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Abstract

In this work, we consider a non-local scalar conservation law in two
space dimensions which arises as the formal hydrodynamic limit of a
Fokker–Planck equation. This Fokker–Planck equation is, in turn, the
kinetic description of an individual-based model describing the naviga-
tion of self-propelled particles in a pheromone landscape. The pheromone
may be linked to the agent distribution itself, leading to a nonlinear, non-
local scalar conservation law where the effective velocity vector depends
on the pheromone field in a small region around each point, and thus,
on the solution itself. After presenting and motivating the problem, we
present some numerical simulations of a closely related problem, and then
prove a well-posedness and stability result for the conservation law.

1 Introduction
This work is mainly concerned with the scalar conservation law

∂tρ+ divx(ρU[ρ]) = 0, (1.1)

where the “velocity” U is defined as a non-local functional of the density ρ. To
be more specific, the problem we are interested in naturally arises in the two-
dimensional framework. The model depends on two key parameters: a length
` > 0 and an angle β ∈ (0, π/2). Let us denote

Ω : θ ∈ [0, 2π) 7−→ Ω(θ) =

(
cos θ
sin θ

)
. (1.2)

We set
P (t, x) =

∫∫
R2

E(x− y)ρ(t, y) dy, (1.3)
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where E is a certain convolution kernel (with respect to the space variable), and

Ψ[ρ](t, x, θ) =

∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
sin(ξ − α)P (t, x+ rΩ(α)) dα r dr dξ, (1.4)

µ[ρ](t, x) =

(∫ 2π

0

e−Ψ[ρ](t,x,θ)/D dθ

)−1

. (1.5)

Finally, we have

U[ρ](t, x) = µ[ρ](t, x)

∫ 2π

0

Ω(θ)e−Ψ[ρ](t,x,θ)/D dθ. (1.6)

In the sections below we will provide appropriate motivation for these expres-
sions.

The theory of scalar conservation laws, as far as the flux function depends on
the local value of the density (namely the flux at time t and position x depends
only on the density ρ(t, x)), is well established since the pioneering works of
Kruzkov and Oleinik [18, 22] who, in particular, introduced relevant uniqueness
criteria. The connection between these criteria is further investigated in [21],
for quite general fluxes and possible source terms, still local with respect to ρ,
but which can additionally depend on the time and space variables t and x. The
time continuity of the weak solutions is a delicate issue, for which we refer the
reader to [5, 27]. Refined estimates on the total variation of the solutions are
discussed in [7, 19]. New difficulties for the analysis arise when the flux function
depends on a non local way of the unknown. Such non local fluxes have been
introduced recently to model pedestrian or vehicular traffic. These difficulties
are specifically addressed in [6, 7, 19].

The model (1.1)–(1.6) is motivated by applications in life sciences: it can
be seen as a hydrodynamic approximation for the modeling of self-propelled
agents, the motion of which is directed by a signal they emit themselves. Here,
the capability of the agents to detect the signals is embodied into the param-
eters β and `. It is quite common to observe the emergence of remarkable
patterns driving the motion of living organisms (like fish, birds, insects, sheep,
bacteria...). Such typical organizations can occur despite the very limited com-
munication abilities of the individuals. Many efforts have been produced to
set up mathematical models that can describe the emergence of such structures
[1, 13, 25, 8, 9, 14, 15, 23, 24, 26, 28, 29]. Experiments can also be performed
with robots [20]. Most descriptions are individual-based, and are expressed as
ODEs systems. By using an approach inspired from gas dynamics, hierarchies
of equations can be derived ranging from N -particles systems to hydrodynamic
models, through kinetic equations see [4, 11, 10, 12, 16, 17]. These macroscopic
models are more amenable to numerical simulations than the individual-based
coupled ODEs when the number of individuals becomes large; they are also
well-adapted to bring out the collective behavior of the population. Here, we
investigate these issues, considering the case where the individuals can feel the
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signal in a very limited region of space, namely, a circular sector facing the di-
rection of their motion, delimited by the parameters `, β, see Fig. 1 below. Such
a situation is discussed in [3], and, having in mind the specific application to
the description of ants foraging, in [2], where β = π/2 is shown to be critical in
terms of stability of the trajectory that follows a given signal.

The paper is organized as follows. Section 2 is devoted to the modeling
issues: we start from an individual-based description; then, we describe the
dynamics of many interacting agents by means of a Fokker-Planck equation,
and finally, the hydrodynamic regime leads to (1.1)–(1.6). Section 3 provides
illustrations of the behavior of the solutions, based on numerical experiments.
In Section 4, we turn to the analysis of the non-linear system: we prove the
existence-uniqueness of weak solutions with bounded variation.

2 Modeling issues
This work is concerned with the modeling of the motion of self-propelled agents,
directed according to some signal. The individuals have very limited measure-
ments abilities; in particular they are able to feel the amplitude of the signal
pointwise in a certain region but they cannot evaluate gradients. The mecha-
nisms thus differ from the standard chemotaxis processes. In what follows, the
individuals have a restricted domain of observation characterized in terms of

• a “cognitive horizon”: objects located at far distance are ignored,

• a “vision cone”: individuals can feel the signal only in a cone directed by
the direction of their motion.

This measurement capability is therefore embodied into two key parameters
0 < `� 1 and β ∈ (0, π/2), see Fig. 1.

Agent-based model. In this model, inspired from [3], each individual moves
in the plane R2 at a constant speed, and the signal produces a torque, thus
inducing a turning behaviour. The position/velocity pair for each individual is
governed by the ODE system

d

dt
X(t) = V (t),

d

dt
V (t) = V (t)⊥

(
V (t)⊥ · FX(t),V (t)

) (2.1)

where we use the notation V = (a, b) ∈ R2 7→ V ⊥ = (−b, a), and FX,V describes
the reaction to the signal, for individuals located in X, and moving in the
direction V . Let x ∈ R2 7→ P (x) ≥ 0 be the quantity that defines the signal.
(For the time being we assume that P is given and does not depend on the time
variable.) It induces the field

FX,V =

∫
C (V )

h

|h|
P (X + h) dh
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• `

β

β

Figure 1: The domain of observation

where C (V ) is the cone, delimited by the observation length ` and the vision
angle β, as in Fig. 1:

C (V ) =
{
W ∈ R2, |W | ≤ `, |W · V | ≤ |W | |V | cosβ

}
.

Note that the acceleration term can be equivalently rewritten as V (t)∧
(
V (t)∧

FX,V
)
. By construction the model conserves the speed |V (t)|, that can be fixed

to 1. It is convenient to parametrize the motion through the polar angle θ.
Namely, we set V (t) = Ω(θ(t)) (see (1.2)). Then, we can parametrize C (V ) by
r ∈ (0, `), and α ∈ (θ−β, θ+β), and, by using the change of variabes h = rΩ(α),
we rewrite

FX,V =

∫ `

0

∫ θ+β

θ−β
Ω(α) P (X + rΩ(α)) r dr dα.

We have
d

dt
V (t) = V (θ(t))⊥

d

dt
θ(t),

and
Ω(θ)⊥ · Ω(α) = sinα cos θ − cosα sin θ = sin(α− θ)

so that the system (2.1) can be recast as
d

dt
X(t) = Ω(θ(t)),

d

dt
θ(t) = −

∫ `

0

∫ θ+β

θ−β
sin(θ − α)P (X + rΩ(α))r dr dα.

(2.2)
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It is relevant to add some “noise effect”, which leads to consider instead the
stochastic ODE system

dX(t) = Ω(θ(t)) dt,

dθ(t) = −

(∫ `

0

∫ θ+β

θ−β
sin(θ − α)P (X + rΩ(α))r dr dα

)
dt+

√
2D dBt.

(2.3)
We refer the reader to [3] for further comments on this model.

Kinetic model. When the number of agents is large, it becomes relevant to
describe the population in terms of statistical physics, by using the particle
distribution function f(t, x, θ):

∫
O

∫ ξ′
ξ
f(t, x, θ) dθ dx gives the probable number

of individuals which, at time t, have their position in the subdomain O ⊂ R2, and
are moving in a direction characterized by the angle θ ∈ (ξ, ξ′). This quantity
obeys the following Fokker-Planck like equation

∂tf + Ω(θ) · ∇xf =
1

τ
Q(f),

Q(f) = ∂θ(ψ(x, θ)f +D∂θf),
(2.4)

where the interaction force is now embodied into

ψ(x, θ) =

∫ `

0

∫ θ+β

θ−β
sin(θ − α)P (x+ rΩ(α)) r dr dα. (2.5)

Notice that it depends on the space variable, through the variation of the signal.
The derivation of the kinetic model (2.4) from the ODEs system for N individ-
uals, as N → ∞, could be justified in the mean field regime. In (2.4), up to a
suitable rescaling, we have made a relaxation time τ > 0 appear.

In order to identify the equilibrium functions that make the interaction term
Q vanish, we set

Ψ(x, θ) =

∫ θ

0

ψ(x, ξ) dξ,

and

M (x, θ) = µ(x)e−Ψ(x,θ)/D,
1

µ(x)
=

∫ 2π

0

e−Ψ(x,θ)/D dθ.

The following lemma contains some basic properties of the function M .

Lemma 2.1. The function θ 7→ M (x, θ) is positive, normalized (in the sense
that

∫ 2π

0
M (x, θ) dθ = 1), and 2π-periodic.

Proof. The first two assertions are obvious. That M (x, θ) is 2π-periodic is a
consequence of the fact that ∫ 2π

0

ψ(x, θ) dθ = 0. (2.6)
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This follows from an application of the Fubini theorem, see Fig. 2. Let I denote
the integral to be evaluated in (2.6). We have

I =

∫ `

0

∫ 2π+β

−β

(∫ α+β

α−β
sin(θ − α) dθ

)
P (x+ rΩ(α)) r dr dα

−
∫ `

0

∫ β

−β

(∫ 0

α−β
sin(θ − α) dθ

)
P (x+ rΩ(α)) r dr dα

−
∫ `

0

∫ 2π+β

2π−β

(∫ α+β

2π

sin(θ − α) dθ

)
P (x+ rΩ(α)) r dr dα.

The first integral clearly vanishes. The last integral can be rewritten as∫ `

0

∫ +β

−β

(∫ 2π+α+β

2π

sin(θ − α) dθ

)
P (x+ rΩ(α)) r dr dα

=

∫ `

0

∫ +β

−β

(∫ α+β

0

sin(θ − α) dθ

)
P (x+ rΩ(α)) r dr dα

so that

I =

∫ `

0

∫ +β

−β

(∫ α+β

α−β
sin(θ − α) dθ

)
P (x+ rΩ(α)) r dr dα = 0.

θ

α

2π + β

2π

2π

−β

β

Figure 2: Integration domain

Hydrodynamic regime. The Fokker-Planck operator recasts as

Q(f) = D∂θ

(
M ∂θ

f

M

)
,
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and Q(f) vanishes iff f is proportional to M . The PDE (2.4) satisfies a mass
conservation property, since

∫
Q(f) dθ = 0. Let(

ρ
J

)
(t, x) =

∫ 2π

0

(
1

Ω(θ)

)
f(t, x, θ) dθ.

We thus have
∂tρ+ divxJ = 0. (2.7)

For small relaxation times 0 < τ � 1, we expect that f(t, x, θ) ' ρ(t, x)M (x, θ).
Replacing f by this ansatz in (2.7), we are led to a scalar conservation law for
the density ρ

∂tρ+ divx(ρU) = 0,

which involves the effective velocity

U(x) =

∫ 2π

0

Ω(θ)M (x, θ) dθ.

Definition of the signal. If the signal P is given, the model is linear. How-
ever, for many applications, the signal is emitted by the individuals themselves.
Therefore, P depends on the density of individuals. We can assume it is defined
self-consistently by the diffusion equation

∂tP −∆xP = ρ, (2.8)

endowed with some initial condition P (0, ·). When dealing with a finite number
N ∈ N of individuals, the right hand side is nothing but

∑N
j=1 δ(x = Xj(t)),

the Xj ’s being defined by the ODEs (2.1), or the stochastic version (2.3).
Strictly speaking, the solution of (2.8) is not of the form (1.3), since it is

represented by a convolution with a kernel in time as well as in space. In the nu-
merical experiments that follow, we still use the physically relevant form (2.8),
even though we restrict the analysis in Section 4 to the case where the signal P
has the form (1.3).

A simplified asymptotic model. In order to simplify the computation, it
is tempting to use the truncated expansion

P (x+ rΩ(α)) ' P (x) + r∇xP (x) · Ω(α) +
r2

2
D2
xP (x) : Ω(α)⊗ Ω(α).

It leads to replace ψ(x, θ) in (2.5) by the following expansion

ψ0(x, θ) + ψ1(x, θ) + ψ2(x, θ)

based on the zeroth, first, and second order terms with respect to P . We shall
similarly express the approached equilibrium function in (1.4) under the form

Ψ0(x, θ) + Ψ1(x, θ) + Ψ2(x, θ).
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We start by observing that

ψ0(x, θ) = P (x)

∫ `

0

∫ θ+β

θ−β
sin(θ − α)r dr dα = 0,

and we set Ψ0(x, θ) = 0 as well. Next, we shall use the basic identity

Ω(α) sin(θ − α) = −Ω(α) Ω(α) · Ω(θ)⊥ = −Ω(α)⊗ Ω(α)Ω(θ)⊥

= −1

2

(
I +

(
cos(2α) sin(2α)
sin(2α) − cos(2α)

))
Ω(θ)⊥.

It leads to

ψ1(x, θ)

= −∇xP (x) ·
∫ `

0

∫ θ+β

θ−β

1

2

(
I +

(
cos(2α) sin(2α)
sin(2α) − cos(2α)

))
Ω(θ)⊥ r2 dr dα

= − `
3

12
∇xP (x) ·

[
4βI +

(
C S
S −C

)]
Ω(θ)⊥

with

C = sin(2(θ + β))− sin(2(θ − β)), S = cos(2(θ − β))− cos(2(θ + β)).

We thus get

ψ1(x, θ) =
`3

12

[
−4βΩ(θ)⊥ +

(
cos(θ + 2β)− cos(θ − 2β)
sin(θ + 2β)− sin(θ − 2β)

)]
· ∇xP (x)

=
`3

6

(
sin(2β)− 2β

)
Ω(θ)⊥ · ∇xP (x)

and from Ψ1(x, θ) =
∫ θ

0
ψ1(x, ξ) dξ,

Ψ1(x, θ) =
`3

6

(
sin(2β)− 2β

)(cos θ − 1
sin θ

)
· ∇xP (x).

Finally, we compute

ψ2(x, θ) =
1

2

∫ `

0

∫ θ+β

θ−β

(
sin θ cosα− cos θ sinα

)
×
(

cos2 α sinα cosα
sinα cosα sin2 α

)
r3 dr dα : D2

xP (x)

=
`4

8
sin θ

∫ θ+β

θ−β

(
cos3 α − 1

3
d

dα [cos3 α]
− 1

3
d

dα [cos3 α] 1
3

d
dα [sin3 α]

)
dα : D2

xP (x)

−`
4

8
cos θ

∫ θ+β

θ−β

(
− 1

3
d

dα [cos3 α] 1
3

d
dα [sin3 α]

1
3

d
dα [sin3 α] sin3 α

)
dα : D2

xP (x)
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and obtain after a lengthy but standard computation,

ψ2(x, θ) =
`4

8

(
a(θ)∂2

11P (x) + b(θ)∂2
12P (x) + c(θ)∂2

22P (x)
)

with
a(θ) =

2

3
sin3 β sin 2θ,

b(θ) = −4

3
sin3 β cos 2θ,

c(θ) = −2

3
sin3 β sin 2θ.

(2.9)

So, from Ψ2(x, θ) =
∫ θ

0
ψ2(x, ξ) dξ we get

Ψ2(x, θ) =
`4

24
sin3 β

[
(1− cos(2θ))∂2

11P (x)

− 2 sin(2θ)∂2
12P (x) + (cos(2θ)− 1)∂2

22P (x)
]
.

(2.10)

3 Numerical simulations
In order to guide the intuition about the model and the behavior of the solutions,
we provide a few simulations. The computational domain is the square [0, 1]×
[0, 1], endowed with periodic boundary conditions. When necessary, integrals
with respect to θ are evaluated either with the rectangular rule, or with the
third order Simpson’s rule. We work with a Cartesian grid with steps ∆x
(resp. ∆y) in the horizontal (resp. vertical) direction. The conservation law is
approximated by using a standard first order scheme

ρn+1
i,j = ρni,j −

∆t

∆x
(Fi+1/2,j − Fi−1/2,j)−

∆t

∆y
(Gi,j+1/2 −Gi,j−1/2).

Denoting U, V the components of the velocity field, and s± = s±|s|
2 , we use the

upwind numerical fluxes

Fi+1/2,j = U+
i+1/2,jρ

n
i,j+U

−
i+1/2,jρ

n
i+1,j , Gi,j+1/2 = V +

i,j+1/2ρ
n
i,j+V

−
i,j+1/2ρ

n
i,j+1.

The time step ∆t is fixed by taking into account the CFL condition

∆t ≤ max
( |Ui+1/2,j |

∆x
,
|Vi,j+1/2|

∆y

)
that preserves the positivity of the solution.

In order to reduce the computational cost, we only use the simplified model
where Ψ is replaced by a linear expression in ∇xP,D2

xP , as explained in the
previous section. We shall briefly discuss the linear case where P is given, so
that the expression of ∇xP,D2

xP at the discretization points can be explicitely
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computed. When P is defined self-consistently by (2.8), we use the implicit
scheme

Pn+1
ij + ∆t(∆dPn+1)ij = Pnij + ∆tρni,j

where ∆d is the standard 5 points discrete Laplacian operator. Then, we obtain
the approximations of the gradient and the Hessian of P by using finite difference
operators.

3.1 Given signal
We start with a simulation where the signal is given:

P (x1, x2) = e−|x1−1/2|2δ,

with δ = 1/500 see Fig. 3. The vision domain is defined by ` = 1/10, and
β = π/3. The signal attracts the individuals towards the axis x1 = 1/2, see the
velocity field in Fig. 4-left. Close to the critical axis, the horizontal components
of the effective velocity field tends to 0. The vertical component should vanish,
but numerical errors can be sensitive, that here produce a spurious vertical mo-
tion (that mainly depends on the quadrature rule used to compute the angular
integrals), see Fig. 4-right. The initial data is made of two bumps centered at
x = (1/4, 1/4) and x = (3/4, 3/4). Since the signal is very peaked, individuals
which are too far from the center of the signal cannot feel it and do not move at
all. The other individuals are attracted towards the axis x1 = 1/2. See Fig. 5.

0

1

0.2

0.8

0.4

1

0.6

0.6 0.8

signal

y

0.8

0.6

x

0.4

1

0.4
0.2

0.2

0 0

Figure 3: Given signal peaked on the axis x = 1/2

The second test case with a given signal deals with

P (x) = e−|r−r0|
2/δ

with r =
√
x2

1 + x2
2, r0 = .05, δ = 1/1000, see Fig. 6. Horizontal and vertical

velocities are depicted in Fig. 7. We observe that the individuals are attracted
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Figure 4: Given signal peaked on the axis x = 1/2: Horizontal velocity (left)
and vertical velocity (right)
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Figure 5: Given signal peaked on the axis x = 1/2: solution at T = 1.128

towards the ring of high density, where the get stuck since there is no tangential
velocity.

3.2 Self-consistent model
We turn to cases where the signal is produced by the individuals, according to
the diffusion equation (2.8). The first case, referred to as Test 1, considers an
initial data with two bumps for the individuals and a vanishing concentration
of signal. We see that individuals just concentrate to the center of mass of each
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Figure 6: Given signal concentrated on a ring
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Figure 7: Given signal concentrated on a ring: Horizontal velocity (left) and
vertical velocity (right)

bump, see Fig. 11–13.
The second case, Test 2, has a different flavor in order to capture a dynamics

more interesting than the pure aggregation. The initial density of individuals is
set uniformly to 1, but we give an initial signal, that follows the axis x1 = 1/2.
We see in Fig. 15–16 that the individuals organize to follow the initial trail, even
if the initial effect is dissipated by the diffusion equation.

We perform a similar simulation, with an initial signal making a ring. The
results of this Test 3 are depicted in Fig. 17–18.

In the previous numerical tests, we can see that the main feature of the
solutions of (1.1)–(1.6) (with (2.8)) is the aggregation of the population in the
regions where signal density is highest. In this sense, true trail following behav-
ior is not explicitly observed (in the sense of movement along the crest of a signal
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Figure 8: Given signal concentrated on a ring: solution at T = .05

Figure 9: Given signal concentrated on a ring: solution at T = .1

distribution). However, this is to be expected from a first order model, since
the introduction of the equilibrium distributions involve averages in the veloc-
ities; thus the description used here loses some information about microscopic
velocities which might “cancel out” when passing to a macroscopic regime. This
is further reinforced by the fact that the critical value β = π/2 of the sensing
area half-angle (above which trail following was observet to fail in [2]) does not
seem to play a role in our analysis. Still, the observed behavior is not entirely
reducible to an aggregation phenomena of chemotaxis type, since (as the anal-
ysis below will show), there is no finite-time blow-up phenomena, in contrast to
many two-dimensional models of chemotaxis.
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Figure 10: Given signal concentrated on a ring: solution at T = .19

Figure 11: Coupled model, test 1: initial state (left) and velocity field

Figure 12: Coupled model, test 1: solution at time t = 13.3
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Figure 13: Coupled model, test 1: solution at time t = 20

Figure 14: Coupled model, test 1: velocity field at time t = 20

4 Analysis of the scalar conservation law
We turn to the analysis of the conservation law (1.1)–(1.6). We slightly simplify
the coupling compared to (2.8), restricting the analysis to a mere convolution
(1.3), with a smooth kernel E. Namely, we suppose

E ∈ C2(R2,R) with ∂αE ∈ L∞(R2) for any α ∈ N2, |α| ≤ 2. (H)

For further purposes, we denote

E = ‖E‖L∞(R2), E′1 = ‖∂x1E‖L∞(R2), E′2 = ‖∂x2E‖L∞(R2),
E′′11 = ‖∂2

x1x1
E‖L∞(R2), E′′22 = ‖∂2

x2x2
E‖L∞(R2), E′′12 = ‖∂2

x1x2
E‖L∞(R2),
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Figure 15: Coupled model, test 2: signal and solution at time t = .03

Figure 16: Coupled model, test 2: signal and solution at time t = .3

Figure 17: Coupled model, test 3: ignal and solution at time t = .01
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Figure 18: Coupled model, test 3: signal and solution at time t = .04

and

c =
(2π`)2

D
.

The main result states as follows.

Theorem 4.1. Assume (H) and let ρ0 ∈ L1 ∩ L∞ ∩ BV (R2). Then, there
exists a unique ρ ∈ C0([0,∞);L1(R2)), which also lies in L∞(0, T ;BV (R2)) ∩
L∞((0, T ) × R2) for any 0 < T < ∞, weak entropy solution of (1.1)–(1.6)
associated to the initial data ρ0.

Inspired from [6, 7], we proceed according to the following steps:

• for 0 < T < ∞ and a given σ ∈ C0([0, T ];L1(R2)), we consider the weak
solution of the linear problem

∂tρ+ divx(ρU[σ]) = 0 on (0, T )× R2,
ρ
∣∣
t=0

= ρ0.
(4.1)

• this defines a mapping
Γ : σ 7−→ ρ,

the functional properties of which rely on the estimates satisfied by σ 7→
U[σ].

• provided T is small enough, we justify that Γ admits a unique fixed point
in a suitable Banach space XT .

• it remains to justify that the solution has an infinite lifespan, and that it
satisfies the entropy criterion. This relies on further estimates of the total
variation of the solutions.

17



4.1 Preliminary estimates
We shall need several estimates, in L∞ and L1 norms on the non local coefficients
and their space derivatives. The proofs are postponed to Appendix A.

Lemma 4.2 (L∞ estimate). Let (H) be fulfiled. Let σ ∈ L1(R2). Then, the
following estimates hold:

|Ψ[σ](x, θ)| ≤ cDE‖σ‖L1 ,
e−cE‖σ‖L1 | ≤ e−Ψ[σ](x,θ)/D ≤ ecE‖σ‖L1 ,

|µ[σ](x)| ≤ ecE‖σ‖L1

2π
;

(4.2)

|∂xk
Ψ[σ](x, θ)| ≤ cDE′k‖σ‖L1 ,

|∂xk
µ[σ](x)| ≤ cE′k‖σ‖L1

2π
e3cE‖σ‖L1 ;

(4.3)

|∂2
xkxm

Ψ[σ](x, θ)| ≤ c2D2E′′km‖σ‖L1 ,

|∂2
xkxm

µ[σ](x)| ≤ 1

2π

(
cE′′km‖σ‖L1 + 3c2E′kE

′
m‖σ‖2L1

)
e5cE‖σ‖L1 .

(4.4)

Lemma 4.3 (L1 estimate). Let (H) be fulfiled. Let σ ∈ L1(R2). Then, the
following estimates hold:∫∫

R2

|Ψ[σ](x, θ)|dx ≤ cD‖E‖L1(R2)‖σ‖L1(R2), (4.5)

∫∫
R2

|∂xk
Ψ[σ](x, θ)|dx ≤ cD‖∂xk

E‖L1(R2)‖σ‖L1(R2) (4.6)∫∫
R2

|∂xk
µ[σ](x)|dx ≤ c

2π
e3cE‖σ‖L1(R2)‖∂xk

E‖L1(R2)‖σ‖L1(R2) (4.7)∫∫
R2

|∂2
xkxm

Ψ[σ](x, θ)|dx ≤ c2D2‖∂2
xkxm

E‖L1(R2)‖σ‖L1(R2) (4.8)∫∫
R2

|∂2
xkxm

µ[σ](x)|dx ≤ c2Ckme5cE‖σ‖L1(R2)‖σ‖L1(R2), (4.9)

where

Ckm =
D

2π
‖∂2
xkxm

E‖L1(R2)+

(
D‖∂xk

E‖L1(R2)E
′
m +

1

π
‖∂xl

E‖L1(R2)E
′
k

)
‖σ‖L1(R2).

4.2 On the solutions of the linear problem (4.1)
Next, we consider the Cauchy problem (4.1), with σ : (0,∞)× R2 → R a given
function. This is nothing but a transport equation with smooth coefficients.
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Lemma 4.4. Let σ ∈ C([0,+∞[;L1(R2)) ∩ L∞(0,+∞;L1(R2)). Then U[σ]
is a continuous function and lies in L∞(0,+∞;W 1,∞(R2)). We have, for any
(t, x) ∈ [0,+∞[×R2,

‖U[σ](t, x)‖ ≤ e2cE‖σ‖L∞(0,∞;L1(R2)) (4.10)

and

‖∂xk
U[σ](t, x)‖ ≤ 2cE′k‖σ‖L∞(0,∞;L1(R2))e

4cE‖σ‖L∞(0,∞;L1(R2)) , (4.11)

for k = 1, 2.

Proof. The continuity of U[σ] is proven by direct inspection and application
of the Lebesgue theorem. The first estimate follows from (4.2) in Lemma 4.2.
Next, we observe that

∂xk
U[σ](t, x) = ∂xk

µ[σ](t, x)

∫ 2π

0

cos(θ)e−Ψ[σ](t,x,θ)/D dθ

− 1

D
µ[σ](t, x)

∫ 2π

0

cos(θ)∂xk
Ψ[σ](t, x, θ)e−Ψ[σ](t,x,θ)/D dθ.

(4.12)
By using (4.3) in Lemma 4.2, we obtain

‖∂xk
U[σ](t, x)‖ ≤ cE′k‖σ(t, ·)‖L1(R2)e

4cE‖σ(t,·)‖L1(R2)

+cE′k‖σ(t, ·)‖L1(R2)e
2cE‖σ(t,·)‖L1(R2)

which proves (4.11).

Proposition 4.5. Let ρ0 ∈ L1(R2) such that ρ0 ≥ 0. Let σ ∈ C([0,+∞[;L1(R2))∩
L∞(0,+∞;L1(R2)). The problem (4.1) admits a unique weak solution ρ, which
satisfies ρ ∈ L∞([0,+∞[;L1(R2))∩C([0,+∞[;L1(R2)). Moreover, if we assume
that ρ0 ∈ L∞(R2) is non negative, then we have ρ ≥ 0 and we can find C0 > 0
such that 0 ≤ ρ(t, x) ≤ ‖ρ0‖L∞(R2)e

C0t holds a. e.

Proof. Equation (4.1) is a mere transport equation where, owing to Lemma 4.4,
the velocity field is regular. As a matter of fact, we can write

∂tρ+ divx(ρU[σ]) = 0

in the non-conservative form

∂tρ+ U[σ] · ∇ρ+ ρdivx U[σ] = 0.

We use the method of characteristics with the function (t, x) 7→ U[σ](t, x). Ac-
cording to Lemma 4.4, the solutions of

X ′(t, x) = U[σ](t,X(t, x)), X(0, x) = x
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are globally defined. It allows us to express the solution of (4.1) as follows

ρ(t,X(t, x)) = ρ0(x) exp

(
−
∫ t

0

divxU[σ](s, x) ds

)
.

Clearly, we see that ρ is non negative when ρ0 is non negative. Moreover, it
satisfies

‖ρ(t, ·)‖L1(R2) ≤ ‖ρ0‖L1(R2),

with an equality when the functions are non negative. We can check that t 7→
ρ(t, ·) is continuous with values in L1(R2). Finally, to get a L∞ bound for ρ, we
need to prove that

e−
∫ t
0

divx U[σ](s,x) ds

is bounded. Using Lemma 4.4 again, we obtain

e−
∫ t
0

divx U[σ](s,x) ds ≤ etC0 ,

with
C0 = 2c(E′1 + E′2)‖σ‖L∞(0,∞;L1(R2))e

4cE‖σ‖L∞(0,∞;L1(R2)) .

We conclude that the solution of (4.1) satisfies

|ρ(t, x)| ≤ ‖ρ0‖L∞(R2)e
tC0 .

We shall see that the L∞ estimate equally holds for the solution of the non
linear problem; it prevents the solution to blow up in any finite time, and so
the equation does not produce delta-Dirac singularities in finite time.

4.3 Fixed point
Let 0 < T <∞. We shall use the space

XT = {σ ∈ C([0, T ], L1(R2)) such that
for any 0 ≤ t ≤ T , ‖σ(t, ·)‖L1(R2) ≤ ‖ρ0‖L1(R2)},

which is a Banach space with the norm

‖σ‖XT
= sup
t∈[0,T ]

‖σ(t, ·)‖L1(R2).

We want to prove that the application Γ which associates to σ ∈ XT the solution
ρ ∈ XT of Proposition 4.5 is a contraction on XT , when T is small enough. The
arguments are inspired from the analysis performed in [6] for a non local model
of pedestrian flows. In turns out that we need to establish estimates on the flux
function

fσ : (0,∞)× R2 × R −→ R2

(t, x, λ) 7−→ λU[σ](t, x).

We bear in mind that this function depends on σ. To be specific, we are going
to establish that σ 7→ fσ satisfies certain Lipschitz continuity estimates and
that, for any σ ∈ XT , fσ satisfies a regularity estimate. In what follows, we
shall work with two functions σ1, σ2 in XT , and we simply denote fk the flux
function associated to σk, for k = 1, 2.
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Step 1: Estimate on ∂λ(f1 − f2) in L∞.

Lemma 4.6. There exists a constant C1, which depends on c,E, ‖ρ0‖L1 , such
that for any t ∈ (0,∞) and x ∈ R2, we have

‖∂λ(f1 − f2)(t, x, ·)‖L∞(R) ≤ C1‖σ2 − σ1‖XT
.

Proof. Here, the flux function depends linearly on λ; we thus have

(f1 − f2)(t, x, λ) = λ
(
U[σ1](t, x)− U[σ2](t, x)

)
,

and

∂λ(f1 − f2)(t, x, λ) = U[σ1](t, x)− U[σ2](t, x)

= µ[σ1](t, x)

∫ 2π

0

Ω(θ)e−Ψ[σ1](t,x,θ)/D dθ

−µ[σ2](t, x)

∫ 2π

0

Ω(θ)e−Ψ[σ2](t,x,θ)/D dθ

= (µ[σ1](t, x)− µ[σ2](t, x))

∫ 2π

0

Ω(θ)e−Ψ[σ1](t,x,θ)/D dθ

−µ[σ2](t, x)

∫ 2π

0

Ω(θ)
(
e−Ψ[σ2](t,x,θ)/D − e−Ψ[σ1](t,x,θ)/D

)
dθ.

Now, we observe that

Ψ[σ1](t, x, θ)−Ψ[σ2](t, x, θ)

=

∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
sin(ξ − α)

[
(E ∗ σ1)(t, x+ rΩ(α))− (E ∗ σ2)(t, x+ rΩ(α))

]
dα r dr dξ

=

∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
sin(ξ − α)(E ∗ (σ1 − σ2))(t, x+ rΩ(α)) dα r dr dξ

= Ψ[σ1 − σ2](t, x, θ)

which leads to

|Ψ[σ1](t, x, θ)−Ψ[σ2](t, x, θ)| ≤ cDE‖σ2 − σ1‖XT
.

Next, we make use of the elementary estimate

for any −A ≤ w ≤ +A, |ew − 1| ≤ eA|w|.

Since the σj ’s belong to XT , we have

‖σ2 − σ1‖XT
≤ 2‖ρ0‖L1(R2).

Hence, we set A = 2A with

A = cE‖ρ0‖L1(R2).
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Coming back to (4.2) yields∣∣∣eΨ[σ1](t,x,θ)/D−Ψ[σ2](t,x,θ)/D − 1
∣∣∣ ≤ e2AcE‖σ2 − σ1‖XT

.

Writing

e−Ψ[σ2](t,x,θ)/D − e−Ψ[σ1](t,x,θ)/D

= e−Ψ[σ1](t,x,θ)/D
(
eΨ[σ1](t,x,θ)/D−Ψ[σ2](t,x,θ)/D − 1

)
,

we are led to∣∣∣e−Ψ[σ2](t,x,θ)/D − e−Ψ[σ1](t,x,θ)/D
∣∣∣ ≤ e3AcE‖σ2 − σ1‖XT

. (4.13)

Furthermore, we have

µ[σ1](t, x)− µ[σ2](t, x) =

∫ 2π

0

(
e−Ψ[σ2](t,x,θ)/D − e−Ψ[σ1](t,x,θ)/D

)
dθ∫ 2π

0

e−Ψ[σ1](t,x,θ)/D dθ

∫ 2π

0

e−Ψ[σ2](t,x,θ)/D dθ

,

thus

|µ[σ1](t, x)− µ[σ2](t, x)| ≤ 2πe5AcE‖σ2 − σ1‖XT

× 1

4π2
ecE(‖σ1‖XT

+‖σ2‖XT )

≤ c

2π
e7AE‖σ2 − σ1‖XT

.

Therefore we get

‖∂λ(f1 − f2)(t, x, λ)‖ ≤ cEe4A(1 + e4A)‖σ2 − σ1‖XT

which ends the proof.

Step 2: Estimate on divx(f2 − f1) in L1.

Lemma 4.7. There exists a constant C2, which depends on c,E, ‖ρ0‖L1 , such
that for any 0 < R <∞, we have∫∫

R2

sup
0≤λ≤R

‖divx(f2 − f1)(t, x, λ)‖ dx

≤ (‖∂x1E‖L1(R2) + ‖∂x2E‖L1(R2))C2R‖σ2 − σ1‖XT
.

(4.14)

Proof. We have

divx(f2 − f1)(t, x, λ) = λ divx (U[σ2]− U[σ1]) (t, x).
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We compute divx (U[σ2]− U[σ1]) by using (4.12) and we reorganize terms as
follows

divx (U[σ2]− U[σ1]) (t, x)

= (∂x1
µ[σ2](t, x)− ∂x1

µ[σ1](t, x))

∫ 2π

0

cos(θ)e−Ψ[σ2](t,x,θ)/D dθ

+∂x1
µ[σ1](t, x)

∫ 2π

0

cos(θ)
(
e−Ψ[σ2](t,x,θ)/D − e−Ψ[σ1](t,x,θ)/D

)
dθ

+ (∂x2
µ[σ2](t, x)− ∂x2

µ[σ1](t, x)))

∫ 2π

0

sin(θ)e−Ψ[σ2](t,x,θ)/D dθ

+∂x2µ[σ1](t, x)

∫ 2π

0

sin(θ)
(
e−Ψ[σ2](t,x,θ)/D − e−Ψ[σ1](t,x,θ)/D

)
dθ

+
1

D
(µ[σ2](t, x)− µ[σ1](t, x))

∫ 2π

0

cos(θ)∂x1
Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D dθ

+
1

D
µ[σ1](t, x)

∫ 2π

0

cos(θ)

×
(
∂x1Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D − ∂x1Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D

)
dθ

+
1

D
(µ[σ2](t, x)− µ[σ1](t, x))

∫ 2π

0

sin(θ)∂x2
Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D dθ

+
1

D
µ[σ1](t, x)

∫ 2π

0

sin(θ)

×
(
∂x2Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D − ∂x2Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D

)
dθ.

Since Ψ depends linearly on σ, we get

∂xk
Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D − ∂xk

Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D

= ∂xk
Ψ[σ1 − σ2](t, x, θ)e−Ψ[σ1](t,x,θ)/D

+∂xk
Ψ[σ2](t, x, θ)

(
e−Ψ[σ1](t,x,θ)/D − e−Ψ[σ2](t,x,θ)/D

)
.

Going back to (4.6), together with (4.13), we arrive at∫∫
R2

∣∣∣∂xk
Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D − ∂xk

Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D
∣∣∣ dx

≤ cDeA‖∂xk
E‖L1(R2)‖σ2 − σ1‖XT

+ c2DEe3A‖∂xk
E‖L1(R2)‖σ2 − σ1‖XT

× ‖σ2‖XT
.

Furthermore, we have

∂xk
µ[σ2](t, x)− ∂xk

µ[σ1](t, x)

=
1

D

∫ 2π

0

∂xk
Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D dθ |µ[σ2](t, x)|2

− 1

D

∫ 2π

0

∂xk
Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D dθ |µ[σ1](t, x)|2
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=
1

D

∫ 2π

0

(
∂xk

Ψ[σ2](t, x, θ)e−Ψ[σ2](t,x,θ)/D

−∂xk
Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D

)
dθ |µ[σ2](t, x)|2

+
1

D

∫ 2π

0

∂xk
Ψ[σ1](t, x, θ)e−Ψ[σ1](t,x,θ)/D dθ

(
|µ[σ2](t, x)|2 − |µ[σ1](t, x)|2

)
.

Similarly, the L1 norm of this quantity can be dominated by

C2‖∂xk
E‖L1(R2)‖σ1 − σ2‖XT

with a certain constant C2 that depends on c,E, ‖ρ0‖L1 . This allows us to
conclude, bearing in mind that∫∫

R2

sup
0≤λ≤R

‖divx(f1 − f2)(t, x, λ)‖ dxdt

≤ R
∫∫

R2

‖divx(U[σ1]− U[σ2])(t, x)‖ dxdt.

Step 3: Estimate on ∇divxf in L1.

Lemma 4.8. There exists constants C3 and C4, depending only on c,D,E, ‖ρ0‖L1 ,
on E′1,E

′
2, and on the L1 norm of the first and second derivatives of E, such

that, for any 0 < R <∞∫∫
R2

sup
0≤λ≤R

‖∇divxf(t, x, λ)‖ dx ≤ R(C3 + C4‖ρ0‖L1(R2))‖ρ0‖L1(R2).

Proof. We have

∇divxf(t, x, λ) = λ (∂x1
divx U[σ], ∂x2

divx U[σ])

so that the difficulty reduces to discuss the L1 norm of

∂xk
divxU[σ](t, x)

= ∂2
xkx1

µ[σ](x)

∫ 2π

0

cos(θ)e−Ψ[σ](x,θ)/D dθ

− 1

D
∂x1µ[σ](x)

∫ 2π

0

cos(θ)∂xk
Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

− 1

D
∂xk

µ[σ](x)

∫ 2π

0

cos(θ)∂x1Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

− 1

D
µ[σ](x)

∫ 2π

0

cos(θ)∂2
xkx1

Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

+
1

D2
µ[σ](x)

∫ 2π

0

cos(θ)∂x1
Ψ[σ](x, θ)∂xk

Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ
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+∂2
xkx2

µ[σ](x)

∫ 2π

0

sin(θ)e−Ψ[σ](x,θ)/D dθ

− 1

D
∂x2µ[σ](x)

∫ 2π

0

sin(θ)∂xk
Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

− 1

D
∂xk

µ[σ](x)

∫ 2π

0

sin(θ)∂x2
Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

− 1

D
µ[σ](x)

∫ 2π

0

sin(θ)∂2
xkx2

Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

+
1

D2
µ[σ](x)

∫ 2π

0

sin(θ)∂x2
Ψ[σ](x, θ)∂xk

Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ.

We use Lemma 4.2 and 4.3 to conclude. We use one L1 bound and L∞ bounds
for every product. The L1 norm are ∂2

xkxl
µ[σ], ∂xk

µ[σ], for the first, second,
third, sixth, seventh, eighth terms and ∂2

xkxl
Ψ[σ], ∂xk

Ψ[σ] for the forth, fifth,
nineth and tenth terms. We observe that C3 depends on the L1 norm of the
second derivatives of E, while C4 depends on the products E′k‖∂xj

E‖L1(R2).

Theorem 4.9. Let ρ0 ∈ L1(R2)∩L∞ ∩BV (R2) such that ρ0 ≥ 0. There exists
T1 > 0 such that there exists a unique weak entropy solution on [0, T1] to{

∂tρ+ divx(ρU[ρ]) = 0,
ρ(0, x) = ρ0(x).

(4.15)

Proof. Let us start by introducing a few notations. Let

W2 =

∫ π/2

0

| cos(θ)|2 dθ.

We also set
κ = ‖∂λdivx(f1 − f2)‖L∞ , κ0 = 5‖∇∂λf‖L∞ .

We have
∂xdivx(f1 − f2) = divx(U[σ2]− U[σ1])

Reproducing the analysis in Lemma 4.7, we obtain

κ ≤ C2(E′1 + E′2)e8A‖σ2 − σ1‖XT
≤ 2C2(E′1 + E′2)e8A‖ρ0‖L1(R2).

Moreover, observing that
∇∂λf = ∇U[σ],

we obtain

κ0 ≤ 5c(E′1 + E′2)‖σ‖XT
e4cE‖σ‖XT ≤ 5c(E′1 + E′2)‖ρ0‖L1(R2)e

4A.

Setting κ1 = max(κ, κ0), we finally observe that

eκ0s − eκs

κ0 − κ
≤ seκ1s.
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Let us denote
R(T ) = ‖ρ0‖L∞(R2)e

TC0 ,

which is the L∞ bound obtained in Proposition 4.5. Finally, let

K(T ) = eκ1T
[
C1TV(ρ0) +R(T )(C5T + C6)

]
with

C5 = 2W2C1(C3 + C4‖ρ0‖L1(R2))‖ρ0‖L∞(R2)

and
C6 = C2(‖∂x1

E‖L1(R2) + ‖∂x2
E‖L1(R2))‖ρ0‖L∞(R2).

The function t 7→ tK(t) is continuous and satisfies

tK(t)
∣∣
t=0

= 0, lim
t→∞

tK(t) = +∞.

Hence, there exists T1 > 0 such that

T1K(T1) = 1/2 and 0 < tK(t) < 1/2 for any t ∈ (0, T1).

Using [19, Theorem 2.5], we have for t ∈ [0, T1],∫∫
R2

|ρ1(t, x)− ρ2(t, x)| dx

≤ eκ0t − eκt

κ0 − κ
TV(ρ0)‖∂λ(f1 − f2)‖L∞

+2W2

(∫ t

0

eκ0(t−s) − eκ(t−s)

κ0 − κ

×
∫∫

R2

sup
0≤λ≤R(T )

‖∇divxf1(s, x, λ)‖dxds

)
‖∂λ(f1 − f2)‖L∞

+

∫ t

0

eκ(t−s)
∫∫

R2

sup
0≤λ≤R(T )

‖divx(f2 − f1)(s, x, λ)‖ dxds.

Owing to Lemma 4.6, 4.7 and 4.8 we get, for t ∈ [0, T1],∫∫
R2

|ρ1(t, x)− ρ2(t, x)| dx

≤ teκ1tTV(ρ0)C1‖σ2 − σ1‖XT

+2W2

(∫ t

0

(t− s)eκ1(t−s)R(T1)(C3 + C4‖ρ0‖L1(R2))‖ρ0‖L1(R2) ds

)
C1‖σ2 − σ1‖XT

+

∫ t

0

eκ(t−s)R(T1)C2(‖∂x1E‖L1(R2) + ‖∂x2
E‖L1(R2))‖σ2 − σ1‖XT

ds

≤ tK(T1)‖σ2 − σ1‖XT1

≤ 1

2
‖σ2 − σ1‖XT1

.

Therefore, the mapping σ 7→ ρ is a contraction on XT1
and admits a unique

fixed point. It gives a solution to the problem.
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4.4 BV estimates and infinite lifespan
Proposition 4.10. There exists a constant C7, depending only on c,D,E, ‖ρ0‖L1 ,
‖ρ0‖L∞ , E′1,E′2, and on the L1 norm of the first and second derivatives of E,
such that the solution of Theorem 4.9 satisfies

TV(ρ(t)) ≤ (TV(ρ0) + C7te
T1C0)eκ0t,

for any t ∈ [0, T1].

Proof. We keep the same notation as in the proof of Theorem 4.9. Using [19,
Theorem 2.2], we have

TV(ρ(t)) ≤ TV(ρ0)eκ0t

+2W2

∫ t

0

eκ0(t−s)
∫∫

R2

sup
0≤λ≤R(t)

‖∇divxf(s, x, λ)‖dxds.

By using Lemma 4.8, we are led to

TV(ρ(t)) ≤ TV(ρ0)eκ0t + 2W2te
κ0tR(T1)(C3 + C4‖ρ0‖L1(R2))‖ρ0‖L1(R2).

We get the announced property with

C7 = 2W2‖ρ0‖L∞(R2)(C3 + C4‖ρ0‖L1(R2))‖ρ0‖2L1(R2).

Theorem 4.11. Let ρ0 ∈ L1(R2) ∩ L∞ ∩ BV (R2) such that ρ0 ≥ 0. There
exists a weak entropy solution on R+ to{

∂tρ+ divx(ρU[ρ]) = 0,
ρ(0, x) = ρ0(x).

(4.16)

Proof. We construct now the solution on [Tn, Tn+1] starting at the left end
time from the initial data ρ(Tn). Since the L1 norm is preserved, terms with
‖ρ0‖L1(R2) are unchanged. The estimate on TV(ρ(t)) is not that simple.

We set T0 = 0 and we assume we have constructed the solution on
⋃n−1
k=0 [Tk, Tk+1].

Using Proposition 4.10, going from 0 to t ∈ [0, Tn], we have

TV(ρ(t)) ≤ (TV(ρ0) + C7te
TnC0)eκ0t.

We set

Kn(T ) = eκ1(T−Tn)(TV(ρ0) + C7Tne
TnC0)eκ0TnC1

+(T − Tn)eκ1(T−Tn)eTn+1C0C5 + eκ(T−Tn)eTC0C6.

We observe that

(T − Tn)Kn(T )
∣∣
T=Tn

= 0, lim
T→∞

(T − Tn)Kn(T ) = +∞

so that, by continuity, we can find Tn+1 > Tn such that

(Tn+1 − Tn)Kn(Tn+1) =
1

2
. (4.17)
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Having at hand this definition, and using the same notations as above, we are
going to show that Γ is still a contraction which allows us to construct a solution
to the non linear problem on [Tn, Tn+1].

Using [19] and starting from Tn, we have for t ∈ [Tn, Tn+1],∫∫
R2

|ρ1(t, x)− ρ2(t, x)| dx

≤

(
(t− Tn)eκ1(t−Tn)TV(ρ(Tn))C1 +

∫ t

Tn

(t− s)eκ1(t−s)eTn+1C0C5 ds

+

∫ t

Tn

eκ(t−s)eTn+1C0C6 ds

)
‖σ2 − σ1‖XTn+1

≤ (t− Tn)

(
eκ1(t−Tn)TV(ρ(Tn))C1 + (Tn+1 − Tn)eκ1(t−Tn)eTn+1C0C5

+eκ(t−Tn)eTn+1C0C6

)
‖σ2 − σ1‖XTn+1

≤ (t− Tn)

(
eκ1(Tn+1−Tn)(TV(ρ0) + C7Tne

TnC0)eκ0TnC1

+(Tn+1 − Tn)eκ1(Tn+1−Tn)eTn+1C0C5 + eκ(Tn+1−Tn)eTn+1C0C6

)
×‖σ2 − σ1‖XTn+1

≤ (t− Tn)Kn(Tn+1)‖σ2 − σ1‖XTn+1

≤ 1

2
‖σ2 − σ1‖XTn+1

.

We have a contraction and we get a solution on [Tn, Tn+1] which leads to a
solution on

⋃n
k=0[Tk, Tk+1]. Then by induction, we have obtained a solution on⋃

k∈N[Tk, Tk+1]. We end the proof by showing that Tn → +∞ when n → +∞.
By construction the sequence

(
Tn
)
n∈N is strictly increasing. Let us assume that

this sequence is bounded, so that Tn → T ∗ < +∞ as n→∞. By the definition
of Kn, we see that the sequence

(
Kn(Tn+1)

)
n∈N is bounded too. Furthermore,

Tn+1 − Tn → 0 so that the left hand side in (4.17) tends to 0 as n → ∞, a
contradiction. We conclude that (Tn)n∈N is not bounded and Tn → +∞.

Acknowledgements
We acknowledge support form the Brazilian–French Network in Mathematics,
which has made possible a visit in Nice where a large part of this work was
done. P.A. was also partially supported by FAPERJ grant “Jovem Cientista do
Nosso Estado” no. 202.867/2015.

28



A Proof of the technical lemmas

Proof of Lemma 4.2
We start by noticing that

|(E ∗ σ)(x)| ≤ ‖E‖L∞(R2)‖σ‖L1(R2) = E‖σ‖L1(R2),

which implies

|Ψ[σ](x, θ)| ≤
∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
|(E ∗ σ)(x+ rΩ(α))|dα r d r dξ

≤ `

∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
E‖σ‖L1(R2) dα d r dξ

≤ (2π`)2E‖σ‖L1(R2).

It follows that

e−cE‖σ‖L1(R2) ≤ e−Ψ[σ](x,θ)/D ≤ ecE‖σ‖L1(R2) .

We also obtain
|µ[σ](x)| ≤ 1

2π
ecE‖σ‖L1(R2) .

Next, we have

∂xk
Ψ[σ](x, θ) =

∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
sin(ξ − α)(∂xk

E ∗ σ)(x+ rΩ(α)) dα r d r dξ

and

∂xk
µ[σ](x) =

|µ[σ](x)|2

D

∫ 2π

0

∂xk
Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ.

We get
|∂xk

Ψ[σ](x, θ)| ≤ (2π`)2E′k‖σ‖L1(R2)

and

|∂xk
µ[σ](x)| ≤ 2πcE′k‖σ‖L1(R2)e

cE‖σ‖L1(R2) |µ[σ](x)|2

≤ c

2π
E′k‖σ‖L1(R2)e

3cE‖σ‖L1(R2) .

Finally, we have

∂2
xkxl

Ψ[σ](x, θ) =

∫ θ

0

∫ `

0

∫ ξ+β

ξ−β
sin(ξ − α)(∂2

xkxl
E ∗ σ)(x+ rΩ(α)) dα r dr dξ
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and

∂2
xkxl

µ[σ](x) =
|µ[σ](x)|2

D

∫ 2π

0

∂2
xkxl

Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

−|µ[σ](x)|2

D2

∫ 2π

0

∂xk
Ψ[σ](x, θ)∂xl

Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ

+
2

D

∫ 2π

0

∂xl
Ψ[σ](x, θ)e−Ψ[σ](x,θ)/D dθ × µ[σ](x)∂xk

µ[σ](x).

Hence, we get
|∂2
xkxl

Ψ[σ](x, θ)| ≤ (2π`)2E′′kl‖σ‖L1(R2)

and

|∂2
xkxl

µ[σ](x)| ≤ 1

D
2π(2π`)2E′′kl‖σ‖L1(R2)e

cE‖σ‖L1(R2)
1

(2π)2
e2cE‖σ‖L1(R2)

+
1

D2
2π(2π`)2E′k‖σ‖L1(R2)(2π`)

2E′l‖σ‖L1(R2)e
cE‖σ‖L1(R2)

1

(2π)2
e2cE‖σ‖L1(R2)

+
2

D
2π(2π`)2E′l‖σ‖L1(R2)e

cE‖σ‖L1(R2)
1

2π
ecE‖σ‖L1(R2)

c

2π
E′k‖σ‖L1(R2)e

3cE‖σ‖L1(R2)

≤
(
c

2π
E′′kl‖σ‖L1(R2) + E′kE

′
l‖σ‖2L1(R2)

3c2

2π

)
e5cE‖σ‖L1(R2) .

Proof of Lemma 4.3
Estimate (4.5) is a direct consequence of∫∫

R2

|(E ∗ σ)(x)|dx ≤ ‖E‖L1(R2)‖σ‖L1(R2).

We obtain (4.6) and (4.8) similarly. Next, we write∫∫
R2

|∂xk
µ[σ](x)|dx ≤ 2π

D

∫∫
R2

|∂xk
Ψ[σ](x, θ)|dxecE‖σ‖L1(R2)

e2cE

(2π)2
‖σ‖L1(R2)

≤ c

2π
e3cE‖σ‖L1(R2)‖∂xk

E‖L1(R2)‖σ‖L1(R2).

It proves (4.7). Eventually, we have∫∫
R2

|∂2
xkxm

µ[σ](x)|dx

≤ 1

D

∫ 2π

0

∫∫
R2

|∂2
xkxm

Ψ[σ](x, θ)|dxdθecE‖σ‖L1(R2)
1

(2π)2
e2cE‖σ‖L1(R2)

+
1

D2

∫ 2π

0

∫∫
R2

|∂xk
Ψ[σ](x, θ)|dxdθcDE′m‖σ‖L1(R2)e

cE‖σ‖L1(R2)
1

(2π)2
e2cE‖σ‖L1(R2)

+
2

D

∫ 2π

0

∫∫
R2

|∂xl
Ψ[σ](x, θ)|dxdθecE‖σ‖L1(R2)

1

2π
ecE‖σ‖L1(R2)

c

2π
E′k‖σ‖L1(R2)e

3cE‖σ‖L1(R2)
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≤ 1

D
c2D2‖∂2

xkxm
E‖L1(R2)‖σ‖L1(R2)

1

2π
e3cE‖σ‖L1(R2)

+
1

D2
cD‖∂xk

E‖L1(R2)‖σ‖L1(R2)cDE′m‖σ‖L1(R2)
1

2π
e3cE‖σ‖L1(R2)

+
2

D
cD‖∂xm

E‖L1(R2)‖σ‖L1(R2)
c

2π
E′k‖σ‖L1(R2)e

5cE‖σ‖L1(R2) .
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