Wave propagation in random media

J. Garnier (Université Paris VII)
http://www.proba.jussieu.fr/~garnier

1. Wave propagation in one-dimensional random media: effective medium theory

Homogenization theory

2. Wave propagation in one-dimensional random media: the coherent wave front, the incoherent wave fluctuations, time reversal.

Diffusion approximation, asymptotic theory for random differential equations.

- 3. Wave propagation and time reversal in a random waveguide.
- 4. Wave propagation and time reversal in the parabolic regime.

 Semi-classical analysis of the Schrödinger equation with a random potential

What is a random medium?

Problem: Wave propagation in a highly heterogeneous medium.

Stochastic modeling: the medium is a realization of a random medium (a set of possible media described statistically).

- takes into account the available data (mean, standard deviation of the fluctuations, ...)
- completes the modeling by a statistical description (Gaussian process, ...).

Statistical distribution of the random medium \Longrightarrow statistical distribution of the wave (highly nonlinear problem).

What about a wave propagating in a "typical" realization?

- Mean-field (or averaged) approach can be misleading.
- A complete statistical analysis is necessary.
- There exist statistically stable quantities.

Importance of scaled regimes and asymptotic theory.

Methodology

Modeling:

 Identification of the phenomena and equations.
 Statistical description of the medium parameters.
 Determination of the scales.

 Asymptotics:

 Separation of scales.
 Limit theorems.

 Limit problem:

 Analysis of the physically relevant quantities.
 Use of stochastic calculus.

The acoustic wave equations

The acoustic pressure p(z,t) and velocity u(z,t) satisfy the continuity and momentum equations

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial z} = 0$$

$$\frac{\partial p}{\partial t} + \kappa \frac{\partial u}{\partial z} = 0$$

where $\rho(z)$ is the material density,

 $\kappa(z)$ is the bulk modulus of the medium.

Propagation in homogeneous medium

Linear hyperbolic system with ρ , κ constant.

Impedance: $\zeta = \sqrt{\rho \kappa}$. Sound speed: $c = \sqrt{\kappa/\rho}$.

Right- and left-going modes:

$$A = \zeta^{1/2}u + \zeta^{-1/2}p, \qquad B = \zeta^{1/2}u - \zeta^{-1/2}p$$
$$\frac{\partial A}{\partial t} + c\frac{\partial A}{\partial z} = 0, \qquad \frac{\partial B}{\partial t} - c\frac{\partial B}{\partial z} = 0$$

A: right-going wave B: left-going wave.

Spatial profiles of the wave at different times for a pure right-going wave

Propagation through an interface pressure field

Medium z < 0: c = 1, $\zeta = 1$.

Medium z > 0: $c = 2, \zeta = 2$.

Propagation through a thick layer pressure field

Medium
$$\begin{cases} z < 0 \\ z > 10 \end{cases}$$
: $c = 1, \ \zeta = 1$. Medium $0 < z < 10$: $c = 2, \ \zeta = 2$.

A numerical experiment in random medium

Random medium: stack of thin layers composed of two materials.

The three scales

The acoustic pressure p(z,t) and velocity u(z,t) satisfy the continuity and momentum equations

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial z} = 0$$
$$\frac{\partial p}{\partial t} + \kappa \frac{\partial u}{\partial z} = 0$$

where $\rho(z)$ is the material density,

 $\kappa(z)$ is the bulk modulus of the medium.

Three scales:

 l_c : correlation radius of the random process ρ and κ .

 λ : typical wavelength of the incoming pulse.

L: propagation distance.

Effective medium theory $L \sim \lambda \gg l_c$

Model: $\rho = \rho(z/\varepsilon)$ and $\kappa = \kappa(z/\varepsilon)$, where $0 < \varepsilon \ll 1$ and ρ , κ are random functions.

Perform a Fourier transform with respect to t:

$$u(t,z) = \frac{1}{2\pi} \int \hat{u}(\omega,z) e^{-i\omega t} d\omega, \quad p(t,z) = \frac{1}{2\pi} \int \hat{p}(\omega,z) e^{-i\omega t} d\omega$$

so that we get a system of ordinary differential equations:

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon}, X^{\varepsilon}),$$

where

$$X^{\varepsilon} = \begin{pmatrix} \hat{p} \\ \hat{u} \end{pmatrix}, \quad F(z, X) = -i\omega \begin{pmatrix} 0 & \rho(z) \\ \frac{1}{\kappa(z)} & 0 \end{pmatrix} X$$

Method of averaging: Toy model

Let $X^{\varepsilon}(z) \in \mathbb{R}$ be the solution of

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon})$$

with $F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$, F_i independent random variables $\mathbb{E}[F_i] = \bar{F}$ and $\mathbb{E}[(F_i - \bar{F})^2] = \sigma^2$.

 $(z \mapsto t, \text{ particle in a random velocity field})$

$$X^{\varepsilon}(z) = \varepsilon \int_{0}^{\frac{z}{\varepsilon}} F(s) ds = \varepsilon \left(\sum_{i=1}^{\left[\frac{z}{\varepsilon}\right]} F_{i} \right) + \varepsilon \int_{\left[\frac{z}{\varepsilon}\right]}^{\frac{z}{\varepsilon}} F(s) ds$$

$$= \varepsilon \left[\frac{z}{\varepsilon} \right] \times \frac{1}{\left[\frac{z}{\varepsilon}\right]} \left(\sum_{i=1}^{\left[\frac{z}{\varepsilon}\right]} F_{i} \right) + \varepsilon \left(\frac{z}{\varepsilon} - \left[\frac{z}{\varepsilon}\right] \right) F_{\left[\frac{z}{\varepsilon}\right]}$$

$$\varepsilon \to 0 \downarrow \qquad \text{a.s.} \downarrow$$

$$z \qquad \text{a.s.} \downarrow (LLN)$$

$$z \qquad 0$$

$$\mathbb{E}[F(z)] = \bar{F}$$

Thus:

$$X^{arepsilon}(z) \stackrel{arepsilon o 0}{\longrightarrow} ar{X}(z), \qquad rac{dar{X}}{dz} = ar{F}.$$

Random process

• Real random variable X = random number

Example: $X \sim \mathcal{U}(0,1)$ is a random number that can take any value in (0,1) with equiprobability.

Distribution of X characterized by moments of the form $\mathbb{E}[\phi(X)]$ where $\phi \in \mathcal{C}_b(\mathbb{R}, \mathbb{R})$.

Example: $X \sim \mathcal{U}(0,1) \mapsto \mathbb{E}[\phi(X)] = \int_0^1 \phi(x) dx$.

Example: $X \sim \mathcal{E}(1) \mapsto \mathbb{E}[\phi(X)] = \int_0^\infty \phi(x) e^{-x} dx$.

Example: $X \sim \mathcal{N}(0,1) \mapsto \mathbb{E}[\phi(X)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(x) e^{-\frac{x^2}{2}} dx$.

• Stochastic process $(F(z))_{z\geq 0} = \text{random function} = \text{random "variable" taking values in a functional space, e.g. <math>\mathcal{C}([0,\infty),\mathbb{R}^d)$.

A realization of the process = a function from $[0, \infty)$ to \mathbb{R}^d .

Distribution of $(F(z))_{z\geq 0}$ characterized by moments of the form $\mathbb{E}[\phi(F)]$, where $\phi \in \mathcal{C}_b(E,\mathbb{R})$.

In fact, moments of the form $\mathbb{E}[\phi(F(z_1),...,F(z_n))]$, for any $n, z_1,...,z_n \geq 0$, $\phi \in \mathcal{C}_b(\mathbb{R}^n,\mathbb{R})$, are sufficient to characterize the distribution.

Example: Gaussian process.

Gaussian process

• Real Gaussian process $(F(z))_{z\geq 0}$ characterized by its first two moments $m(z_1) = \mathbb{E}[F(z_1)]$ and $c(z_1, z_2) = \mathbb{E}[F(z_1)F(z_2)]$.

Any linear combination $F_{\lambda} = \sum_{i=1}^{n} \lambda_i F(z_i)$ has Gaussian distribution

$$\mathbb{E}[\phi(F_{\lambda})] = \frac{1}{\sqrt{2\pi}\sigma_{\lambda}} \int_{-\infty}^{\infty} \phi(x) \exp\left(-\frac{(x-m_{\lambda})^{2}}{2\sigma_{\lambda}^{2}}\right) dx$$

where
$$m_{\lambda} = \sum_{i=1}^{n} \lambda_i \mathbb{E}[F(z_i)]$$
 $\sigma_{\lambda}^2 = \sum_{i,j=1}^{n} \lambda_i \lambda_j \mathbb{E}[F(z_i)F(z_j)] - m_{\lambda}^2$

- Simulation: in order to simulate $(F(z_1),...,F(z_n))$:
- compute the mean vector $M_i = \mathbb{E}[F(z_i)]$ and the covariance matrix $C_{ij} = \mathbb{E}[F(z_i)F(z_j)] \mathbb{E}[F(z_i)]\mathbb{E}[F(z_j)].$
- generate a random vector $X = (X_1, ..., X_n)$ of n independent Gaussian random variables with mean 0 and variance 1.
- compute $Y = M + C^{1/2}X$. The vector Y has the distribution of $(F(z_1), ..., F(z_n))$.

Brownian motion

• Brownian motion $(W_z)_{z\geq 0}$ (starting from 0)= real Gaussian process with mean 0 and autocorrelation function

$$\mathbb{E}[W_z W_{z'}] = z \wedge z'$$

The realizations of the Brownian motion are continuous but not differentiable.

The increments of the Brownian motion are independent:

if $z_n \ge z_{n-1} \ge ... \ge z_1 \ge z_0 = 0$, then $(W_{z_n} - W_{z_{n-1}}, ..., W_{z_2} - W_{z_1}, W_{z_1})$ are independent Gaussian random variables with mean 0 and variance

$$\mathbb{E}\Big[(W_{z_j} - W_{z_{j-1}})^2\Big] = z_j - z_{j-1}$$

- Simulation: in order to simulate $(W_h, W_{2h}, ..., W_{nh})$:
- generate a random vector $X = (X_1, ..., X_n)$ of n independent Gaussian random variables with mean 0 and variance 1.
- compute $Y_j = \sqrt{h} \sum_{i=1}^j X_i$. The vector Y has the distribution of $(W_h, W_{2h}, ..., W_{nh})$.

Stationary random process

• $(F(z))_{z\in\mathbb{R}^+}$ is stationary if $(F(z+z_0))_{z\in\mathbb{R}^+}$ has the same distribution as $(F(z))_{z\in\mathbb{R}^+}$ for any $z_0\geq 0$.

Sufficient and necessary condition:

$$\mathbb{E}[\phi(F(z_1), ..., F(z_n))] = \mathbb{E}[\phi(F(z_0 + z_1), ..., F(z_0 + z_n))]$$

for any $n, z_0, ..., z_n \geq 0, \phi \in \mathcal{C}_b(\mathbb{R}^n, \mathbb{R})$.

Example: Gaussian process F(z) with mean zero $\mathbb{E}[F(z)] = 0 \ \forall z$ and autocorrelation function $\mathbb{E}[F(z')F(z'+z)] = c(z)$.

• Spectral representation (of stationary Gaussian process):

$$F(z) = \int e^{ikz} \sqrt{\hat{c}(k)} dW_k$$

with W_k complex Brownian motion, i.e.:

-
$$W_k = (W_k^{(1)} + iW_k^{(2)})/\sqrt{2}$$
 for $k \ge 0$

$$-W_k = (W_{-k}^{(1)} - iW_{-k}^{(2)})/\sqrt{2} \text{ for } k \ge 0$$

- $W_k^{(1)}$ and $W_k^{(2)}$ independent real Brownian motions.

Formally: " $\dot{W}_k = \frac{dW_k}{dk}$ " complex Gaussian white noise, i.e.

$$\dot{W}_k$$
 Gaussian, $\mathbb{E}\left[\dot{W}_k\right] = 0$, $\mathbb{E}\left[\dot{W}_k\overline{\dot{W}_{k'}}\right] = \delta(k - k')$.

Simulation of $F(z_0), ..., F(z_{n-1}), z_i = ih$

- First generate a random vector $X = (X_1, ..., X_n)$ of n independent Gaussian random variables with mean 0 and variance 1.
- Second apply the discrete Fourier transform (FFT):

$$\hat{X}_{u} = \sum_{j=0}^{n-1} X_{j} e^{i2\pi j u/n}$$

• Third multiply (filter) $\tilde{X}_u = \hat{X}_u \sqrt{\hat{C}_u}$, where

$$\hat{C}_u = \sum_{j=0}^{n-1} [c(jh) + c(n-j)h)]e^{i2\pi ju/n}$$

Note that $\hat{C}_u = \overline{\hat{C}_u} = \hat{C}_{n-u}$.

• Forth apply the discrete inverse Fourier transform (IFFT):

$$\check{X}_{l} = \frac{1}{n} \sum_{u=0}^{n-1} \tilde{X}_{u} e^{-i2\pi l u/n}$$

• Result: $(\check{X}_0, ..., \check{X}_{n-1})$ is a real-valued, Gaussian vector, with zero-mean and covariance $\mathbb{E}[\check{X}_l\check{X}_{l'}] = c\Big((l-l')h\Big) + c\Big((n-(l-l'))h\Big)$ \hookrightarrow periodic version of (F(0), ..., F((n-1)h))

Ergodic theory

Ergodic Theorem. If F satisfies the ergodic hypothesis, then

$$\frac{1}{Z} \int_0^Z F(z) dz \xrightarrow{Z \to \infty} \bar{F} \quad \text{a.s., where } \bar{F} = \mathbb{E}[F(0)] = \mathbb{E}[F(z)]$$

Ergodic hypothesis = "the orbit $(F(z))_{z\geq 0}$ visits all of phase space".

Ergodic theorem = "the spatial average is equivalent to the statistical average".

Counter-example for the ergodic hypothesis:

Let F_1 and F_2 be stationary, both satisfy the ergodic theorem, $\bar{F}_j = \mathbb{E}[F_j(z)]$, j = 1, 2, with $\bar{F}_1 \neq \bar{F}_2$.

Flip a coin (independently of F_j) \rightarrow random variable $\chi = 0$ or 1 with probability 1/2.

Let
$$F(z) = \chi F_1(z) + (1 - \chi)F_2(z)$$
.

F is a stationary process with mean $\bar{F} = \frac{1}{2}(\bar{F}_1 + \bar{F}_2)$.

$$\frac{1}{Z} \int_0^Z F(z) dz = \chi \left(\frac{1}{Z} \int_0^Z F_1(z) dz \right) + (1 - \chi) \left(\frac{1}{Z} \int_0^Z F_2(z) dz \right)$$

$$\xrightarrow{Z \to \infty} \chi \bar{F}_1 + (1 - \chi) \bar{F}_2$$

which is a random limit different from \bar{F} .

The limit depends on χ because F has been trapped in a part of phase space.

Mean square theory

Let F be a stationary process, $\mathbb{E}[F(0)^2] < \infty$. Its autocorrelation function is:

$$R(z) = \mathbb{E}\left[(F(z_0) - \bar{F})(F(z_0 + z) - \bar{F}) \right]$$

- R is independent of z_0 by stationarity of F.
- $|R(z)| \leq R(0)$ by Cauchy-Schwarz:

$$|R(z)| \le \mathbb{E}\left[(F(0) - \bar{F})^2 \right]^{1/2} \mathbb{E}\left[(F(z) - \bar{F})^2 \right]^{1/2} = R(0)$$

• R is an even function R(-z) = R(z):

$$R(-z) = \mathbb{E}\left[(F(z_0 - z) - \bar{F})(F(z_0) - \bar{F}) \right]$$

$$\stackrel{z_0 = z}{=} \mathbb{E}\left[(F(0) - \bar{F})(F(z) - \bar{F}) \right] = R(z)$$

Proposition. Assume $\int_0^\infty |R(z)|dz < \infty$. Let $S(Z) = \frac{1}{Z} \int_0^Z F(z)dz$. Then $\mathbb{E}\left[(S(Z) - \bar{F})^2\right] \stackrel{Z \to \infty}{\longrightarrow} 0$

Corollary. For any $\delta > 0$

$$\mathbb{P}\left(|S(Z) - \bar{F}| > \delta\right) \le \frac{\mathbb{E}\left[\left(S(Z) - \bar{F}\right)^2\right]}{\delta^2} \xrightarrow{Z \to \infty} 0$$

We can show that

$$Z\mathbb{E}\left[\left(S(Z) - \bar{F}\right)^2\right] \xrightarrow{Z \to \infty} 2 \int_0^\infty R(z) dz$$

Proof:

$$\mathbb{E}\left[(S(Z) - \bar{F})^2 \right] = \mathbb{E}\left[\frac{1}{Z^2} \int_0^Z dz_1 \int_0^Z dz_2 (F(z_1) - \bar{F}) (F(z_2) - \bar{F}) \right]$$

$$= \frac{2}{Z^2} \int_0^Z dz_1 \int_0^{z_1} dz_2 R(z_1 - z_2)$$

$$= \frac{2}{Z^2} \int_0^Z dz \int_0^{Z-z} dh R(z)$$

$$= \frac{2}{Z} \int_0^Z \frac{Z - z}{Z} R(z) dz$$

Thus, denoting $R_Z(z) = \frac{Z-z}{Z}R(z)\mathbf{1}_{[0,Z]}(z)$, and using Lebesgue's theorem:

$$Z\mathbb{E}\left[\left(S(Z) - \bar{F}\right)^2\right] = 2\int_0^\infty R_Z(z)dz \stackrel{Z \to \infty}{\longrightarrow} 2\int_0^\infty R(z)dz$$

Let F be a stationary zero-mean random process. Denote

$$S_k(Z) = \frac{1}{\sqrt{Z}} \int_0^Z e^{ikz} F(z) dz$$

We can show similarly

$$\mathbb{E}[|S_k(Z)|^2] \xrightarrow{Z \to \infty} 2 \int_0^\infty R(z) \cos(kz) dz = \int_{-\infty}^\infty R(z) e^{ikz} dz$$

Simplified form of Bochner's theorem: If F is a stationary process, then the Fourier transform of its autocorrelation function is nonnegative.

Averaging

Let us consider $F(z,x), z \in \mathbb{R}^+, x \in \mathbb{R}^d$, such that:

- 1) for all $x \in \mathbb{R}^d$, $F(z, x) \in \mathbb{R}^d$ is a stochastic process in z.
- 2) there is a deterministic function $\bar{F}(x)$ such that

$$\bar{F}(x) = \lim_{Z \to \infty} \frac{1}{Z} \int_{z_0}^{z_0 + Z} \mathbb{E}[F(z, x)] dz$$

(limit independent of z_0).

Let $\varepsilon \ll 1$ and X^{ε} be the solution of

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon}, X^{\varepsilon}), \quad X^{\varepsilon}(0) = 0$$

Let us define \bar{X} solution of

$$\frac{d\bar{X}}{dz} = \bar{F}(\bar{X}), \quad \bar{X}(0) = 0$$

With some mild technical assumptions we have for any Z:

$$\sup_{z \in [0,Z]} \mathbb{E} \left[|X^{\varepsilon}(z) - \bar{X}(z)| \right] \xrightarrow{\varepsilon \to 0} 0$$

The proof can be obtained with elementary calculations with the hypotheses:

- 1) F is stationary. For all x, $\mathbb{E}\left[\left|\frac{1}{Z}\int_{0}^{Z}F(z,x)dz-\bar{F}(x)\right|\right]\overset{Z\to\infty}{\longrightarrow}0$
- 2) For all z, F(z, .) and $\bar{F}(.)$ are Lipschitz with a deterministic constant c.
- 3) For any compact $K \subset \mathbb{R}^d$, $\sup_{z \in \mathbb{R}^+, x \in K} |F(z, x)| + |\bar{F}(x)| < \infty$.

Remark: 1) is satisfied if for any x, the autocorrelation function $R_x(z)$ of $z \mapsto F(z,x)$ is integrable $\int |R_x(z)| dz < \infty$.

We have:

$$X^{\varepsilon}(z) = \int_0^z F(\frac{s}{\varepsilon}, X^{\varepsilon}(s)) ds, \qquad \bar{X}(z) = \int_0^z \bar{F}(\bar{X}(s)) ds$$

so the error can be written:

$$X^{\varepsilon}(z) - \bar{X}(z) = \int_{0}^{z} \left(F(\frac{s}{\varepsilon}, X^{\varepsilon}(s)) - F(\frac{s}{\varepsilon}, \bar{X}(s)) \right) ds + g^{\varepsilon}(z)$$

where
$$g^{\varepsilon}(z) := \int_0^z F(\frac{s}{\varepsilon}, \bar{X}(s)) - \bar{F}(\bar{X}(s)) ds$$
.

$$|X^{\varepsilon}(z) - \bar{X}(z)| \leq \int_{0}^{z} \left| F(\frac{s}{\varepsilon}, X^{\varepsilon}(s)) - F(\frac{s}{\varepsilon}, \bar{X}(s)) \right| ds + |g^{\varepsilon}(z)|$$

$$\leq c \int_{0}^{t} |X^{\varepsilon}(s) - \bar{X}(s)| ds + |g^{\varepsilon}(z)|$$

Take the expectation and apply Gronwall

$$\mathbb{E}\left[|X^{\varepsilon}(z) - \bar{X}(z)|\right] \le e^{ct} \sup_{s \in [0,z]} \mathbb{E}[|g^{\varepsilon}(s)|]$$

It remains to show that the last term goes to 0 as $\varepsilon \to 0$. Let $\delta > 0$

$$g^{\varepsilon}(z) = \sum_{k=0}^{[z/\delta]-1} \int_{k\delta}^{(k+1)\delta} \left(F(\frac{s}{\varepsilon}, \bar{X}(s)) - \bar{F}(\bar{X}(s)) \right) ds$$
$$+ \int_{\delta[z/\delta]}^{z} \left(F(\frac{s}{\varepsilon}, \bar{X}(s)) - \bar{F}(\bar{X}(s)) \right) ds$$

Denote $M_Z = \sup_{z \in [0,Z]} |\bar{X}(z)|$. Since F is Lipschitz and $K_Z = \sup_{x \in [-M_Z, M_Z]} |\bar{F}(x)|$ is finite:

$$\left| F(\frac{s}{\varepsilon}, \bar{X}(s)) - F(\frac{s}{\varepsilon}, \bar{X}(k\delta)) \right| \le c \left| \bar{X}(s) - \bar{X}(k\delta) \right| \le c\bar{K}_Z |s - k\delta|$$

Denoting $K_Z = \sup_{z \in \mathbb{R}^+, x \in [-M_Z, M_Z]} |F(z, x)|$:

$$\left| \bar{F}(\bar{X}(s)) - \bar{F}(\bar{X}(k\delta)) \right| \le cK_Z |s - k\delta|$$

Thus

$$|g^{\varepsilon}(z)| \leq \sum_{k=0}^{\lfloor z/\delta \rfloor - 1} \left| \int_{k\delta}^{(k+1)\delta} \left(F(\frac{s}{\varepsilon}, \bar{X}(s)) - \bar{F}(\bar{X}(s)) \right) ds \right|$$

$$+ \left| \int_{\delta[z/\delta]}^{z} \left(F(\frac{s}{\varepsilon}, \bar{X}(s)) - \bar{F}(\bar{X}(s)) \right) ds \right|$$

$$\leq \left| \sum_{k=0}^{\lfloor z/\delta \rfloor - 1} \int_{k\delta}^{(k+1)\delta} \left(F(\frac{s}{\varepsilon}, \bar{X}(k\delta)) - \bar{F}(\bar{X}(k\delta)) \right) ds \right|$$

$$+ c(\bar{K}_Z + K_Z) \sum_{k=0}^{\lfloor z/\delta \rfloor - 1} \int_{k\delta}^{(k+1)\delta} (s - k\delta) ds + (\bar{K}_Z + K_Z) \delta$$

$$\leq \varepsilon \sum_{k=0}^{\lfloor z/\delta \rfloor - 1} \left| \int_{k\delta/\varepsilon}^{(k+1)\delta/\varepsilon} \left(F(s, \bar{X}(k\delta)) - \bar{F}(\bar{X}(k\delta)) \right) ds \right|$$

$$+ (\bar{K}_Z + K_Z) (cz + 1) \delta$$

Take the expectation and the supremum:

$$\sup_{z \in [0,Z]} \mathbb{E}[|g^{\varepsilon}(z)|] \leq \delta \sum_{k=0}^{[Z/\delta]} \mathbb{E}\left[\left|\frac{\varepsilon}{\delta} \int_{k\delta/\varepsilon}^{(k+1)\delta/\varepsilon} \left(F(s,\bar{X}(k\delta)) - \bar{F}(\bar{X}(k\delta))\right) ds\right|\right] + (\bar{K}_Z + K_Z)(cZ + 1)\delta$$

Take the limit $\varepsilon \to 0$:

$$\limsup_{\varepsilon \to 0} \sup_{t \in [0,Z]} \mathbb{E}[|g^{\varepsilon}(t)|] \le (\bar{K}_Z + K_Z)(cZ + 1)\delta$$

Let $\delta \to 0$.

Method of averaging: Khasminskii theorem

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon}, X^{\varepsilon}), \quad X^{\varepsilon}(0) = x_0$$

 $x\mapsto F(x,z)$ and $x\mapsto \bar{F}(x)$ are Lipschitz, $z\mapsto F(z,x)$ is stationary and ergodic

$$\bar{F}(x) = \mathbb{E}[F(z,x)]$$

Let \bar{X} be the solution of

$$\frac{d\bar{X}}{dz} = \bar{F}(\bar{X}), \quad \bar{X}(0) = x_0$$

Theorem: for any Z > 0,

$$\sup_{z \in [0,Z]} \mathbb{E}\left[|X^{\varepsilon}(z) - \bar{X}(z)| \right] \xrightarrow{\varepsilon \to 0} 0$$

Equations for the Fourier components of the wave:

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon}, X^{\varepsilon}),$$

where

$$X^{\varepsilon} = \begin{pmatrix} \hat{p} \\ \hat{u} \end{pmatrix}, \quad F(z, X) = -i\omega \begin{pmatrix} 0 & \rho(z) \\ \frac{1}{\kappa(z)} & 0 \end{pmatrix} X$$

Apply the method of averaging $\Longrightarrow X^{\varepsilon}(\omega,z)$ converges in $L^{1}(\mathbb{P})$ to $\bar{X}(\omega,z)$

$$\frac{d\bar{X}}{dz} = -i\omega \begin{pmatrix} 0 & \bar{\rho} \\ \frac{1}{\bar{\kappa}} & 0 \end{pmatrix} \bar{X}, \quad \bar{\rho} = \mathbb{E}[\rho], \quad \bar{\kappa} = (\mathbb{E}[\kappa^{-1}])^{-1}$$

 \hookrightarrow deterministic "effective medium" with parameters $\bar{\rho}$, $\bar{\kappa}$.

Let (\bar{p}, \bar{u}) be the solution of the homogeneous effective system

$$\bar{\rho} \frac{\partial \bar{u}}{\partial t} + \frac{\partial \bar{p}}{\partial z} = 0$$
$$\frac{\partial \bar{p}}{\partial t} + \bar{\kappa} \frac{\partial \bar{u}}{\partial z} = 0$$

The propagation speed of (\bar{p}, \bar{u}) is $\bar{c} = \sqrt{\bar{\kappa}/\bar{\rho}}$.

Compare $p^{\varepsilon}(t,z)$ with $\bar{p}(t,z)$:

$$\mathbb{E}\left[\left|p^{\varepsilon}(t,z) - \bar{p}(t,z)\right|\right] = \frac{1}{2\pi} \mathbb{E}\left[\left|\int e^{-i\omega t} (\hat{p}^{\varepsilon}(\omega,z) - \hat{\bar{p}}(\omega,z)) d\omega\right|\right]$$

$$\leq \frac{1}{2\pi} \int \mathbb{E}\left[\left|\hat{p}^{\varepsilon}(\omega,z) - \hat{\bar{p}}(\omega,z)\right|\right] d\omega$$

The dominated convergence theorem then gives the convergence in $L^1(\mathbb{P})$ of p^{ε} to \bar{p} in the time domain.

 \hookrightarrow the effective speed of the acoustic wave $(p^{\varepsilon}, u^{\varepsilon})$ as $\varepsilon \to 0$ is \bar{c} .

This analysis is just a small piece of the homogenization theory. cf book *The theory of composites* by G. Milton.

Propagation through a stack of random layers

Sizes of the layers: i.i.d. with uniform distribution over [0.2, 0.6] (mean 0.4). Medium parameters $\rho \equiv 1, 1/\kappa_a = 0.2, 1/\kappa_b = 1.8$.

Propagation through a stack of random layers

Sizes of the layers: i.i.d. with uniform distribution over [0.04, 0.12] (mean 0.08).

Example: bubbles in water

 $\rho_a = 1.2 \ 10^3 \ \text{g/m}^3, \ \kappa_a = 1.4 \ 10^8 \ \text{g/s}^2/\text{m}, \ c_a = 340 \ \text{m/s}.$ $\rho_w = 1.0 \ 10^6 \ \text{g/m}^3, \ \kappa_w = 2.0 \ 10^{12} \ \text{g/s}^2/\text{m}, \ c_w = 1425 \ \text{m/s}.$

If the typical pulse frequency is 10 Hz - 30 kHz, then the typical wavelength is 1 cm - 100 m. The bubble sizes are much smaller \Longrightarrow the effective medium theory can be applied.

$$\bar{\rho} = \mathbb{E}[\rho] = \phi \rho_a + (1 - \phi) \rho_w = \begin{cases} 9.9 \ 10^5 \ \text{g/m}^3 & \text{if } \phi = 1\% \\ 9 \ 10^5 \ \text{g/m}^3 & \text{if } \phi = 10\% \end{cases}$$

$$\bar{\kappa} = (\mathbb{E}[\kappa^{-1}])^{-1} = \left(\frac{\phi}{\kappa_a} + \frac{1 - \phi}{\kappa_w}\right)^{-1} = \begin{cases} 1.4 \ 10^{10} \ \text{g/s}^2/\text{m} & \text{if } \phi = 1\% \\ 1.4 \ 10^9 \ \text{g/s}^2/\text{m} & \text{if } \phi = 10\% \end{cases}$$

where ϕ = volume fraction of air.

Thus, $\bar{c} = 120$ m/s if $\phi = 1\%$ and $\bar{c} = 37$ m/s if $\phi = 10$ %.

 \hookrightarrow the average sound speed \bar{c} can be much smaller than ess $\inf(c)$.

The converse is impossible:

$$\mathbb{E}[c^{-1}] = \mathbb{E}\left[\kappa^{-1/2}\rho^{1/2}\right] \le \mathbb{E}[\kappa^{-1}]^{1/2}\mathbb{E}[\rho]^{1/2} = \bar{c}^{-1}$$

Thus $\bar{c} \leq \mathbb{E}[c^{-1}]^{-1} \leq \text{ess sup}(c)$.

Long distance propagation

Toy model

$$\frac{dX^{\varepsilon}}{dz} = F(\frac{z}{\varepsilon})$$

with $F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$, F_i independent random variables $\mathbb{E}[F_i] = \bar{F} = 0$ and $\mathbb{E}[(F_i - \bar{F})^2] = \sigma^2$.

For any $z \in [0, Z]$, we have

$$X^{\varepsilon}(z) \xrightarrow{\varepsilon \to 0} \bar{X}(z), \qquad \frac{d\bar{X}}{dz} = \bar{F} = 0.$$

No macroscopic evolution is noticeable.

 \rightarrow it is necessary to look at larger z to get an effective behavior

$$z \mapsto \frac{z}{\varepsilon}, \quad \tilde{X}^{\varepsilon}(z) = X^{\varepsilon}(\frac{z}{\varepsilon})$$
$$\frac{d\tilde{X}^{\varepsilon}}{dz} = \frac{1}{\varepsilon}F(\frac{z}{\varepsilon^2})$$

Diffusion-approximation: Toy model

$$\frac{dX^{\varepsilon}}{dz} = \frac{1}{\varepsilon} F(\frac{z}{\varepsilon^2})$$

with $F(z) = \sum_{i=1}^{\infty} F_i \mathbf{1}_{[i-1,i)}(z)$, F_i independent random variables $\mathbb{E}[F_i] = 0$ and $\mathbb{E}[F_i^2] = \sigma^2$.

$$X^{\varepsilon}(z) = \varepsilon \int_{0}^{\frac{z}{\varepsilon^{2}}} F(s) ds = \varepsilon \left(\sum_{i=1}^{\left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor} F_{i} \right) + \varepsilon \int_{\left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor}^{\frac{z}{\varepsilon^{2}}} F(s) ds$$

$$= \varepsilon \sqrt{\left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor} \times \frac{1}{\sqrt{\left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor}} \left(\sum_{i=1}^{\left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor} F_{i} \right) + \varepsilon \left(\frac{z}{\varepsilon^{2}} - \left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor \right) F_{\left\lfloor \frac{z}{\varepsilon^{2}} \right\rfloor}$$

$$\varepsilon \to 0 \downarrow \qquad \text{a.s.} \downarrow$$

$$\sqrt{z} \qquad \text{law} \downarrow (CLT) \qquad 0$$

$$\mathcal{N}(0, \sigma^{2})$$

Thus: $X^{\varepsilon}(z)$ converges in distribution as $\varepsilon \to 0$ to the Gaussian statistics $\mathcal{N}(0, \sigma^2 z)$.

With some more work: The process $(X^{\varepsilon}(z))_{z\in\mathbb{R}^+}$ converges in distribution to a Brownian motion $\sigma W(z)$.

Next goal: determine the limit $\lim_{\varepsilon \to 0} X^{\varepsilon}(z)$ where

$$\frac{dX^{\varepsilon}}{dz} = \frac{1}{\varepsilon} F\left(\frac{z}{\varepsilon^2}, X^{\varepsilon}(z)\right)$$

when

$$\mathbb{E}[F(z,x)] = 0 \quad \forall x$$

Markov process

A stochastic process Y_z with state space S is Markov if $\forall 0 \leq s \leq z$ and $f \in L^{\infty}(S)$

$$\mathbb{E}[f(Y_z)|Y_u, u \le s] = \mathbb{E}[f(Y_z)|Y_s]$$

"the state Y_s at time s contains all relevant information for calculating probabilities of future events".

The processus is stationary if $\forall z \geq s \geq 0$, $\mathbb{E}[f(Y_z)|Y_s] = \mathbb{E}[f(Y_{z-s})|Y_0]$.

Define the family of operators on $L^{\infty}(S)$:

$$T_z f(y) = \mathbb{E}[f(Y_z)|Y_0 = y]$$

Proposition.

- 1) $T_0 = I_d$
- 2) $\forall s, z \leq 0, T_{z+s} = T_z T_s$
- 3) T_z is a contraction $||T_z f||_{\infty} \leq ||f||_{\infty}$.

Proof of 2):

$$T_{z+s}f(y) = \mathbb{E}[f(Y_{z+s})|Y_0 = y] = \mathbb{E}[\mathbb{E}[f(Y_{z+s})|Y_u, u \le z]|Y_0 = y]$$

$$= \mathbb{E}[\mathbb{E}[f(Y_{z+s})|Y_z]|Y_0 = y] = \mathbb{E}[T_s f(Y_z)|Y_0 = y]$$

$$= T_z T_s f(y)$$

Feller process: T_z is strongly continuous from C_0 to C_0 (for any $f \in C_0$, $||T_z f - f||_{\infty} \xrightarrow{z \to 0} 0$).

The generator of the Markov process is:

$$Q := \lim_{z \searrow 0} \frac{T_z - I_d}{z}$$

It is defined on a subset of C^0 , supposed to be dense.

Proposition. If $f \in \text{Dom}(Q)$, then the function $u(z, y) = T_z f(y)$ satisfies the Kolmogorov equation

$$\frac{\partial u}{\partial z} = Qu, \qquad u(z=0,y) = f(y)$$

Proof.

$$\frac{u(z+h,y)-u(z,y)}{h} = \frac{T_{z+h}f(y)-T_{z}f(y)}{h} = T_{z}\frac{T_{h}-I_{d}}{h}f(y) \xrightarrow{h\to 0} T_{z}Qf(y)$$

because $f \in \text{Dom}(Q)$ and T_z is continuous. This shows that u is differentiable and $\partial_z u = T_z Q f$. Besides

$$\frac{T_h - I_d}{h} T_z f(y) = \frac{T_{z+h} f(y) - T_z f(y)}{h} = \frac{u(z+h, y) - u(z, y)}{h}$$

has a limit as $h \to 0$, which shows that $T_z f \in \text{Dom}(Q)$ and $\partial_z u = Q T_z f = Q u$.

Example: Brownian motion

 W_z : Gaussian process with independent increments

$$\mathbb{E}[(W_{z+h} - W_z)^2] = h$$

The semi-group T_z is the heat kernel:

$$T_z f(x) = \mathbb{E}[f(x+W_z^{(0)})] = \int f(x+w) \frac{1}{\sqrt{2\pi z}} \exp\left(-\frac{w^2}{2z}\right) dz$$
$$= \int f(y) \frac{1}{\sqrt{2\pi z}} \exp\left(-\frac{(y-x)^2}{2z}\right) dy$$

It is a Markov process with the generator:

$$Q = \frac{1}{2} \frac{\partial^2}{\partial x^2}$$

Example: Two-state Markov process

The process Y_z takes values in $S = \{-1, 1\}$.

The time intervals are independent with the common exponential distribution with mean 1.

Functions $f \in L^{\infty}(S)$ are vectors. The semigroup $(T_z)_{z\geq 0}$ is a family of matrices:

$$T_z = \begin{pmatrix} \mathbb{P}(Y_z = 1 | Y_0 = 1) & \mathbb{P}(Y_z = 1 | Y_0 = -1) \\ \mathbb{P}(Y_z = -1 | Y_0 = 1) & \mathbb{P}(Y_z = -1 | Y_0 = -1) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}e^{-2z} & \frac{1}{2} - \frac{1}{2}e^{-2z} \\ \frac{1}{2} - \frac{1}{2}e^{-2z} & \frac{1}{2} + \frac{1}{2}e^{-2z} \end{pmatrix}$$

The generator is a matrix:

$$Q = \lim_{h \to 0} \frac{T_h - I}{h} = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix}$$

Martingale property

For any function $f \in \text{Dom}(Q)$, the process

$$M_f(z) := f(Y_z) - \int_0^z Qf(Y_u) du$$

is a martingale.

Denoting $\mathcal{F}_s = \sigma(Y_u, 0 \le u \le s)$,

$$\mathbb{E}[M_f(z)|\mathcal{F}_s] = M_f(s) + \mathbb{E}\left[f(Y_z) - f(Y_s) - \int_s^z Qf(Y_u)du|Y_s\right]$$

$$= M_f(s) + T_{z-s}f(Y_s) - f(Y_s) - \int_s^z T_{u-s}Qf(Y_s)du$$

$$= M_f(s) + T_{z-s}f(Y_s) - f(Y_s) - \int_0^{z-s} T_uQf(Y_s)du$$

The function $T_z f(y)$ satisfies the Kolmogorov equation, which shows that the last three terms of the r.h.s. cancel:

$$\mathbb{E}[M_f(z)|\mathcal{F}_s] = M_f(s)$$

Reciprocal: If Q is non-degenerate, and M_f is a martingale for all test functions f, then Y is a Markov process with generator Q.

Ordinary differential equation driven by a Feller process

Proposition. Let Y be a S-valued Feller process with generator Q and X be the solution of:

$$\frac{dX}{dz} = F(Y_z, X(z)), \quad X(0) = x \in \mathbb{R}^d$$

where $F: S \times \mathbb{R}^d \to \mathbb{R}^d$ is a bounded Borel function such that $x \mapsto F(y, x)$ has bounded derivatives uniformly with respect to $y \in S$. Then $\tilde{X} = (Y, X)$ is a Markov process with generator:

$$\mathcal{L} = Q + \sum_{j=1}^{d} F_j(y, x) \frac{\partial}{\partial x_j}$$

Formal proof. Let f be a test function.

$$\frac{d}{dz}\mathbb{E}[f(Y_z, X(z))|Y_0 = y, X(0) = x]
= \mathbb{E}[Qf(Y_z, X(z))|Y_0 = y, X(0) = x]
+ \mathbb{E}[\nabla_x f(Y_z, X(z))F(Y_z, X(z))|Y_0 = y, X(0) = x]
= \mathbb{E}[\mathcal{L}f(Y_z, X(z))|Y_0 = y, X(0) = x]$$

Ergodic Markov process

Ergodicity is related to the null spaces of Q and Q^* .

With some additional hypotheses (irreducibility):

A Markov process is ergodic iff there is a unique invariant probability measure \mathbb{P} satisfying $Q^*\mathbb{P} = 0$, i.e.

$$\int T_z f(y) d\mathbb{P}(y) = \int f(y) d\mathbb{P}(y) \iff \mathbb{E}_{\mathbb{P}}[f(Y_z)] = \mathbb{E}_{\mathbb{P}}[f(Y_0)]$$

Ergodicity: $T_z f(y)$ converges to $\mathbb{E}_{\mathbb{P}}[f(Y_0)]$ as $z \to \infty$. The spectrum of Q gives the convergence (mixing) rate. The existence of a spectral gap

$$\inf_{f, \int f d\mathbb{P} = 0} \frac{-\int fQfd\mathbb{P}}{\int f^2d\mathbb{P}} > 0$$

ensures the exponential convergence of $T_z f(y)$ to $\mathbb{E}_{\mathbb{P}}[f(Y_0)]$.

Also: Since $T_z 1 = 1$, we have Q1 = 0, so that $1 \in \text{Null}(Q)$.

Thus $Null(Q^*)$ is at least one-dimensional.

A Markov process is ergodic iff $Null(Q) = Span(\{1\})$

Example: Two-state Markov process

The process Y_z takes values in $S = \{-1, 1\}$.

The time intervals are independent with the common exponential distribution with mean 1.

The semigroup $(T_z)_{z\geq 0}$ is a family of matrices:

$$T_z = \begin{pmatrix} \mathbb{P}(Y_z = 1 | Y_0 = 1) & \mathbb{P}(Y_z = 1 | Y_0 = -1) \\ \mathbb{P}(Y_z = -1 | Y_0 = 1) & \mathbb{P}(Y_z = -1 | Y_0 = -1) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2}e^{-2z} & \frac{1}{2} - \frac{1}{2}e^{-2z} \\ \frac{1}{2} - \frac{1}{2}e^{-2z} & \frac{1}{2} + \frac{1}{2}e^{-2z} \end{pmatrix}$$

The generator is a matrix:

$$Q = \lim_{h \to 0} \frac{T_h - I}{h} = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix}$$

It is ergodic. The invariant probability $(Q^T \bar{p} = 0)$ is the uniform probability $\bar{p} = (1/2, 1/2)^T$ over S.

Example: Brownian motion

 W_z : Gaussian process with independent increments

$$\mathbb{E}[(W_{z+h} - W_z)^2] = h$$

The semi-group T_z is the heat kernel:

$$T_z f(x) = \int f(y) p_z(x, y) dy$$
, $p_z(x, y) = \frac{1}{\sqrt{2\pi z}} \exp\left(-\frac{(y - x)^2}{2z}\right)$

It is a Markov process with the generator:

$$Q = \frac{1}{2} \frac{\partial^2}{\partial x^2}$$

It is not ergodic.

Example: Ornstein-Uhlenbeck process

Solution of the stochastic differential equation $dX(z) = -\lambda X(z)dz + dW_z$:

$$X(z) = X_0 e^{-\lambda z} + \int_0^z e^{-\lambda(z-s)} dW_s$$

where W_z is a Brownian motion, $\lambda > 0$.

(if $z \mapsto t$, this process describes the motion of a particle in a quadratic potential)

The semi-group T_z is

$$T_z f(x) = \int f(y) p_z(x, y) dy$$

 $y \mapsto p_z(x,y)$ is a Gaussian density with mean $xe^{-\lambda z}$ and variance $\sigma^2(z)$:

$$p_z(x,y) = \frac{1}{\sqrt{2\pi\sigma(z)^2}} \exp\left(-\frac{(y-xe^{-\lambda z})^2}{2\sigma^2(z)}\right), \quad \sigma^2(z) = \frac{1-e^{-2\lambda z}}{2\lambda}$$

The generator is:

$$Q = \frac{1}{2} \frac{\partial^2}{\partial x^2} - \lambda x \frac{\partial}{\partial x}$$

X(z) is ergodic. Its invariant probability density $(Q^*\bar{p}=0)$ is

$$\bar{p}(y) = \sqrt{\frac{\lambda}{\pi}} \exp(-\lambda y^2)$$

Diffusion processes

• Let σ and b be $C^1(\mathbb{R}, \mathbb{R})$ functions with bounded derivatives. Let W_z be a Brownian motion.

The solution X(z) of the 1D stochastic differential equation:

$$dX(z) = \sigma(X(z))dW_z + b(X(z))dz$$

is a Markov process with the generator

$$Q = \frac{1}{2}\sigma^2(x)\frac{\partial^2}{\partial x^2} + b(x)\frac{\partial}{\partial x}$$

• Let $\sigma \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m)$ and $b \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ with bounded derivatives. Let W_z be a m-dimensional Brownian motion.

The solution X(z) of the stochastic differential equation:

$$dX(z) = \sigma(X(z))dW_z + b(X(z))dz$$

is a Markov process with the generator

$$Q = \frac{1}{2} \sum_{ij} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_i b_i(x) \frac{\partial}{\partial x_i}$$

with $a = \sigma \sigma^T$.

Poisson equation Qu = f

Let us consider an ergodic Markov process with generator Q.

 $\text{Null}(Q^*)$ has dimension 1 and is spanned by the invariant probability \mathbb{P} .

By Fredholm alternative, the Poisson equation has a solution iff $f \perp \text{Null}(Q^*)$, i.e. $\int f d\mathbb{P} = 0$ or $\mathbb{E}[f(Y_0)] = 0$ where \mathbb{E} is the expectation w.r.t. the invariant probability \mathbb{P} .

Proposition. If $\mathbb{E}[f(Y_0)] = 0$, a solution of Qu = f is

$$u(y) = -\int_0^\infty T_z f(y) dz$$

Remember that $T_z f(y) = \mathbb{E}[f(Y_z)|Y_0 = y].$

Proof.

$$u(y) = -\int_0^\infty T_z f(y) dz = -\int_0^\infty \{ T_z f(y) - \mathbb{E}[f(Y_0)] \} dz$$

The convergence of this integral requires some mixing.

Using Kolmogorov equation

$$Qu = -\int QT_z f dz = -\int_0^\infty \frac{dT_z f}{dz} dz = -[T_z f]_0^\infty = f - \mathbb{E}[f(Y_0)] = f$$

Moreover $\mathbb{E}[u(Y_0)] = 0$ because $\mathbb{E}[f(Y_z)] = \mathbb{E}[f(Y_0)] = 0$.

Finally:

$$\left[-\int_0^\infty dz T_z\right]: \mathcal{D} \to \mathcal{D} \text{ is the inverse of } Q \text{ on } \mathcal{D} = (\mathrm{Null}(Q^*))^{\perp}.$$

Diffusion-approximation

$$\frac{dX^{\varepsilon}}{dz}(z) = \frac{1}{\varepsilon} F\left(Y(\frac{z}{\varepsilon^2}), X^{\varepsilon}(z)\right), \qquad X^{\varepsilon}(0) = x_0 \in \mathbb{R}^d.$$

Y stationary and ergodic, F centered: $\mathbb{E}[F(Y(0), x)] = 0$.

Theorem: The processes $(X^{\varepsilon}(z))_{z\geq 0}$ converge in distribution in $\mathbf{C}^{0}([0,\infty),\mathbb{R}^{d})$ to the diffusion (Markov) process X with generator \mathcal{L} .

$$\mathcal{L}f(x) = \int_0^\infty du \mathbb{E}\left[F(Y(0), x).\nabla \left(F(Y(u), x).\nabla f(x)\right)\right].$$

$$\mathcal{L} = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{d} b_j(x) \frac{\partial}{\partial x_j}$$

with

$$a_{ij}(x) = \int_0^\infty du \mathbb{E}\left[F_i(Y(0), x)F_j(Y(u), x)\right]$$

$$b_j(x) = \sum_{i=1}^d \int_0^\infty du \mathbb{E} \left[F_i(Y(0), x) \partial_{x_i} F_j(Y(u), x) \right]$$

Formal proof. Assume that Y is Markov, with generator Q, ergodic (+ technical conditions for the Fredholm alternative).

The joint process $\tilde{X}^{\varepsilon}(z) := (Y(z/\varepsilon^2), X^{\varepsilon}(z))$ is Markov with

$$\mathcal{L}^{\varepsilon} = \frac{1}{\varepsilon^2} Q + \frac{1}{\varepsilon} F(y, x) \cdot \nabla$$

The Kolmogorov backward equation for this process is

$$\frac{\partial U^{\varepsilon}}{\partial z} = \mathcal{L}^{\varepsilon} U^{\varepsilon} \tag{1}$$

Let us take an initial condition at z = 0 independent of y:

$$U^{\varepsilon}(z=0,y,x) = f(x)$$

where f is a smooth test function. We solve (1) as $\varepsilon \to 0$ by assuming the multiple scale expansion:

$$U^{\varepsilon} = \sum_{n=0}^{\infty} \varepsilon^n U_n(z, y, x) \tag{2}$$

Then Eq. (1) becomes

$$\frac{\partial U^{\varepsilon}}{\partial z} = \frac{1}{\varepsilon^2} Q U^{\varepsilon} + \frac{1}{\varepsilon} F. \nabla U^{\varepsilon} \tag{3}$$

We obtain a hierarchy of equations:

$$QU_0 = 0 (4)$$

$$QU_1 + F.\nabla U_0 = 0 (5)$$

$$QU_2 + F.\nabla U_1 = \frac{\partial U_0}{\partial z} \tag{6}$$

Y(z) is ergodic i.e. $Null(Q) = Span(\{1\})$. Thus Eq. (4) $\Longrightarrow U_0$ does not depend on y.

 U_1 must satisfy

$$QU_1 = -F(y, x) \cdot \nabla U_0(z, x) \tag{7}$$

Q is not invertible, we know that $Null(Q) = Span(\{1\})$.

 $\operatorname{Null}(Q^*)$ has dimension 1 and is generated by the invariant probability \mathbb{P} .

By Fredholm alternative, the Poisson equation QU = g has a solution U if g satisfies $g \perp \text{Null}(Q^*)$, i.e. $\int g d\mathbb{P} = 0$, i.e. $\mathbb{E}[g(Y(0))] = 0$.

Since the r.h.s. of Eq. (7) is centered, this equation has a solution U_1

$$U_1(z, y, x) = -Q^{-1}F(y, x) \cdot \nabla U_0(z, x)$$

$$U_1(z, y, x) = -Q^{-1}[F(y, x)] \cdot \nabla U_0(z, x)$$
(8)

up to an additive constant, where $-Q^{-1} = \int_0^\infty dz T_z$.

Substitute (8) into (6): $\frac{\partial U_0}{\partial z} = QU_2 + F.\nabla U_1$ and take the expectation w.r.t \mathbb{P} . We get that U_0 must satisfy

$$\frac{\partial U_0}{\partial z} = \mathbb{E}\left[F.\nabla(-Q^{-1}F.\nabla U_0)\right]$$

This is the solvability condition for (6) and this is the limit Kolmogorov equation for the process X^{ε} :

$$\frac{\partial U_0}{\partial z} = \mathcal{L}U_0$$

with the limit generator

$$\mathcal{L} = \int_0^\infty \mathbb{E} \left[F.\nabla (T_z F.\nabla) \right] dz$$

Using the probabilistic representation of the semi-group e^{zQ} we get

$$\mathcal{L} = \int_0^\infty \mathbb{E}[F(Y(0), x).\nabla F(Y(z), x).\nabla]dz$$

Rigorous proof: The generator

$$\mathcal{L}^{\varepsilon} = \frac{1}{\varepsilon^2} Q + \frac{1}{\varepsilon} F(y, x) \cdot \nabla$$

of $(X^{\varepsilon}(.), Y(\frac{\cdot}{\varepsilon^2}))$ is such that

$$f(Y(\frac{z}{\varepsilon^2}), X^{\varepsilon}(z)) - f(Y(\frac{s}{\varepsilon^2}), X^{\varepsilon}(s)) - \int_s^z \mathcal{L}^{\varepsilon} f(Y(\frac{u}{\varepsilon^2}), X^{\varepsilon}(u)) du$$

is a martingale for any test function f.

 \Longrightarrow Convergence of martingale problems.

Convergence of martingale problems

Assume for a while: $\forall f \in \mathcal{C}_b^{\infty}$, there exists f^{ε} such that:

$$\sup_{x \in K, y \in S} |f^{\varepsilon}(y, x) - f(x)| \xrightarrow{\varepsilon \to 0} 0, \qquad \sup_{x \in K, y \in S} |\mathcal{L}^{\varepsilon} f^{\varepsilon}(y, x) - \mathcal{L} f(x)| \xrightarrow{\varepsilon \to 0} 0.$$

Assume tightness and extract $\varepsilon_p \to 0$ such that $X^{\varepsilon_p} \to X$.

Take $z_1 < ... < z_n < s < z \text{ and } h_1, ..., h_n \in C_b^{\infty}$:

$$\mathbb{E}\left[\left(f^{\varepsilon}(Y(\frac{z}{\varepsilon^{2}}), X^{\varepsilon}(z)) - f^{\varepsilon}(Y(\frac{s}{\varepsilon^{2}}), X^{\varepsilon}(s)) - \int_{s}^{z} \mathcal{L}^{\varepsilon} f^{\varepsilon}(Y(\frac{u}{\varepsilon^{2}}), X^{\varepsilon}(u)) du\right) h_{1}(X^{\varepsilon}(z_{1})) ... h_{n}(X^{\varepsilon}(z_{n}))\right] = 0$$

Take $\varepsilon_p \to 0$ so that $X^{\varepsilon_p} \to X$:

$$\mathbb{E}\left[\left(f(X(z)) - f(X(s))\right) - \int_{s}^{z} \mathcal{L}f(X(u))du\right) h_{1}(X(z_{1}))...h_{n}(X(z_{n}))\right] = 0$$

X is solution of the martingale problem associated to \mathcal{L} .

Perturbed test function method

Proposition: $\forall f \in \mathcal{C}_b^{\infty}$, there exists a family f^{ε} such that:

$$\sup_{x \in K, y \in S} |f^{\varepsilon}(y, x) - f(x)| \xrightarrow{\varepsilon \to 0} 0, \qquad \sup_{x \in K, y \in S} |\mathcal{L}^{\varepsilon} f^{\varepsilon}(y, x) - \mathcal{L} f(x)| \xrightarrow{\varepsilon \to 0} 0.$$

Proof: Define $f^{\varepsilon}(y,x) = f(x) + \varepsilon f_1(y,x) + \varepsilon^2 f_2(y,x)$.

Applying $\mathcal{L}^{\varepsilon} = \frac{1}{\varepsilon^2}Q + \frac{1}{\varepsilon}F(y,x).\nabla$ to f^{ε} , one gets:

$$\mathcal{L}^{\varepsilon} f^{\varepsilon} = \frac{1}{\varepsilon} \left(Q f_1 + F(y, x) \cdot \nabla f(x) \right) + \left(Q f_2 + F \cdot \nabla f_1(y, x) \right) + O(\varepsilon).$$

Define the corrections f_j as follows:

1.
$$f_1(y,x) = -Q^{-1}(F(y,x).\nabla f(x)).$$

Q has an inverse on the subspace of centered functions.

$$f_1(y,x) = \int_0^\infty du \mathbb{E}[F(Y(u),x).\nabla f(x)|Y(0) = y].$$

2.
$$f_2(y,x) = -Q^{-1}(F.\nabla f_1(y,x) - \mathbb{E}[F.\nabla f_1(y,x)]).$$

It remains: $\mathcal{L}^{\varepsilon} f^{\varepsilon} = \mathbb{E}[F.\nabla f_1(y,x)] + O(\varepsilon).$

One-dimensional case

$$\frac{dX^{\varepsilon}}{dz} = \frac{1}{\varepsilon} F\left(Y(\frac{z}{\varepsilon^2}), X^{\varepsilon}(z)\right), \qquad X^{\varepsilon}(z=0) = x_0 \in \mathbb{R}$$

Then $X^{\varepsilon} \xrightarrow{\varepsilon \to 0} X$ where X is the diffusion process with generator

$$\mathcal{L} = a(x)\frac{\partial^2}{\partial x^2} + b(x)\frac{\partial}{\partial x}$$

with

$$a(x) = \int_0^\infty du \mathbb{E}\left[F(Y(0), x) F(Y(u), x)\right]$$

$$b(x) = \int_0^\infty du \mathbb{E} \left[F(Y(0), x) \partial_x F(Y(u), x) \right]$$

The limit process can be identified as the solution of the **stochastic** differential equation

$$dX = b(X)dz + \sqrt{2a(X)}dW_z$$

where W is a Brownian motion.

Limit theorems - Random vs. periodic

$$\frac{dX^{\varepsilon}}{dz}(z) = \frac{1}{\varepsilon} F(Y(\frac{z}{\varepsilon^2}), X^{\varepsilon}(z), \frac{z}{\varepsilon^{2+c}}), \qquad X^{\varepsilon}(0) = x_0 \in \mathbb{R}^d.$$

 $F(y, x, \phi)$ is periodic with respect to ϕ .

Case 1. Slow phase: -2 < c < 0 and $\mathbb{E}[F(Y(0), x, \phi)] = 0$.

Case 2. Fast phase: c = 0 and $\langle \mathbb{E}[F(Y(0), x, \phi)] \rangle_{\phi} = 0$.

Case 3. Ultra-fast phase: c > 0 and $\langle \mathbb{E}[F(Y(0), x, \phi)] \rangle_{\phi} = 0$.

The processes $(X^{\varepsilon}(z))_{z\geq 0}$ converge to X with generator \mathcal{L}_j :

$$\mathcal{L}_1 f(x) = \left\langle \int_0^\infty du \mathbb{E} \left[F(Y(0), x, .) . \nabla \left(F(Y(u), x, .) . \nabla f(x) \right) \right] \right\rangle_{\phi},$$

$$\mathcal{L}_2 f(x) = \int_0^\infty du \, \langle \mathbb{E} \left[F(Y(0), x, .) . \nabla \left(F(Y(u), x, . + u) . \nabla f(x) \right) \right] \rangle_\phi \,,$$

$$\mathcal{L}_{3}f(x) = \int_{0}^{\infty} du \mathbb{E}\left[\left\langle F(Y(0), x, .)\right\rangle_{\phi} . \nabla\left(\left\langle F(Y(u), x, .)\right\rangle_{\phi} . \nabla f(x)\right)\right].$$

The averaging theorem revisited

Consider the random differential equation

$$\frac{dX^{\varepsilon}}{dz} = F\left(Y\left(\frac{z}{\varepsilon}\right), X^{\varepsilon}(z)\right), \quad X^{\varepsilon}(0) = x_0$$

where we do not assume that F(y,x) is centered. We denote its mean by

$$\bar{F}(x) = \mathbb{E}[F(Y(0), x)]$$

Then $(Y(z/\varepsilon), X^{\varepsilon}(z))$ is a Markov process with generator

$$\mathcal{L}^{\varepsilon} = \frac{1}{\varepsilon}Q + F(y, x) \cdot \nabla$$

Let f(x) be a test function. Define $f^{\varepsilon}(y,x) = f(x) + \varepsilon f_1(y,x)$ where f_1 solves the Poisson equation

$$Qf_1(y,x) + \left[F(y,x) \cdot \nabla f(x) - \bar{F}(x) \cdot \nabla f(x) \right] = 0$$

We get $\mathcal{L}^{\varepsilon} f^{\varepsilon}(y, x) = \bar{F}(x) \cdot \nabla f(x) + O(\varepsilon)$. Therefore the processes $X^{\varepsilon}(z)$ converge to the solution of the martingale problem associated with the generator $\mathcal{L}f(x) = \bar{F}(x) \cdot \nabla f(x)$. The solution is the deterministic process $\bar{X}(z)$

$$\frac{d\bar{X}}{dz} = \bar{F}(\bar{X}(z)) , \quad \bar{X}(0) = x_0.$$