Covering spaces

I. Covering spaces

Exercise 1. — Prove that a 1-fold covering space is a homeomorphism.

Exercise 2. — Let $p: E \to B$ be a map which is a local homeomorphism.

- **a)** Give an example where p is not a covering.
- **b)** Prove that if E is compact⁽¹⁾ and B is Hausdorff then p is a finite covering.
- c) Assume B Hausdorff. Prove that if there exists an integer $n \ge 1$ such that for all $b \in B$, $p^{-1}(b)$ has n elements, then p is an n-fold covering.
- **d)** Prove that for all $n \ge 1$ the maps $\begin{array}{ccc} S^1 & \to & S^1 \\ z & \mapsto & z^n \end{array}$ are coverings.
- e) Let P be a polynomial in $\mathbb{C}[X]$ of degree $n \ge 1$. Let S be the set of roots of the derivative P' and R := P(S). Prove that the map $\begin{array}{cc} \mathbb{C} P^{-1}(R) & \to & \mathbb{C} R \\ z & \mapsto & P(z) \end{array}$ is an n-fold covering.

Exercise 3. — Let X be a topological space equipped with a continuous $\operatorname{action}^{(2)}$ of a (discrete) group G satisfying the following hypothesis:

"For every $x \in X$, there is a open neighbourhood U of x in X such that for all $g \neq h \in G$, gU and hU are disjoint".

- **a**) Prove that the quotient map $X \to G \setminus X$ is a covering.
- **b)** If $H \subset G$ is a subgroup, prove that $H \setminus X \to G \setminus X$ is a covering.
- c) Prove that the hypothesis is always satisfied when Y is Hausdorff, G is finite and acts without fixed point⁽³⁾.
- d) Deduce a covering map from the sphere S^n to the projective space $P^n(\mathbf{R})$.
- e) Prove that if G is a topological group and H is a discrete subgroup, then $G \to H \setminus G$ is a covering space.

[Hint: Reduce to show the property at x = e. Let $\varphi : G \times G \to G$, $(g_1, g_2) \mapsto g_1 g_2^{-1}$. For U an open neighborhood of e in G, prove there exists a open V such that $\varphi(V \times V) \subset U$.

Exercise 4. — Let $p: E \to B$ be a covering space with B locally connected. Show that the restriction of p to a connected component of E is still a covering space.

Exercise 5. — Let $p_1 : E_1 \to B$ and $p_2 : E_2 \to B$ be two connected covering spaces (with B locally connected) and $f : E_1 \to E_2$ be covering map. Show that f is a covering.

II. Lifting and universal covers

Exercise 6. — Prove (using covering spaces) that there is no continuous logarithm function $\log : \mathbf{C}^* \to \mathbf{C}$.

Prove that one can define it continuously on subsets of the form: $\mathbf{C} - \{$ one half-line at $0\}$

Exercise 7. — Let $p: \widetilde{X} \to X$ and $q: \widetilde{Y} \to Y$ be two universal covers.

- **a)** Prove that for every $f: X \to Y$ there is a map $\tilde{f}: \tilde{X} \to \tilde{Y}$ such that $f \circ p = q \circ \tilde{f}$.
- b) Warning: This does not mean that the universal cover construction is functorial! Let $e: \mathbf{R} \to S^1$ be the map $t \mapsto \exp(2i\pi t)$ and $f: S^1 \to S^1$ be the map $z \mapsto -z$. Prove that there is not lift $\tilde{f}: \mathbf{R} \to \mathbf{R}$ such that $\tilde{f} \circ \tilde{f} = \mathrm{id}_{\mathbf{R}}$

 $^{(3)}i.e.$ one has $g \cdot x = x \implies g = e.$

⁽¹⁾Thus Hausdorff and quasi-compact.

⁽²⁾That is an action of G on X such that the map $X \times G \to X$ is continuous.

Exercise 8. — Let $p: E \to B$ be a covering. Suppose that B is a complex manifold.

- a) Prove that there is a unique complex structure on E such that p is analytic.
- b) Let $f: X \to B$ be an analytic map. Under which condition does f lift to an analytic map $\tilde{f}: X \to E$?
- c) Apply this to exercice I.5 of the Complex Geometry course.

Exercise 9. — Let G be a connected and locally path-connected topological group. Let $p : \Gamma \to G$ be a connected cover and $\tilde{e} \in p^{-1}(e) \subset \Gamma$.

a) Let $m: \Gamma \times \Gamma \to G$ be the map $(x, y) \mapsto p(x) \cdot p(y)$. Prove that $m_*(\pi_1(\Gamma \times \Gamma, (\tilde{e}, \tilde{e})))$ is contained in $p_*(\pi_1(\Gamma, \tilde{e}))$.

Hint: You can use exercise I.11 from the previous sheet.

b) Prove that there is a unique group structure on Γ such that \tilde{e} is the unit and p is a group morphism.

III. The monodromy action

Exercise 10. — Let $p: E \to B$ be a covering and $f: X \to B$ be a map. Express the monodromy of $f^*(p): X \times_B E \to X$ in terms of the monodromy of p.

Exercise 11. — Let (B, b_0) be a pointed path-connected semi-locally simply-connected space.

- a) Prove that in the monodromy correspondence, *path-connected* covers of B correspond to $\pi_1(B, b_0)$ -sets with transitive action.
- **b)** To which coverings do these $\pi_1(B, b_0)$ -sets correspond to?

i) $\pi_1(B, b_0)$ with translation action *iii)* $F_1 \times F_2$ with diagonal action for F_1, F_2 two $\pi_1(B, b_0)$ -sets. *iii)* A set F with trivial action *iv)* $F_1 \sqcup F_2$ for F_1, F_2 two $\pi_1(B, b_0)$ -sets.

Exercise 12. — Let $p: E \to B$ be a covering space with E path-connected. Let x be a point in X and e be a point in the fiber $p^{-1}(x)$.

- **a)** Show that $p_*: \pi_1(E, e) \to \pi_1(X, x)$ is injective.
- **b**) Show that if p_* is surjective then p is a homeomorphism.

Exercise 13. — Let G be a group and X_1, X_2 be G-sets.

a) Prove that X_1 and X_2 are isomorphic iff there exists a bijection $\varphi: X_1 \to X_2$ such that

$$\forall g \in G, \ \forall x_1 \in X_1, \ g \cdot x_1 = \varphi^{-1}(g \cdot \varphi(x))$$

b) What are (up to isomorphism) the 2-fold and 3-fold covering spaces of S^1 and $S^1 \times S^1$?

Exercise 14. — Let $p_1: E_1 \to B$ and $p_2: E_2 \to B$ be two covering spaces.

- a) Show that the fiber product $p: E_1 \times_B E_2 \to B$ is a covering of B. Express the monodromy of p in terms of that of p_1 and p_2 .
- **b)** In the case where $E_1 = E_2 = B = S^1$, $p_1(z) = z^2$ and $p_2(z) = z^3$, prove that the fiber product is isomorphic to $z \mapsto z^6$.
- c) What do you think about the case where $E_1 = E_2 = B = S^1$, $p_1(z) = z^2$ and $p_2(z) = z^4$?

Exercise 15. — For $z \in \mathbf{C}$, recall that $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

- **a)** For $z, z' \in \mathbf{C}$, prove the equivalence of:
 - (i) $\cos z = \cos z'$;
 - (ii) there exists $k \in \mathbf{Z}$ such that $z' = \pm z + 2k\pi$.
- b) Show that $\cos 3z = 4 \cos^3 z 3 \cos z$.
- c) Prove that the map $p: \mathbb{C} \{-1, -\frac{1}{2}, \frac{1}{2}, 1\} \to \mathbb{C} \{-1, 1\}, z \mapsto 4z^3 3z$ is a 3-fold covering.

d) Let α and β be the loops

$$\alpha: t \mapsto \cos(\frac{\pi}{2}e^{i\pi t}) \text{ and } \beta: t \mapsto -\cos(\frac{\pi}{2}e^{i\pi t})$$

of $\mathbb{C} - \{-1, 1\}$ based at 0. Write down explicitly their lifts $\widetilde{\alpha}$ and $\widetilde{\beta}$ in $\mathbb{C} - \{-1, -\frac{1}{2}, \frac{1}{2}, 1\}$. e) Deduce that the group $\pi_1(\mathbb{C} - \{-1, 1\}; 0)$ is not abelian.

Exercise 16. — Let $p_1: Y_1 \to X$, $p_2: Y_2 \to X$ be two covering spaces. Define H to be the set of pairs (x, f_x) , with $x \in X$ and $f_x: p_1^{-1}(x) - > p_2^{-1}(x)$. For each covering map $f: Y_1 \to Y_2$ and each open $U \subset X$, let $O_{U,f} := \{(x, f_{|p_1^{-1}(x)})\}_{x \in U}$. We

For each covering map $J: Y_1 \to Y_2$ and each open $U \subset X$, let $O_{U,f} := \{(x, J_{|p_1^{-1}(x)})\}_{x \in U}$. We put on H the topology generated by the $O_{U,f}$'s.

- **a**) Show that the $O_{U,f}$'s form a neighborhood basis of the topology.
- **b)** Show that the map $p: H \to X$, $(x, f_x) \mapsto x$ is a covering space.
- c) Show that there is a bijective correspondence between covering maps $Y_1 \to Y_2$ and sections of $p: H \to X$.
- d) Show that the evaluation map $Y_1 \times_X H \to Y_2$ is continuous.
- e) Deduce that the monodromy action of $H \to X$ is the following:

$$(x, f_x) \cdot \alpha = (x, y \mapsto (f_x(y \cdot \alpha^{-1}))) \cdot \alpha$$

for $\alpha \in \pi_1(X, x_0)$.

IV. Galois coverings

Exercise 17. — For an integer $n \ge 1$, let p_n be the covering $\begin{array}{ccc} S^1 & \to & S^1 \\ z & \mapsto & z^n \end{array}$.

- **a)** For which n, m are there covering morphisms $p_n \to p_m$?
- **b)** What is the group of automorphisms of p_n ?

Exercise 18. — a) Prove that a connected 2-fold cover is a Galois cover.

- b) Prove that a connected 3-fold cover is Galois iff its automorphism group is isomorphic to $\mathbf{Z}/3\mathbf{Z}$.
- c) Prove that the automorphism group of a connected 3-fold cover is either $\mathbb{Z}/3\mathbb{Z}$ or trivial.

Exercise 19. — Let $p: E \to B$ be a connected cover.

Prove that p is Galois if and only if the pull-back cover $p^*(p): E \times_B E \to E$ is trivial.

[**Hint:** If p is Galois, let G be the (discrete) group Aut(p). Prove that $p^*(p)$ is isomorphic to the trivial cover $E \times G \to E$. Conversely, use $E \times F \cong E \times_B E \xrightarrow{pr_2} E$ to construct automorphisms.]

Exercise 20. — Let X and Y be the spaces represented in the picture below and let $p: Y \to X$ be the continuous map sending homeomorphically each arc A_i (resp. B_i) over A (resp. B) according to the orientation indicated.

a) Show that *p* is a covering space.

- b) What is its automorphism group? Deduce that p is not Galois.
- c) Construct a 2-fold cover $q: \tilde{Y} \to Y$ such that $p \circ q: \tilde{Y} \to X$ is Galois.

Exercise 21. — Let (B, b) be a pointed connected, semi-locally simply connected space. Prove that in the monodromy correspondence connected Galois covers correspond to $\pi_1(B, b)$ -sets with the following property: an element of $\pi_1(B, b)$ acts either trivially (as the identity permutation) or without fixed point.

Exercise 22. — Let E be a connected space, G be a (discrete) group acting properly discontinuously on E and $H \subset G$ be a subgroup.

- **a)** Prove that $p: H \setminus E \to G \setminus E$ is a connected covering space.
- **b)** Prove that p is Galois iff H is normal.

[Hint: Prove that every automorphism of p is of the form $[e] \mapsto [g \cdot e]$.]

Exercise 23. — Prove that the covering in Exercise 15 is non Galois.

V. Van Kampen's theorem

Exercise 24. — Let X be a wedge of two circles (or a "figure-eight").

- **a)** Determine all 2-folded covers of X (up to isomorphism).
- **b)** How many subgroups H of index 2 are there in the free group $F_2 = \langle a, b \rangle$?
- c) Give the exact list of these subgroups H and show that each one is free.

Exercise 25. — What is the fundamental group of \mathbb{R}^3 minus the three coordinate axes?

- *Exercise 26.* **a)** Show that the fundamental group of a torus minus a point is a free group with two generators.
 - b) What is the fundamental group of the surface pictured below?

Exercise 27. — Let $\pi: S^2 \to P^2(\mathbf{R})$ be the quotient map. Let \widetilde{U}_1 be the open upper hemisphere z > 0 and \widetilde{U}_2 be the "equatorial region" -1/4 < z < 1/4 in S^2 .

- a) Prove that $U_1 := \pi(\widetilde{U}_1)$ and $U_2 := \widetilde{U}_2$ form an open cover of $P^2(\mathbf{R})$. Prove that the intersection $U_1 \cap U_2$ is path connected.
- b) Show that U_2 is homeomorphic to a Möbius strip. What is its fundamental group?
- c) What is the fundamental group of $U_1 \cap U_2$? What is the map induced on fundamental groups by the inclusion $U_1 \cap U_2 \hookrightarrow U_2$?
- d) Deduce from Van Kampen's theorem the fundamental group of $P^2(\mathbf{R})$.