Ultrasound experiment by M. Fink

cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves
Random Media 10 (2000), R31-R60.

80 mm -
o
S

Time-reversed signals

vt —
-

MRT

(a) (b)
Experimental set-up for a time-reversal experiment through a
multiple-scattering medium:
(a) first step, the source sends a pulse through the sample, the transmitted
wave is recorded by the TRM.
(b) second step, the multiply scattered signals have been time-reverted, they

are retransmitted by the TRM, and S records the reconstructed pressure field.
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Experimental observations

The source emits a short

1 us pulse.

The TRM records a long
scattered signal.

Recompression at the source

location after propagation
of the time-reversed wave.



Scattering of an acoustic pulse in random media

Acoustic equations for pressure p and speed u:
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IC: left-going pulse incoming from the right homogeneous half-space.

m(z) = n(z) +v(z),  n(z) = n(z) - v(z)

Local velocity: c(2) = v/k(2)/p(2).
Local impedance: C( ) = p(z)c(z).



Integral representation of the reflected signal

Send a left-going pulse f(%):

Pone(tiz=0) = f(Hy= L / e Fw)dw

Reflected signal:

N p(z) =1+v(Z)

L)y =1 tn(5)| Pyt 2l RLG)

—L 0 z —L z
R;,(z) is the reflection coefficient for a random slab [—L, z|:

dR;, W z

’[:w z _ 2iwz

dz € g2 g2 2 g2

with the initial condition at z = —L: R, (z = —L) = 0.

Energy conservation |RS|? 4 |T5|* = 1 — uniform boundedness of RZ,.

= —Zm(S)R+ on(S)e T (RL) - on(S)e



Numerical simulation
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Time reversal in reflection (TR)

(P u)ine(t)

N p(z) = L+ v(5) VAN

L@ =140(%) |
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Denote pf.(t) = f(£).

Record pf..¢(t) up to time ¢;.

Cut a piece pr.f cut(t) = Drep(t)G1(t), with supp(G1) C [0, t1].
Time reverse and send back pg,..7r)(t) = Pref,cut(t1 —1).
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Expression of the refocused pulse

The incoming signal f(%)

pinc(t) = 5 / e f(w)duw

propagates into the medium and generates the reflected signal:

pies(®) = 5= [ ¢ FRE O

Record up to time t; and cut a piece of the recorded signal (i.e.

G1(t) = 1jo,441(?))
pief,cut(t) — pief (ta < = O)Gl (t)

Time-reverse and send back into the medium:

pz&':nc(TR) (t) — pref tl —1 Gl (tl — t)

_dw(tg—t) e I A w — / p
= : dw'd
oz [ [ B @e (e

The signal is real-valued:

w—w

zw(tl t)
pznc(TR)<t> 27'('5 // pref( )Gl( - )dw dw




The new signal propagates into the same medium and generates a new

reflected signal observed at time t2 + es:

1 iwtq

pief(TR)(t2 +€S) — %/ﬁfnc(TR)(w)Rfa(O)e_ © _iwsdw

Subsituting the expression of ﬁfm(T r) Into this equation:

c o—iws M w—w
pref(TR) (t2 + 88) — f( )Gl( e )
0)R, (0)dw'dw.
Change of variables w’ = w — eh:
€ —’st iw(ty —ta) =
Poaam(tetes) = G / / = flw - )G ()

ke, (0)dh dw.

The autocorrelation function R°,(0)R;,(0) plays a primary role.

Refocusing at to = ;.



We have obtained:

v (DR

E|R° , .»(0)R _ﬂ(o} =0 /Wl(o w,T)e" T dr
In the time domain:
€ e—0 1 —iws 7 A
E [pref(TR) (tl + 68)] (27_‘_)2 //6 f(W)Gl(h)

X U Wl(o,w,f)ei”dﬂ dh dw

_ / / —iws f (1)W1 (0, w, T)drdw

= 27 ™% f(w) Krg(w)dw

= (f(=)xKrr) (s)

where

Krgr(w /G1 IWh (0, w, T)dT

This results only holds true in average (averaging over all possible realizations

of the medium) !



Frequency correlation of R

Let us consider the forth-order moment at 4 different frequencies of R,
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Dref(Tr)(t1 +€5) = //eiwsg(w,h)RZJr%Rs _, dwdh
2

w__

E [presrm(ti +es)°] = /"/dwldwdhldhwi(wﬁwg)sg(wl,hl)g(wz,h2)

g g
XE |:R _|_5h,1 RE €h1 R 5 5h,2 RE €h2

wit—3- w5t w2t w2—2]

EEO/../dW1dw2dh1dh2€_i(wl+w2)sg(W1,h1)g(w2,hg)

X K RE n, RE E RE ho IRE

e—0

~ B [presrn(tr +es)])”

Var (prerrr)(t1 +€5)) =% 0 = Convergence in L? and in probability of
Pref(TR) (t1 +es).

Decorrelation in frequency of R;, = Self-averaging in time of p;. ¢(rg)-



Convergence of the refocused pulse

The refocused signal (pie rrr)(tl + 88)) converges in probability as

s€(—o00,00)

e —0to
Prepirry(s) = (f(— ) * Krr(")) ()

Rorn(w) = / G (FYW1 (0, w, 7)dr

where W (0, w, 7) is the deterministic density given by the system of

transport equations.
In particular, if L — oc:

8Ynw?
(8 + ’ynw27)2

Wi(0,w,7) =

— The refocused pulse has deterministic center and shape.

— There is statistical stability.
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Numerical simulation
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Comparisons simulations - theory

-15 -10 -5 0 5 10 15

Profiles of the refocused pulse at z =0

Comparison with Comparison with
the input pulse the asymptotic formula

f(t) Krr * f(—1)



Application to imagery

Goal: extract the information about the large-scale properties of the medium

(1007 '%O)

This information is contained in Wi (0,w, 7). The problem is to find a

statistically stable estimator of Wj.

Method:
1) Compare the input pulse f(¢) and the refocused pulse Ktr * f(—t).
— Extract (Ktr(w))w.

Ron(w) = / G (FYW1 (0, w, 7)dr

2) Use different truncation functions G1 to get (W1 (0,w, 7))

— large-scale variations of the medium.

, T

Statistically stable method, no local average is needed.



Application to communications

How to send a message f(t) from E to R in a highly scattering medium ¢
1) R emits a short, broadband pulse pulse fy(t).

2) E receives and records a noisy signal G(t).

3) E emits [f x G(—-)](t).

4) R receives [KTr * fo(—) * f](t).

— R can extract f.

(OK in ocean acoustics, difficult in electromagnetics).



Time reversal in changing media

Medium 2 (P, u)ine(t)
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Denote pfe(t) = F(1).

Record p;..;(t) up to time ;.

Cut a piece pier cut(t) = Pres(t)G1(t), with supp(G1) C [0, ¢1].
Time reverse and send it back p;,.crr)(t) = Pref,cut(t1 — ).
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Changing media

The density and compressibility fluctuations (v;,n;) and (vi;, n::) are
identically distributed.

Integrated correlation functions:
=2 [ EpOn@lds  m =2 [ EmO)m()d:
0 0

Degree of correlation § € [—1,1]:

fooo E[mi(0)m;i(z)]dz 5 fO 0)nii(z)]dz
S Emi(0)ma(2)ldz" " [T E[w( Vi (2)]dz

0 = 1 < complete correlation. 0 = 0 < complete decorrelation.

Om =

Refocused pulse:

pref(TR) (tl + 88 _’LWS w o gh’)th (h’)

X RS(0)REY _, (0)dh dw

where the reflection coefficient RS;" satisfies the Ricatti equation:

de;i_ W eqi W
= i) RS+ o

z 29wz

e (R - (S




Asymptotics of the refocused pulse

Expectation of the autocorrelation function RS’ RE®:

E|R>*., ()R _, (O)] 6—>—>0/’U1(0,w,7')6ih7—d7'
w—

where v1 is given by a system of transport equations for (vp)pen:

ov ov 1
a -l —|_ 2p 8 L= 4571'771‘*}2]72 (Up+1 —|_ 'Up_l T 2'Up)

1—34,
-— Vnw? P vp — (1 — Gm) ymw’p vy

vp(2 = —L,w,7) = do(7)Lo(p)

= Convergence of the expectation of the refocused pulse:

E— 1 —zws
Elpfes o (t + e5)] =3 = / / G ()01 (0, w, 7)drds

But:

E[pref(TR)(tl—l-é‘S yara { // _WS G1(m)v1 (0, w, T7)dTdw

2



Equivalently v, (z,w, 7, 2) = E[W,(z,w, )] where (W, )pen is solution of

dW, + 2p329/7\fp dz = ipw\/2(1 — 8m)Ym Wy 0 dW.,
—I—ién'yanpQ Wps1 + Wp—1 —2W,,) — L= 0n ’ynw2p2Wp
Wp(z=—-L,w,7) = 0do(7)1lo(p)
W, is a standard Brownian motion.
Thus
E[pesrm(t +es)] =3 L / / i £ ()G (1) E W1 (0, w, 7)] drdw

e Convergence of the finite-dimensional distributions:

e—0

E [pief(TR) (t1 +es1)Pt. "pief(TR) (t1 + 55k)pk] -
— : Pj
B [[Lejer (2 /S W1(0,0,7) f(w)e 7 Ga (r)dwdr ) ]
e Tightness of (p;..;(rr)(t1+€S))se(—co,00) N the space of continuous functions.

e Conclusion:  py. ¢ rr)(t1 + €s) converges in distribution to

L [ fWi(0,w,7) f(w)e ™G (r)dwdr



Probabilistic representation of the transport equations

Consider our familiar jump (Markov) process (IV;).>_r with state space N and

generator

LOHN) = 17w N* (N + 1) + §(N — 1) = 29(N))

Therefore (Feynman-Kac) :

/ Wi(0,w,7)dr = E [exp (i\/Q'ym(l — 5m)w/ N_L_SdWS>
70

xexp( 1_5 / NL Sds)

% 10(No)Lirg.re] (/ 2N, ds) | N, = 1]
_L

where E is the expectation w.r.t the distribution of (IV;).>_r




Convergence of the refocused pulse

The refocused signal (pie rrr)(tt + 88)) converges in distribution as

s€E(—o00,00)

e — 0 to
Prepirry(s) = (f(= ) * Krr(")) (s)

Rorn(w) = / G (FYW1 (0, w, 7)dr

where W (0, w, 7) is the random density given by the system of transport

equations driven by the Brownian motion W..
— The refocused pulse has random center and shape.

— There is no statistical stability.
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Comparison of the refocused pulses from the numerical experiments and the

expected refocused pulse shape obtained by the asymptotic theory.
Only the density is random k; = Kiyi = ko =1 = Yim = Yn.



Mean refocused shape

E|lPresrr(s)] = (f(= ) * E[KTr](-)) ()
]E[KTR /Gl E[Wl(() w T)]d’r

For large slab L — oc:

25 1 — tanh? ( Ovow T)
E[W; (0, w, 7)] = 10& 90

i 1+ s tan

where

If G1(t) = Ljo,eq) (%),

tanh ( v 1_537%}2“)

\/1—52—|—tamh<v - 527“‘) h )

A

E[KTR](CU> = 5




Pulse stabilization for a particular class

If §,, = 1, then the signal (pref(TR) (t1 + 68))t€(_oo ooy COnverges in probability

to Pres(rr)(s) as € — 0 where P,.f(rp) is the deterministic pulse shape:

Prefrry(s) = (f(= ) x Krr()) (s)

Rorn(w) = / G (FYW1 (0, w, 7)dr

For large slab L — oc:

Wi(0,w,7) =

where ¢, is the correlation degree.
Sufficient condition for ¢,, = 1: the local velocity is not changed by the
time-perturbation m; = my;.

True in particular for Goupillaud medium.



Conclusion

Statistical stability of the refocused pulse depends on the statistical properties

of the reflection coeflicient R.

Asymptotic framework ¢ — 0:

- Frequency decorrelation of R.

- Moments of R satisfy a system of transport equations.

- Representation in terms of a canonical jump Markov process on the

nonnegative integers.

No statistical stability if the medium is changing (except in special cases).



