)\right|\right] \xrightarrow{z \rightarrow \infty} 0$
2) For all $z, F(z,$.$) and \bar{F}($.$) are Lipschitz with a deterministic constant c$.
3) For any compact $K \subset \mathbb{R}^{d}$, $\sup _{z \in \mathbb{R}^{+}, x \in K}|F(z, x)|+|\bar{F}(x)|<\infty$.

Remark: 1) is satisfied if for any x, the autocorrelation function $R_{x}(z)$ of $z \mapsto F(z, x)$ is integrable $\int\left|R_{x}(z)\right| d z<\infty$.
We have:

$$
X^{\varepsilon}(z)=\int_{0}^{z} F\left(\frac{s}{\varepsilon}, X^{\varepsilon}(s)\right) d s, \quad \bar{X}(z)=\int_{0}^{z} \bar{F}(\bar{X}(s)) d s
$$

so the error can be written:

$$
X^{\varepsilon}(z)-\bar{X}(z)=\int_{0}^{z}\left(F\left(\frac{s}{\varepsilon}, X^{\varepsilon}(s)\right)-F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)\right) d s+g^{\varepsilon}(z)
$$

where $g^{\varepsilon}(z):=\int_{0}^{z} F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)-\bar{F}(\bar{X}(s)) d s$.

$$
\begin{aligned}
\left|X^{\varepsilon}(z)-\bar{X}(z)\right| & \leq \int_{0}^{z}\left|F\left(\frac{s}{\varepsilon}, X^{\varepsilon}(s)\right)-F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)\right| d s+\left|g^{\varepsilon}(z)\right| \\
& \leq c \int_{0}^{t}\left|X^{\varepsilon}(s)-\bar{X}(s)\right| d s+\left|g^{\varepsilon}(z)\right|
\end{aligned}
$$

Take the expectation and apply Gronwall

$$
\mathbb{E}\left[\left|X^{\varepsilon}(z)-\bar{X}(z)\right|\right] \leq e^{c t} \sup _{s \in[0, z]} \mathbb{E}\left[\left|g^{\varepsilon}(s)\right|\right]
$$

It remains to show that the last term goes to 0 as $\varepsilon \rightarrow 0$.
Let $\delta>0$

$$
\begin{aligned}
g^{\varepsilon}(z)= & \sum_{k=0}^{[z / \delta]-1} \int_{k \delta}^{(k+1) \delta}\left(F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)-\bar{F}(\bar{X}(s))\right) d s \\
& +\int_{\delta[z / \delta]}^{z}\left(F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)-\bar{F}(\bar{X}(s))\right) d s
\end{aligned}
$$

Denote $M_{Z}=\sup _{z \in[0, Z]}|\bar{X}(z)|$. Since F is Lipschitz and $K_{Z}=\sup _{x \in\left[-M_{Z}, M_{Z}\right]}|\bar{F}(x)|$ is finite:

$$
\left|F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)-F\left(\frac{s}{\varepsilon}, \bar{X}(k \delta)\right)\right| \leq c|\bar{X}(s)-\bar{X}(k \delta)| \leq c \bar{K}_{Z}|s-k \delta|
$$

Denoting $K_{Z}=\sup _{z \in \mathbb{R}^{+}, x \in\left[-M_{Z}, M_{Z}\right]}|F(z, x)|$:

$$
|\bar{F}(\bar{X}(s))-\bar{F}(\bar{X}(k \delta))| \leq c K_{Z}|s-k \delta|
$$

Thus

$$
\begin{aligned}
\left|g^{\varepsilon}(z)\right| \leq & \sum_{k=0}^{[z / \delta]-1}\left|\int_{k \delta}^{(k+1) \delta}\left(F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)-\bar{F}(\bar{X}(s))\right) d s\right| \\
& +\left|\int_{\delta[z / \delta]}^{z}\left(F\left(\frac{s}{\varepsilon}, \bar{X}(s)\right)-\bar{F}(\bar{X}(s))\right) d s\right| \\
\leq & \left|\sum_{k=0}^{[z / \delta]-1} \int_{k \delta}^{(k+1) \delta}\left(F\left(\frac{s}{\varepsilon}, \bar{X}(k \delta)\right)-\bar{F}(\bar{X}(k \delta))\right) d s\right| \\
& +c\left(\bar{K}_{Z}+K_{Z}\right) \sum_{k=0}^{[z / \delta]-1} \int_{k \delta}^{(k+1) \delta}(s-k \delta) d s+\left(\bar{K}_{Z}+K_{Z}\right) \delta \\
\leq & \varepsilon \sum_{k=0}^{[z / \delta]-1}\left|\int_{k \delta / \varepsilon}^{(k+1) \delta / \varepsilon}(F(s, \bar{X}(k \delta))-\bar{F}(\bar{X}(k \delta))) d s\right| \\
& +\left(\bar{K}_{Z}+K_{Z}\right)(c z+1) \delta
\end{aligned}
$$

Take the expectation and the supremum :

$$
\begin{gathered}
\sup _{z \in[0, Z]} \mathbb{E}\left[\left|g^{\varepsilon}(z)\right|\right] \leq \delta \sum_{k=0}^{[Z / \delta]} \mathbb{E}\left[\left|\frac{\varepsilon}{\delta} \int_{k \delta / \varepsilon}^{(k+1) \delta / \varepsilon}(F(s, \bar{X}(k \delta))-\bar{F}(\bar{X}(k \delta))) d s\right|\right] \\
\\
+\left(\bar{K}_{Z}+K_{Z}\right)(c Z+1) \delta
\end{gathered}
$$

Take the limit $\varepsilon \rightarrow 0$:

$$
\limsup _{\varepsilon \rightarrow 0} \sup _{t \in[0, Z]} \mathbb{E}\left[\left|g^{\varepsilon}(t)\right|\right] \leq\left(\bar{K}_{Z}+K_{Z}\right)(c Z+1) \delta
$$

Let $\delta \rightarrow 0$.

Method of averaging: Khasminskii theorem

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}, X^{\varepsilon}\right), \quad X^{\varepsilon}(0)=x_{0}
$$

$x \mapsto F(x, z)$ and $x \mapsto \bar{F}(x)$ are Lipschitz, $z \mapsto F(z, x)$ is stationary and ergodic

$$
\bar{F}(x)=\mathbb{E}[F(z, x)]
$$

Let \bar{X} be the solution of

$$
\frac{d \bar{X}}{d z}=\bar{F}(\bar{X}), \quad \bar{X}(0)=x_{0}
$$

Theorem: for any $Z>0$,

$$
\sup _{z \in[0, Z]} \mathbb{E}\left[\left|X^{\varepsilon}(z)-\bar{X}(z)\right|\right] \xrightarrow{\varepsilon \rightarrow 0} 0
$$

[1] R. Z. Khasminskii, Theory Probab. Appl. 11 (1966), 211-228.

Equations for the Fourier components of the wave:

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}, X^{\varepsilon}\right)
$$

where

$$
X^{\varepsilon}=\binom{\hat{p}}{\hat{u}}, \quad F(z, X)=-i \omega\left(\begin{array}{cc}
0 & \rho(z) \\
\frac{1}{\kappa(z)} & 0
\end{array}\right) X
$$

Apply the method of averaging $\Longrightarrow X^{\varepsilon}(\omega, z)$ converges in $L^{1}(\mathbb{P})$ to $\bar{X}(\omega, z)$

$$
\frac{d \bar{X}}{d z}=-i \omega\left(\begin{array}{cc}
0 & \bar{\rho} \\
\frac{1}{\bar{\kappa}} & 0
\end{array}\right) \bar{X}, \quad \bar{\rho}=\mathbb{E}[\rho], \quad \bar{\kappa}=\left(\mathbb{E}\left[\kappa^{-1}\right]\right)^{-1}
$$

\hookrightarrow deterministic "effective medium" with parameters $\bar{\rho}, \bar{\kappa}$.

Let (\bar{p}, \bar{u}) be the solution of the homogeneous effective system

$$
\begin{aligned}
& \bar{\rho} \frac{\partial \bar{u}}{\partial t}+\frac{\partial \bar{p}}{\partial z}=0 \\
& \frac{\partial \bar{p}}{\partial t}+\bar{\kappa} \frac{\partial \bar{u}}{\partial z}=0
\end{aligned}
$$

The propagation speed of (\bar{p}, \bar{u}) is $\bar{c}=\sqrt{\bar{\kappa} / \bar{\rho}}$.
Compare $p^{\varepsilon}(t, z)$ with $\bar{p}(t, z)$:

$$
\begin{aligned}
\mathbb{E}\left[\left|p^{\varepsilon}(t, z)-\bar{p}(t, z)\right|\right] & =\frac{1}{2 \pi} \mathbb{E}\left[\left|\int e^{-i \omega t}\left(\hat{p}^{\varepsilon}(\omega, z)-\hat{\bar{p}}(\omega, z)\right) d \omega\right|\right] \\
& \leq \frac{1}{2 \pi} \int \mathbb{E}\left[\left|\hat{p}^{\varepsilon}(\omega, z)-\hat{\bar{p}}(\omega, z)\right|\right] d \omega
\end{aligned}
$$

The dominated convergence theorem then gives the convergence in $L^{1}(\mathbb{P})$ of p^{ε} to \bar{p} in the time domain.
\hookrightarrow the effective speed of the acoustic wave $\left(p^{\varepsilon}, u^{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$ is \bar{c}.

This analysis is just a small piece of the homogenization theory. cf book The theory of composites by G. Milton.

Propagation through a stack of random layers

Sizes of the layers: i.i.d. with uniform distribution over [0.2, 0.6] (mean 0.4). Medium parameters $\rho \equiv 1,1 / \kappa_{a}=0.2,1 / \kappa_{b}=1.8$.

Propagation through a stack of random layers

Sizes of the layers: i.i.d. with uniform distribution over [0.04, 0.12] (mean 0.08).

Example: bubbles in water

$\rho_{a}=1.210^{3} \mathrm{~g} / \mathrm{m}^{3}, \kappa_{a}=1.410^{8} \mathrm{~g} / \mathrm{s}^{2} / \mathrm{m}, c_{a}=340 \mathrm{~m} / \mathrm{s}$.
$\rho_{w}=1.010^{6} \mathrm{~g} / \mathrm{m}^{3}, \kappa_{w}=2.010^{12} \mathrm{~g} / \mathrm{s}^{2} / \mathrm{m}, c_{w}=1425 \mathrm{~m} / \mathrm{s}$.
If the typical pulse frequency is $10 \mathrm{~Hz}-30 \mathrm{kHz}$, then the typical wavelength is $1 \mathrm{~cm}-100 \mathrm{~m}$. The bubble sizes are much smaller \Longrightarrow the effective medium theory can be applied.

$$
\begin{aligned}
& \bar{\rho}=\mathbb{E}[\rho]=\phi \rho_{a}+(1-\phi) \rho_{w}= \begin{cases}9.910^{5} \mathrm{~g} / \mathrm{m}^{3} & \text { if } \phi=1 \% \\
910^{5} \mathrm{~g} / \mathrm{m}^{3} & \text { if } \phi=10 \%\end{cases} \\
& \bar{\kappa}=\left(\mathbb{E}\left[\kappa^{-1}\right]\right)^{-1}=\left(\frac{\phi}{\kappa_{a}}+\frac{1-\phi}{\kappa_{w}}\right)^{-1}= \begin{cases}1.410^{10} \mathrm{~g} / \mathrm{s}^{2} / \mathrm{m} & \text { if } \phi=1 \% \\
1.410^{9} \mathrm{~g} / \mathrm{s}^{2} / \mathrm{m} & \text { if } \phi=10 \%\end{cases}
\end{aligned}
$$

where $\phi=$ volume fraction of air.
Thus, $\bar{c}=120 \mathrm{~m} / \mathrm{s}$ if $\phi=1 \%$ and $\bar{c}=37 \mathrm{~m} / \mathrm{s}$ if $\phi=10 \%$.
\hookrightarrow the average sound speed \bar{c} can be much smaller than ess $\inf (c)$.
The converse is impossible:

$$
\mathbb{E}\left[c^{-1}\right]=\mathbb{E}\left[\kappa^{-1 / 2} \rho^{1 / 2}\right] \leq \mathbb{E}\left[\kappa^{-1}\right]^{1 / 2} \mathbb{E}[\rho]^{1 / 2}=\bar{c}^{-1}
$$

Thus $\bar{c} \leq \mathbb{E}\left[c^{-1}\right]^{-1} \leq \operatorname{ess} \sup (c)$.

Long distance propagation

Toy model

$$
\frac{d X^{\varepsilon}}{d z}=F\left(\frac{z}{\varepsilon}\right)
$$

with $F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z), F_{i}$ independent random variables $\mathbb{E}\left[F_{i}\right]=\bar{F}=0$ and $\mathbb{E}\left[\left(F_{i}-\bar{F}\right)^{2}\right]=\sigma^{2}$.

For any $z \in[0, Z]$, we have

$$
X^{\varepsilon}(z) \xrightarrow{\varepsilon \rightarrow 0} \bar{X}(z), \quad \frac{d \bar{X}}{d z}=\bar{F}=0 .
$$

No macroscopic evolution is noticeable.
\rightarrow it is necessary to look at larger z to get an effective behavior

$$
\begin{gathered}
z \mapsto \frac{z}{\varepsilon}, \quad \tilde{X}^{\varepsilon}(z)=X^{\varepsilon}\left(\frac{z}{\varepsilon}\right) \\
\frac{d \tilde{X}^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^{2}}\right)
\end{gathered}
$$

Diffusion-approximation: Toy model

$$
\frac{d X^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^{2}}\right)
$$

with $F(z)=\sum_{i=1}^{\infty} F_{i} \mathbf{1}_{[i-1, i)}(z), F_{i}$ independent random variables $\mathbb{E}\left[F_{i}\right]=0$ and $\mathbb{E}\left[F_{i}^{2}\right]=\sigma^{2}$.

$$
\begin{aligned}
& X^{\varepsilon}(z)=\varepsilon \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) d s=\varepsilon\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon^{2}}\right]} F_{i}\right)+\varepsilon \int_{\left[\frac{z}{\varepsilon^{2}}\right]}^{\frac{z}{\varepsilon^{2}}} F(s) d s \\
&=\varepsilon \sqrt{\left[\frac{z}{\varepsilon^{2}}\right]} \times \frac{1}{\sqrt{\left[\frac{z}{\varepsilon^{2}}\right]}}\left(\sum_{i=1}^{\left[\frac{z}{\varepsilon^{2}}\right]} F_{i}\right)+\varepsilon\left(\frac{z}{\varepsilon^{2}}-\left[\frac{z}{\varepsilon^{2}}\right]\right) F_{\left[\frac{z}{\varepsilon^{2}}\right]} \\
& \varepsilon \rightarrow 0 \downarrow \text { a.s. } \downarrow \\
& \sqrt{z} \text { law } \downarrow(C L T) \\
& \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Thus: $X^{\varepsilon}(z)$ converges in distribution as $\varepsilon \rightarrow 0$ to the Gaussian statistics $\mathcal{N}\left(0, \sigma^{2} z\right)$.
With some more work: The process $\left(X^{\varepsilon}(z)\right)_{z \in \mathbb{R}^{+}}$converges in distribution to a Brownian motion $\sigma W(z)$.

Next goal: determine the limit $\lim _{\varepsilon \rightarrow 0} X^{\varepsilon}(z)$ where

$$
\frac{d X^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^{2}}, X^{\varepsilon}(z)\right)
$$

when

$$
\mathbb{E}[F(z, x)]=0 \quad \forall x
$$

Markov process

A stochastic process Y_{z} with state space S is Markov if $\forall 0 \leq s \leq z$ and $f \in L^{\infty}(S)$

$$
\mathbb{E}\left[f\left(Y_{z}\right) \mid Y_{u}, u \leq s\right]=\mathbb{E}\left[f\left(Y_{z}\right) \mid Y_{s}\right]
$$

"the state Y_{s} at time s contains all relevant information for calculating probabilities of future events".
The processus is stationary if $\forall z \geq s \geq 0, \mathbb{E}\left[f\left(Y_{z}\right) \mid Y_{s}\right]=\mathbb{E}\left[f\left(Y_{z-s}\right) \mid Y_{0}\right]$.
Define the family of operators on $L^{\infty}(S)$:

$$
T_{z} f(y)=\mathbb{E}\left[f\left(Y_{z}\right) \mid Y_{0}=y\right]
$$

Proposition.

1) $T_{0}=I_{d}$
2) $\forall s, z \leq 0, T_{z+s}=T_{z} T_{s}$
3) T_{z} is a contraction $\left\|T_{z} f\right\|_{\infty} \leq\|f\|_{\infty}$.

Proof of 2):

$$
\begin{aligned}
T_{z+s} f(y) & =\mathbb{E}\left[f\left(Y_{z+s}\right) \mid Y_{0}=y\right]=\mathbb{E}\left[\mathbb{E}\left[f\left(Y_{z+s}\right) \mid Y_{u}, u \leq z\right] \mid Y_{0}=y\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[f\left(Y_{z+s}\right) \mid Y_{z}\right] \mid Y_{0}=y\right]=\mathbb{E}\left[T_{s} f\left(Y_{z}\right) \mid Y_{0}=y\right] \\
& =T_{z} T_{s} f(y)
\end{aligned}
$$

Feller process: T_{z} is strongly continuous from \mathcal{C}_{0} to \mathcal{C}_{0} (for any $f \in \mathcal{C}_{0}$, $\left.\left\|T_{z} f-f\right\|_{\infty} \xrightarrow{z \rightarrow 0} 0\right)$.

The generator of the Markov process is:

$$
Q:=\lim _{z \backslash 0} \frac{T_{z}-I_{d}}{z}
$$

It is defined on a subset of \mathcal{C}^{0}, supposed to be dense.
Proposition. If $f \in \operatorname{Dom}(Q)$, then the function $u(z, y)=T_{z} f(y)$ satisfies the Kolmogorov equation

$$
\frac{\partial u}{\partial z}=Q u, \quad u(z=0, y)=f(y)
$$

Proof.

$$
\frac{u(z+h, y)-u(z, y)}{h}=\frac{T_{z+h} f(y)-T_{z} f(y)}{h}=T_{z} \frac{T_{h}-I_{d}}{h} f(y) \xrightarrow{h \rightarrow 0} T_{z} Q f(y)
$$

because $f \in \operatorname{Dom}(Q)$ and T_{z} is continuous. This shows that u is differentiable and $\partial_{z} u=T_{z} Q f$. Besides

$$
\frac{T_{h}-I_{d}}{h} T_{z} f(y)=\frac{T_{z+h} f(y)-T_{z} f(y)}{h}=\frac{u(z+h, y)-u(z, y)}{h}
$$

has a limit as $h \rightarrow 0$, which shows that $T_{z} f \in \operatorname{Dom}(Q)$ and $\partial_{z} u=Q T_{z} f=Q u$.

Example: Brownian motion

W_{z} : Gaussian process with independent increments

$$
\mathbb{E}\left[\left(W_{z+h}-W_{z}\right)^{2}\right]=h
$$

The semi-group T_{z} is the heat kernel:

$$
\begin{aligned}
T_{z} f(x) & =\mathbb{E}\left[f\left(x+W_{z}^{(0)}\right)\right]=\int f(x+w) \frac{1}{\sqrt{2 \pi z}} \exp \left(-\frac{w^{2}}{2 z}\right) d z \\
& =\int f(y) \frac{1}{\sqrt{2 \pi z}} \exp \left(-\frac{(y-x)^{2}}{2 z}\right) d y
\end{aligned}
$$

It is a Markov process with the generator:

$$
Q=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}
$$

Example: Two-state Markov process

The process Y_{z} takes values in $S=\{-1,1\}$.
The time intervals are independent with the common exponential distribution with mean 1.

Functions $f \in L^{\infty}(S)$ are vectors. The semigroup $\left(T_{z}\right)_{z \geq 0}$ is a family of matrices:

$$
T_{z}=\left(\begin{array}{cc}
\mathbb{P}\left(Y_{z}=1 \mid Y_{0}=1\right) & \mathbb{P}\left(Y_{z}=1 \mid Y_{0}=-1\right) \\
\mathbb{P}\left(Y_{z}=-1 \mid Y_{0}=1\right) & \mathbb{P}\left(Y_{z}=-1 \mid Y_{0}=-1\right)
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2}+\frac{1}{2} e^{-2 z} & \frac{1}{2}-\frac{1}{2} e^{-2 z} \\
\frac{1}{2}-\frac{1}{2} e^{-2 z} & \frac{1}{2}+\frac{1}{2} e^{-2 z}
\end{array}\right)
$$

The generator is a matrix:

$$
Q=\lim _{h \rightarrow 0} \frac{T_{h}-I}{h}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

Martingale property

For any function $f \in \operatorname{Dom}(Q)$, the process

$$
M_{f}(z):=f\left(Y_{z}\right)-\int_{0}^{z} Q f\left(Y_{u}\right) d u
$$

is a martingale.
Denoting $\mathcal{F}_{s}=\sigma\left(Y_{u}, 0 \leq u \leq s\right)$,

$$
\begin{aligned}
\mathbb{E}\left[M_{f}(z) \mid \mathcal{F}_{s}\right] & =M_{f}(s)+\mathbb{E}\left[f\left(Y_{z}\right)-f\left(Y_{s}\right)-\int_{s}^{z} Q f\left(Y_{u}\right) d u \mid Y_{s}\right] \\
& =M_{f}(s)+T_{z-s} f\left(Y_{s}\right)-f\left(Y_{s}\right)-\int_{s}^{z} T_{u-s} Q f\left(Y_{s}\right) d u \\
& =M_{f}(s)+T_{z-s} f\left(Y_{s}\right)-f\left(Y_{s}\right)-\int_{0}^{z-s} T_{u} Q f\left(Y_{s}\right) d u
\end{aligned}
$$

The function $T_{z} f(y)$ satisfies the Kolmogorov equation, which shows that the last three terms of the r.h.s. cancel:

$$
\mathbb{E}\left[M_{f}(z) \mid \mathcal{F}_{s}\right]=M_{f}(s)
$$

Reciprocal: If Q is non-degenerate, and M_{f} is a martingale for all test functions f, then Y is a Markov process with generator Q.

Ordinary differential equation driven by a Feller process

Proposition. Let Y be a S-valued Feller process with generator Q and X be the solution of:

$$
\frac{d X}{d z}=F\left(Y_{z}, X(z)\right), \quad X(0)=x \in \mathbb{R}^{d}
$$

where $F: S \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a bounded Borel function such that $x \mapsto F(y, x)$ has bounded derivatives uniformly with respect to $y \in S$. Then $\tilde{X}=(Y, X)$ is a Markov process with generator:

$$
\mathcal{L}=Q+\sum_{j=1}^{d} F_{j}(y, x) \frac{\partial}{\partial x_{j}}
$$

Formal proof. Let f be a test function.

$$
\begin{aligned}
& \frac{d}{d z} \mathbb{E}\left[f\left(Y_{z}, X(z)\right) \mid Y_{0}=y, X(0)=x\right] \\
& =\mathbb{E}\left[Q f\left(Y_{z}, X(z)\right) \mid Y_{0}=y, X(0)=x\right] \\
& +\mathbb{E}\left[\nabla_{x} f\left(Y_{z}, X(z)\right) F\left(Y_{z}, X(z)\right) \mid Y_{0}=y, X(0)=x\right] \\
& =\mathbb{E}\left[\mathcal{L} f\left(Y_{z}, X(z)\right) \mid Y_{0}=y, X(0)=x\right]
\end{aligned}
$$

Ergodic Markov process

Ergodicity is related to the null spaces of Q and Q^{*}.
With some additional hypotheses (irreducibility):
A Markov process is ergodic iff there is a unique invariant probability measure \mathbb{P} satisfying $Q^{*} \mathbb{P}=0$, i.e.

$$
\int T_{z} f(y) d \mathbb{P}(y)=\int f(y) d \mathbb{P}(y) \Longleftrightarrow \mathbb{E}_{\mathbb{P}}\left[f\left(Y_{z}\right)\right]=\mathbb{E}_{\mathbb{P}}\left[f\left(Y_{0}\right)\right]
$$

Ergodicity: $T_{z} f(y)$ converges to $\mathbb{E}_{\mathbb{P}}\left[f\left(Y_{0}\right)\right]$ as $z \rightarrow \infty$. The spectrum of Q gives the convergence (mixing) rate. The existence of a spectral gap

$$
\inf _{f, \int f f d \mathbb{P}=0} \frac{-\int f Q f d \mathbb{P}}{\int f^{2} d \mathbb{P}}>0
$$

ensures the exponential convergence of $T_{z} f(y)$ to $\mathbb{E}_{\mathbb{P}}\left[f\left(Y_{0}\right)\right]$.
Also: Since $T_{z} 1=1$, we have $Q 1=0$, so that $1 \in \operatorname{Null}(Q)$.
Thus $\operatorname{Null}\left(Q^{*}\right)$ is at least one-dimensional.
A Markov process is ergodic iff $\operatorname{Null}(Q)=\operatorname{Span}(\{1\})$

Example: Two-state Markov process

The process Y_{z} takes values in $S=\{-1,1\}$.
The time intervals are independent
with the common exponential distribution with mean 1.

The semigroup $\left(T_{z}\right)_{z \geq 0}$ is a family of matrices:
$T_{z}=\left(\begin{array}{cc}\mathbb{P}\left(Y_{z}=1 \mid Y_{0}=1\right) & \mathbb{P}\left(Y_{z}=1 \mid Y_{0}=-1\right) \\ \mathbb{P}\left(Y_{z}=-1 \mid Y_{0}=1\right) & \mathbb{P}\left(Y_{z}=-1 \mid Y_{0}=-1\right)\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2}+\frac{1}{2} e^{-2 z} & \frac{1}{2}-\frac{1}{2} e^{-2 z} \\ \frac{1}{2}-\frac{1}{2} e^{-2 z} & \frac{1}{2}+\frac{1}{2} e^{-2 z}\end{array}\right)$
The generator is a matrix:

$$
Q=\lim _{h \rightarrow 0} \frac{T_{h}-I}{h}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

It is ergodic. The invariant probability $\left(Q^{T} \bar{p}=0\right)$ is the uniform probability $\bar{p}=(1 / 2,1 / 2)^{T}$ over S.

Example: Brownian motion

W_{z} : Gaussian process with independent increments

$$
\mathbb{E}\left[\left(W_{z+h}-W_{z}\right)^{2}\right]=h
$$

The semi-group T_{z} is the heat kernel:

$$
T_{z} f(x)=\int f(y) p_{z}(x, y) d y, \quad p_{z}(x, y)=\frac{1}{\sqrt{2 \pi z}} \exp \left(-\frac{(y-x)^{2}}{2 z}\right)
$$

It is a Markov process with the generator:

$$
Q=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}
$$

It is not ergodic.

Example: Ornstein-Uhlenbeck process

Solution of the stochastic differential equation $d X(z)=-\lambda X(z) d z+d W_{z}$:

$$
X(z)=X_{0} e^{-\lambda z}+\int_{0}^{z} e^{-\lambda(z-s)} d W_{s}
$$

where W_{z} is a Brownian motion, $\lambda>0$.
(if $z \mapsto t$, this process describes the motion of a particle in a quadratic potential)
The semi-group T_{z} is

$$
T_{z} f(x)=\int f(y) p_{z}(x, y) d y
$$

$y \mapsto p_{z}(x, y)$ is a Gaussian density with mean $x e^{-\lambda z}$ and variance $\sigma^{2}(z)$:

$$
p_{z}(x, y)=\frac{1}{\sqrt{2 \pi \sigma(z)^{2}}} \exp \left(-\frac{\left(y-x e^{-\lambda z}\right)^{2}}{2 \sigma^{2}(z)}\right), \quad \sigma^{2}(z)=\frac{1-e^{-2 \lambda z}}{2 \lambda}
$$

The generator is:

$$
Q=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}-\lambda x \frac{\partial}{\partial x}
$$

$X(z)$ is ergodic. Its invariant probability density $\left(Q^{*} \bar{p}=0\right)$ is

$$
\bar{p}(y)=\sqrt{\frac{\lambda}{\pi}} \exp \left(-\lambda y^{2}\right)
$$

Diffusion processes

- Let σ and b be $\mathcal{C}^{1}(\mathbb{R}, \mathbb{R})$ functions with bounded derivatives.

Let W_{z} be a Brownian motion.
The solution $X(z)$ of the 1D stochastic differential equation:

$$
d X(z)=\sigma(X(z)) d W_{z}+b(X(z)) d z
$$

is a Markov process with the generator

$$
Q=\frac{1}{2} \sigma^{2}(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}
$$

- Let $\sigma \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and $b \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with bounded derivatives.

Let W_{z} be a m-dimensional Brownian motion.
The solution $X(z)$ of the stochastic differential equation:

$$
d X(z)=\sigma(X(z)) d W_{z}+b(X(z)) d z
$$

is a Markov process with the generator

$$
Q=\frac{1}{2} \sum_{i j} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i}(x) \frac{\partial}{\partial x_{i}}
$$

with $a=\sigma \sigma^{T}$.

Poisson equation $Q u=f$

Let us consider an ergodic Markov process with generator Q.
$\operatorname{Null}\left(Q^{*}\right)$ has dimension 1 and is spanned by the invariant probability \mathbb{P}.
By Fredholm alternative, the Poisson equation has a solution iff $f \perp \operatorname{Null}\left(Q^{*}\right)$, i.e. $\int f d \mathbb{P}=0$ or $\mathbb{E}\left[f\left(Y_{0}\right)\right]=0$ where \mathbb{E} is the expectation w.r.t. the invariant probability \mathbb{P}.

Proposition. If $\mathbb{E}\left[f\left(Y_{0}\right)\right]=0$, a solution of $Q u=f$ is

$$
u(y)=-\int_{0}^{\infty} T_{z} f(y) d z
$$

Remember that $T_{z} f(y)=\mathbb{E}\left[f\left(Y_{z}\right) \mid Y_{0}=y\right]$.

Proof.

$$
u(y)=-\int_{0}^{\infty} T_{z} f(y) d z=-\int_{0}^{\infty}\left\{T_{z} f(y)-\mathbb{E}\left[f\left(Y_{0}\right)\right]\right\} d z
$$

The convergence of this integral requires some mixing.
Using Kolmogorov equation

$$
Q u=-\int Q T_{z} f d z=-\int_{0}^{\infty} \frac{d T_{z} f}{d z} d z=-\left[T_{z} f\right]_{0}^{\infty}=f-\mathbb{E}\left[f\left(Y_{0}\right)\right]=f
$$

Moreover $\mathbb{E}\left[u\left(Y_{0}\right)\right]=0$ because $\mathbb{E}\left[f\left(Y_{z}\right)\right]=\mathbb{E}\left[f\left(Y_{0}\right)\right]=0$.
Finally:
$\left[-\int_{0}^{\infty} d z T_{z}\right]: \mathcal{D} \rightarrow \mathcal{D}$ is the inverse of Q on $\mathcal{D}=\left(\operatorname{Null}\left(Q^{*}\right)\right)^{\perp}$.

Diffusion-approximation

$$
\frac{d X^{\varepsilon}}{d z}(z)=\frac{1}{\varepsilon} F\left(Y\left(\frac{z}{\varepsilon^{2}}\right), X^{\varepsilon}(z)\right), \quad X^{\varepsilon}(0)=x_{0} \in \mathbb{R}^{d}
$$

Y stationary and ergodic, F centered: $\mathbb{E}[F(Y(0), x)]=0$.
Theorem: The processes $\left(X^{\varepsilon}(z)\right)_{z \geq 0}$ converge in distribution in $\mathbf{C}^{0}\left([0, \infty), \mathbb{R}^{d}\right)$ to the diffusion (Markov) process X with generator \mathcal{L}.

$$
\begin{gathered}
\mathcal{L} f(x)=\int_{0}^{\infty} d u \mathbb{E}[F(Y(0), x) . \nabla(F(Y(u), x) . \nabla f(x))] . \\
\mathcal{L}=\sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{d} b_{j}(x) \frac{\partial}{\partial x_{j}}
\end{gathered}
$$

with

$$
\begin{aligned}
a_{i j}(x) & =\int_{0}^{\infty} d u \mathbb{E}\left[F_{i}(Y(0), x) F_{j}(Y(u), x)\right] \\
b_{j}(x) & =\sum_{i=1}^{d} \int_{0}^{\infty} d u \mathbb{E}\left[F_{i}(Y(0), x) \partial_{x_{i}} F_{j}(Y(u), x)\right]
\end{aligned}
$$

Formal proof. Assume that Y is Markov, with generator Q, ergodic (+ technical conditions for the Fredholm alternative).

The joint process $\tilde{X}^{\varepsilon}(z):=\left(Y\left(z / \varepsilon^{2}\right), X^{\varepsilon}(z)\right)$ is Markov with

$$
\mathcal{L}^{\varepsilon}=\frac{1}{\varepsilon^{2}} Q+\frac{1}{\varepsilon} F(y, x) . \nabla
$$

The Kolmogorov backward equation for this process is

$$
\begin{equation*}
\frac{\partial U^{\varepsilon}}{\partial z}=\mathcal{L}^{\varepsilon} U^{\varepsilon} \tag{1}
\end{equation*}
$$

Let us take an initial condition at $z=0$ independent of y :

$$
U^{\varepsilon}(z=0, y, x)=f(x)
$$

where f is a smooth test function. We solve (1) as $\varepsilon \rightarrow 0$ by assuming the multiple scale expansion:

$$
\begin{equation*}
U^{\varepsilon}=\sum_{n=0}^{\infty} \varepsilon^{n} U_{n}(z, y, x) \tag{2}
\end{equation*}
$$

Then Eq. (1) becomes

$$
\begin{equation*}
\frac{\partial U^{\varepsilon}}{\partial z}=\frac{1}{\varepsilon^{2}} Q U^{\varepsilon}+\frac{1}{\varepsilon} F \cdot \nabla U^{\varepsilon} \tag{3}
\end{equation*}
$$

We obtain a hierarchy of equations:

$$
\begin{align*}
& Q U_{0}=0 \tag{4}\\
& Q U_{1}+F . \nabla U_{0}=0 \tag{5}\\
& Q U_{2}+F . \nabla U_{1}=\frac{\partial U_{0}}{\partial z} \tag{6}
\end{align*}
$$

$Y(z)$ is ergodic i.e. $\operatorname{Null}(Q)=\operatorname{Span}(\{1\})$. Thus Eq. $(4) \Longrightarrow U_{0}$ does not depend on y.
U_{1} must satisfy

$$
\begin{equation*}
Q U_{1}=-F(y, x) . \nabla U_{0}(z, x) \tag{7}
\end{equation*}
$$

Q is not invertible, we know that $\operatorname{Null}(Q)=\operatorname{Span}(\{1\})$.
$\operatorname{Null}\left(Q^{*}\right)$ has dimension 1 and is generated by the invariant probability \mathbb{P}. By Fredholm alternative, the Poisson equation $Q U=g$ has a solution U if g satisfies $g \perp \operatorname{Null}\left(Q^{*}\right)$, i.e. $\int g d \mathbb{P}=0$, i.e. $\mathbb{E}[g(Y(0))]=0$.

Since the r.h.s. of Eq. (7) is centered, this equation has a solution U_{1}

$$
U_{1}(z, y, x)=-Q^{-1} F(y, x) . \nabla U_{0}(z, x)
$$

$$
\begin{equation*}
U_{1}(z, y, x)=-Q^{-1}[F(y, x)] \cdot \nabla U_{0}(z, x) \tag{8}
\end{equation*}
$$

up to an additive constant, where $-Q^{-1}=\int_{0}^{\infty} d z T_{z}$.
Substitute (8) into (6): $\frac{\partial U_{0}}{\partial z}=Q U_{2}+F . \nabla U_{1}$ and take the expectation w.r.t \mathbb{P}. We get that U_{0} must satisfy

$$
\frac{\partial U_{0}}{\partial z}=\mathbb{E}\left[F . \nabla\left(-Q^{-1} F . \nabla U_{0}\right)\right]
$$

This is the solvability condition for (6) and this is the limit Kolmogorov equation for the process X^{ε} :

$$
\frac{\partial U_{0}}{\partial z}=\mathcal{L} U_{0}
$$

with the limit generator

$$
\mathcal{L}=\int_{0}^{\infty} \mathbb{E}\left[F . \nabla\left(T_{z} F . \nabla\right)\right] d z
$$

Using the probabilistic representation of the semi-group $e^{z Q}$ we get

$$
\mathcal{L}=\int_{0}^{\infty} \mathbb{E}[F(Y(0), x) . \nabla F(Y(z), x) . \nabla] d z
$$

Rigorous proof: The generator

$$
\mathcal{L}^{\varepsilon}=\frac{1}{\varepsilon^{2}} Q+\frac{1}{\varepsilon} F(y, x) . \nabla
$$

of $\left(X^{\varepsilon}(),. Y\left(\frac{\dot{\varepsilon^{2}}}{}\right)\right)$ is such that

$$
f\left(Y\left(\frac{z}{\varepsilon^{2}}\right), X^{\varepsilon}(z)\right)-f\left(Y\left(\frac{s}{\varepsilon^{2}}\right), X^{\varepsilon}(s)\right)-\int_{s}^{z} \mathcal{L}^{\varepsilon} f\left(Y\left(\frac{u}{\varepsilon^{2}}\right), X^{\varepsilon}(u)\right) d u
$$

is a martingale for any test function f.
\Longrightarrow Convergence of martingale problems.

Convergence of martingale problems

Assume for a while: $\forall f \in \mathcal{C}_{b}^{\infty}$, there exists f^{ε} such that:

$$
\sup _{x \in K, y \in S}\left|f^{\varepsilon}(y, x)-f(x)\right| \xrightarrow{\varepsilon \rightarrow 0} 0, \quad \sup _{x \in K, y \in S}\left|\mathcal{L}^{\varepsilon} f^{\varepsilon}(y, x)-\mathcal{L} f(x)\right| \xrightarrow{\varepsilon \rightarrow 0} 0 .
$$

Assume tightness and extract $\varepsilon_{p} \rightarrow 0$ such that $X^{\varepsilon_{p}} \rightarrow X$.
Take $z_{1}<\ldots<z_{n}<s<z$ and $h_{1}, \ldots, h_{n} \in \mathcal{C}_{b}^{\infty}$:

$$
\begin{aligned}
& \mathbb{E}\left[\left(f^{\varepsilon}\left(Y\left(\frac{z}{\varepsilon^{2}}\right), X^{\varepsilon}(z)\right)-f^{\varepsilon}\left(Y\left(\frac{s}{\varepsilon^{2}}\right), X^{\varepsilon}(s)\right)-\right.\right. \\
& \left.\left.\quad \int_{s}^{z} \mathcal{L}^{\varepsilon} f^{\varepsilon}\left(Y\left(\frac{u}{\varepsilon^{2}}\right), X^{\varepsilon}(u)\right) d u\right) h_{1}\left(X^{\varepsilon}\left(z_{1}\right)\right) \ldots h_{n}\left(X^{\varepsilon}\left(z_{n}\right)\right)\right]=0
\end{aligned}
$$

Take $\varepsilon_{p} \rightarrow 0$ so that $X^{\varepsilon_{p}} \rightarrow X$:

$$
\begin{aligned}
& \mathbb{E}[(f(X(z))-f(X(s)) \\
& \left.\left.\quad-\int_{s}^{z} \mathcal{L} f(X(u)) d u\right) h_{1}\left(X\left(z_{1}\right)\right) \ldots h_{n}\left(X\left(z_{n}\right)\right)\right]=0
\end{aligned}
$$

X is solution of the martingale problem associated to \mathcal{L}.

Perturbed test function method

Proposition: $\forall f \in \mathcal{C}_{b}^{\infty}$, there exists a family f^{ε} such that:

$$
\sup _{x \in K, y \in S}\left|f^{\varepsilon}(y, x)-f(x)\right| \xrightarrow{\varepsilon \rightarrow 0} 0, \quad \sup _{x \in K, y \in S}\left|\mathcal{L}^{\varepsilon} f^{\varepsilon}(y, x)-\mathcal{L} f(x)\right| \xrightarrow{\varepsilon \rightarrow 0} 0 .
$$

Proof: Define $f^{\varepsilon}(y, x)=f(x)+\varepsilon f_{1}(y, x)+\varepsilon^{2} f_{2}(y, x)$.
Applying $\mathcal{L}^{\varepsilon}=\frac{1}{\varepsilon^{2}} Q+\frac{1}{\varepsilon} F(y, x) . \nabla$ to f^{ε}, one gets:

$$
\mathcal{L}^{\varepsilon} f^{\varepsilon}=\frac{1}{\varepsilon}\left(Q f_{1}+F(y, x) . \nabla f(x)\right)+\left(Q f_{2}+F . \nabla f_{1}(y, x)\right)+O(\varepsilon)
$$

Define the corrections f_{j} as follows:
1.

$$
f_{1}(y, x)=-Q^{-1}(F(y, x) . \nabla f(x)) .
$$

Q has an inverse on the subspace of centered functions.

$$
f_{1}(y, x)=\int_{0}^{\infty} d u \mathbb{E}[F(Y(u), x) . \nabla f(x) \mid Y(0)=y]
$$

2. $\quad f_{2}(y, x)=-Q^{-1}\left(F . \nabla f_{1}(y, x)-\mathbb{E}\left[F \cdot \nabla f_{1}(y, x)\right]\right)$.

It remains: $\mathcal{L}^{\varepsilon} f^{\varepsilon}=\mathbb{E}\left[F . \nabla f_{1}(y, x)\right]+O(\varepsilon)$.

One-dimensional case

$$
\frac{d X^{\varepsilon}}{d z}=\frac{1}{\varepsilon} F\left(Y\left(\frac{z}{\varepsilon^{2}}\right), X^{\varepsilon}(z)\right), \quad X^{\varepsilon}(z=0)=x_{0} \in \mathbb{R}
$$

Then $X^{\varepsilon} \xrightarrow{\varepsilon \rightarrow 0} X$ where X is the diffusion process with generator

$$
\mathcal{L}=a(x) \frac{\partial^{2}}{\partial x^{2}}+b(x) \frac{\partial}{\partial x}
$$

with

$$
\begin{aligned}
a(x) & =\int_{0}^{\infty} d u \mathbb{E}[F(Y(0), x) F(Y(u), x)] \\
b(x) & =\int_{0}^{\infty} d u \mathbb{E}\left[F(Y(0), x) \partial_{x} F(Y(u), x)\right]
\end{aligned}
$$

The limit process can be identified as the solution of the stochastic differential equation

$$
d X=b(X) d z+\sqrt{2 a(X)} d W_{z}
$$

where W is a Brownian motion.

Limit theorems - Random vs. periodic

$$
\frac{d X^{\varepsilon}}{d z}(z)=\frac{1}{\varepsilon} F\left(Y\left(\frac{z}{\varepsilon^{2}}\right), X^{\varepsilon}(z), \frac{z}{\varepsilon^{2+c}}\right), \quad X^{\varepsilon}(0)=x_{0} \in \mathbb{R}^{d} .
$$

$F(y, x, \phi)$ is periodic with respect to ϕ.
Case 1. Slow phase: $-2<c<0$ and $\mathbb{E}[F(Y(0), x, \phi)]=0$.
Case 2. Fast phase: $c=0$ and $\langle\mathbb{E}[F(Y(0), x, \phi)]\rangle_{\phi}=0$.
Case 3. Ultra-fast phase: $c>0$ and $\langle\mathbb{E}[F(Y(0), x, \phi)]\rangle_{\phi}=0$.
The processes $\left(X^{\varepsilon}(z)\right)_{z \geq 0}$ converge to X with generator \mathcal{L}_{j} :

$$
\begin{gathered}
\mathcal{L}_{1} f(x)=\left\langle\int_{0}^{\infty} d u \mathbb{E}[F(Y(0), x, .) \cdot \nabla(F(Y(u), x, .) \cdot \nabla f(x))]\right\rangle_{\phi} \\
\mathcal{L}_{2} f(x)=\int_{0}^{\infty} d u\langle\mathbb{E}[F(Y(0), x, .) \cdot \nabla(F(Y(u), x, .+u) . \nabla f(x))]\rangle_{\phi} \\
\mathcal{L}_{3} f(x)=\int_{0}^{\infty} d u \mathbb{E}\left[\langle F(Y(0), x, .)\rangle_{\phi} \cdot \nabla\left(\langle F(Y(u), x, .)\rangle_{\phi} \cdot \nabla f(x)\right)\right] .
\end{gathered}
$$

The averaging theorem revisited

Consider the random differential equation

$$
\frac{d X^{\varepsilon}}{d z}=F\left(Y\left(\frac{z}{\varepsilon}\right), X^{\varepsilon}(z)\right), \quad X^{\varepsilon}(0)=x_{0}
$$

where we do not assume that $F(y, x)$ is centered. We denote its mean by

$$
\bar{F}(x)=\mathbb{E}[F(Y(0), x)]
$$

Then $\left(Y(z / \varepsilon), X^{\varepsilon}(z)\right)$ is a Markov process with generator

$$
\mathcal{L}^{\varepsilon}=\frac{1}{\varepsilon} Q+F(y, x) \cdot \nabla
$$

Let $f(x)$ be a test function. Define $f^{\varepsilon}(y, x)=f(x)+\varepsilon f_{1}(y, x)$ where f_{1} solves the Poisson equation

$$
Q f_{1}(y, x)+[F(y, x) \cdot \nabla f(x)-\bar{F}(x) \cdot \nabla f(x)]=0
$$

We get $\mathcal{L}^{\varepsilon} f^{\varepsilon}(y, x)=\bar{F}(x) \cdot \nabla f(x)+O(\varepsilon)$. Therefore the processes $X^{\varepsilon}(z)$ converge to the solution of the martingale problem associated with the generator $\mathcal{L} f(x)=\bar{F}(x) \cdot \nabla f(x)$. The solution is the deterministic process $\bar{X}(z)$

$$
\frac{d \bar{X}}{d z}=\bar{F}(\bar{X}(z)), \quad \bar{X}(0)=x_{0}
$$

