De Rham Cohomology

I. Differential forms on $U \subset \mathbf{R}^n$

Definition 1. — Let $U \subset \mathbb{R}^n$ be an open subset and ω a 1-form on U. Let $\gamma : [0, 1] \to U$ be a smooth path on U. We set

$$\int_{\gamma} \omega = \int_0^1 \omega_{\gamma(t)}(\gamma'(t)) \, \mathrm{d} t$$

Exercise 1. — Let $U \subset \mathbb{R}^n$ be a connected open subset and ω a 1-form on U.

- a) Show that if $\omega = df$ for some smooth function f on U, then $\int_{\gamma} \omega = f(\gamma(1)) f(\gamma(0))$.
- b) Show that $\omega = df$ for some smooth function f if and only if $\int_{\gamma} \omega = 0$ for all loops in U. Hint: Fix a point $x_0 \in U$ and for $x \in U$ chose a path γ_x in U from x_0 to x. Consider the function $f(x) = \int_{\gamma_x} \omega$. Show that f(x) does not depend on the choice of the path γ_x , then calculate ∇f .

Exercise 2. — In this exercise we will describe $H^1_{DR}(\mathbb{R}^2 \setminus (0,0))$. Consider the differential 1-form

$$\omega_0 = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

- a) Show that $d\omega_0 = 0$.
- b) Let $\gamma : [0,1] \to \mathbb{S}^1 \subset \mathbb{C} \simeq \mathbb{R}^2$ be the loop defined by $\gamma(t) = e^{2\pi i t}$. Calculate $\int_{\gamma} \omega_0$. Deduce that ω_0 cannot be equal to df for some smooth function f on U.
- c) Let ω be a 1-form ω satisfying $d\omega = 0$ and $\int_{\gamma} \omega = 0$. Show that $\omega = df$ for some smooth function on $\mathbb{R}^2 \setminus (0,0)$. Hint: Consider the open subsets $U_1 = \{x > 0\}$, $U_2 = \{x < 0\}$, $U_3 = \{y > 0\}$, $U_4 = \{y < 0\}$ and a 1-form ω satisfying $d\omega = 0$. Show that we can find smooth functions f_i on U_i such that we have $\omega = df_i$ and $f_1 = f_3$ on $U_1 \cap U_3$, $f_2 = f_3$ on $U_2 \cap U_3$, $f_2 = f_4$ on $U_2 \cap U_4$ and $f_1 f_4 = c$ is constant on $U_1 \cap U_4$. Calculate $\int_{\gamma} \omega$ using this description of ω to deduce that c = 0.
- d) Deduce that integration along γ defines an isomorphism

$$\int_{\gamma}: \quad \mathrm{H}^{1}_{\mathrm{DR}}(\mathbf{R}^{2}\setminus(0,0))\longrightarrow \mathbf{R}.$$

Hence $H^1_{DR}(\mathbb{R}^2 \setminus (0,0))$ is a 1-dimensional vector space with basis $\{[\omega_0]\}$.

e) Describe $H^1_{DR}(\mathbf{R}^2 \setminus (0,0),(1,0))$.

Exercise 3. — In this exercise we will show that $H^2_{DR}(\mathbb{R}^2 \setminus (0,0)) \simeq 0$. Consider the smooth maps

$$\Phi: \mathbf{R}_{>0} \times \mathbf{R} \longrightarrow \mathbf{R}^2 \setminus \{(0,0)\} \qquad (\mathbf{r},\theta) \mapsto \phi(\mathbf{r},\theta) = (\mathbf{r}\cos(\theta),\mathbf{r}\sin(\theta))$$

- a) Show that Φ^* : $\Omega^k(\mathbf{R}^2 \setminus (0,0)) \to \Omega^k(\mathbf{R}_{>0} \times \mathbf{R})$ is injective and identifies a k-form on $\mathbf{R}^2 \setminus (0,0)$ with a k-form on $\mathbf{R}_{>0} \times \mathbf{R}$ whose coefficients 2π -periodic with respect to θ .
- b) Deduce that $H^2_{DR}(\mathbb{R}^2 \setminus (0,0)) \simeq 0$. Hint: To show that a closed form is exact consider integration with respect to r.

Exercise 4. — Consider the smooth map

$$S: \mathbf{R}^3 \setminus \{(0,0,0)\} \longrightarrow \mathbf{R}^3 \qquad S(x,y,z) = \frac{1}{\|(x,y,z)\|}(x,y,z)$$

and the differential 2-form $\omega_0 = z dx \wedge dy - y dx \wedge dz + x dy \wedge dz$. define

- $\Psi: \mathbf{R} \times \mathbf{R} \longrightarrow \mathbf{R}^3 \setminus \{0, 0\} \qquad ; \qquad \Psi(\phi, \theta) = (\cos(\theta) \sin(\phi), \cos(\theta) \cos(\phi), \sin(\theta))$
- a) Calculate the explicit formula of $S^*\omega_0$ and show that $S^*\omega_0$ is closed (note that ω_0 is not closed).

b) Calculate

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{2\pi}(S^*\omega_0)_{\Psi(\varphi,\theta)}(J_{\Psi}(\varphi,\theta))d\varphi d\theta$$

c) Let ω be an exact 2-form on $\mathbb{R}^3 \setminus \{(0,0,0)\}$. Use Green's theorem to prove that

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int_{0}^{2\pi}\omega_{\Psi(\varphi,\theta)}(J_{\Psi}(\varphi,\theta))d\varphi d\theta=0.$$

d) Show that integration with respect to Ψ defines an isomorphism

$$\int_{\Psi} : \operatorname{H}^{2}_{\operatorname{DR}}(\mathbf{R}^{3} \setminus (0,0,0)) \longrightarrow \mathbf{R}.$$

e) Let ω be a closed 1-form, using Greens theorem and a slight adaptation of exercise 1 prove that ω is exact, hence $H^1_{DR}(\mathbb{R}^3 \setminus (0,0,0)) \simeq \{0\}$.

II. Homological algebra

Exercise 5 (The 5 Lemma). — Consider a commutative diagram of vector spaces

$$V_{2} \longrightarrow V_{2} \longrightarrow V_{3} \longrightarrow V_{4} \longrightarrow V_{5}$$

$$f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{3} \downarrow \qquad f_{4} \downarrow \qquad f_{5} \downarrow$$

$$W_{1} \longrightarrow W_{2} \longrightarrow W_{3} \longrightarrow W_{4} \longrightarrow W_{5}$$

Suppose that both lines are exact sequences, f_2 , f_4 are isomorphisms, f_1 is surjective and f_5 is injective. Show that f_3 is an isomorphism.

Exercise 6. — Consider a bounded complex (V^*, d) , that is $V^k \simeq 0$ for all but a finite number of k. Let $\chi(V) = \sum_{-\infty}^{\infty} (-1)^k \dim(V^k)$.

- a) Suppose that V^* is a short exact sequence. Show that $\chi(V) = 0$.
- b) Use induction to show that if V^* is exact then $\chi(V) = 0$.

Exercise 7. — Consider an exact sequence

$$V_1 \xrightarrow{f} V_2 \longrightarrow V_3 \longrightarrow V_4 \xrightarrow{g} V_5$$

a) Show that the sequence induces a short exact sequence

$$0 \longrightarrow V_2/\operatorname{im}(f) \longrightarrow V_3 \longrightarrow \ker(g) \longrightarrow 0$$

Deduce that $\dim(V_3) = \dim(V_2/\operatorname{im}(f)) + \dim(\ker(g)).$

b) Fix $V_1 = V_2 = V_4 = V_5 = \mathbb{R}^2$. Suppose first that f = g = id. Verify that $\dim(V_3) = 0$. Explain why $\dim(V_3) \leq 4$, then give examples of f, g such that $\dim(V_3) = 1, 2, 3, 4$.

Exercise 8. — Consider a short exact sequence

 $0 \longrightarrow V \stackrel{f}{\longrightarrow} W \stackrel{g}{\longrightarrow} Z \longrightarrow 0$

Let L be another vector space and consider the complexes

$$0 \longrightarrow V \otimes L \xrightarrow{f \otimes 1} W \otimes L \xrightarrow{g \otimes 1} Z \otimes L \longrightarrow 0$$
$$0 \longrightarrow \operatorname{Hom}(Z, L) \xrightarrow{\circ g} \operatorname{Hom}(W, L) \xrightarrow{\circ f} \operatorname{Hom}(V, L) \longrightarrow 0$$
$$0 \longrightarrow \operatorname{Hom}(L, V) \xrightarrow{f \circ} \operatorname{Hom}(L, W) \xrightarrow{g \circ} \operatorname{Hom}(L, Z) \longrightarrow 0$$

Show that these complexes are short exact sequences.

Exercise 9. — Let $A_1^*, B_1^*, C_1^*, A_2^*, B_2^*$ and C_2^* be six cochain complexes. Assume that we have maps of cochains complexes:

such that the two rows are exact and the two squares commute. Prove that there are induced maps between the long exact sequences :

such that all the squares commute.

III. De Rham cohomology of manifolds

Exercise 10. — Let S^1 be the circle, and U, V be two "thick" open half circle that cover it.

a) Write down the Mayer-Vietoris sequence for de Rham cohomology associated to this cover. Deduce the de Rham cohomology of S^1 .

Following the definition of the connecting morphism, give an explicit generator of $H^{1}(S^{1})$.

- b) Same question, but using de Rham cohomology with compact support instead.
- c) Generalize to S^n , showing that a generator of $H^n(S^n)$ can be chosen with support arbitrary small.

Exercise 11. — The open Möbius strip M is the quotient of the semi-open square $[0, 1] \times]0, 1[$ via the following identifications: $\forall y \in]0, 1[, (0, y) \simeq (1, 1 - y).$

- a) Compute the de Rham cohomology of M.
- b) Compute the de Rham cohomology with compact support of M.

Exercise 12. — a) Compute the de Rham cohomology of $\mathbb{R}^n - \{k \text{ points}\}$.

- b) Same question for de Rham cohomology with compact support.
- c) Same questions for C Z.

Exercise 13. — Prove the Brouwer fix point theorem for smooth maps, *i.e.* prove that any smooth $f: D^n \to D^n$ has a fixed point.

Exercise 14. — Let $f: S^n \to S^n$ be a smooth map and $f^*: H^n(S^n) \to H^n(S^n)$ the induced map.

- a) Prove that f^* is a homothety. We denote by d(f) its scale factor.
- b) For two maps f, g, prove that $d(f \circ g) = d(f)d(g)$.
- c) Prove that if f is not surjective, then d(f) = 0. [Hint: Use Exercise 10c).]
- d) What is the degree of the map induced by an element of O(n + 1)? [Hint: Treat first the case of a reflexion: $(x_1, x_2, ..., x_{n+1}) \mapsto (-x_1, x_2, ..., x_{n+1})$ by induction on n.]
- e) Same question for the map $S^1 \to S^1$, $z \mapsto z^n$?

Exercise 15. — Let n be an even integer. The goal is to prove that there is no non-vanishing smooth vector field on S^n . Suppose by contradiction that there exists such a vector field $X: S^n \to \mathbb{R}^{n+1}$ such that $X(x) \cdot x = 0$.

- a) Construct out of X a homotopy from id_{S^n} to $-id_{S^n}$.
- **b**) Conclude.
- c) Does the extend to odd-dimensional spheres?

Exercise 16. — Let $p: Y \to X$ be a smooth Galois cover of manifolds, with Galois group G. Note that the group G acts on $\Omega^*(Y)$ and on $H^*(Y)$. We denote by $\Omega^*(Y)^G$ the subalgebra of differential forms that are fixed by all the elements in G.

- a) Prove that p^* sends $\Omega^*(X)$ into $\Omega^*(Y)^G$.
- b) Show that $p^*: \Omega^*(X) \to \Omega^*(Y)^{\mathsf{G}}$ is an isomorphism of differential graded algebras. [Hint: Construct explicitly its inverse.]
- c) The inclusion $\Omega^*(Y)^G \subset \Omega^*(Y)$ induces a map $\iota: H^*(\Omega^*(Y)^G) \to H^*(Y)^G$. Prove that if G is finite, ι is an isomorphism.

[Hint: Whenever you have a finite group acting on some ω , it's a good idea to consider $\frac{1}{|G|} \sum_{\alpha \in C} g.\omega$].

d) Apply this to compute the cohomology of the projective space $P^n(\mathbf{R})$.

Exercise 17. — Let $P^{n}(\mathbf{C})$ be the complex projective space.

- a) Prove that $P^n(\mathbf{C})$ is compact. Prove that $P^1(\mathbf{C})$ is diffeomorphic to S^2 .
- b) Let $x := [0 : \cdots : 0 : 1]$ and $U := P^n(\mathbf{C}) \{x\}$. Prove that U is homotopy equivalent to $P^{n-1}(\mathbf{C})$.
- c) Use an inductive Mayer-Vietoris sequence to compute $H^*(P^n(\mathbf{C}))$.

Exercise 18. — Compute the de Rham cohomology of the following product manifolds:

a)
$$(S^1)^n$$
 b) $S^1 \times S^2 \times S^3$

Exercise 19. — Let Z be the discrete space of integers.

- a) Compute the de Rham cohomology of Z. In particular, prove that $H^0(Z) \cong \mathbb{R}^Z$ has uncountable dimension.
- b) Prove that the natural Kunneth map $H^*(\mathbf{Z}) \otimes H^*(\mathbf{Z}) \to H^*(\mathbf{Z} \times \mathbf{Z})$ is not an isomorphism. [Hint: Prove that in $\mathbf{R}^{\mathbf{Z} \times \mathbf{Z}}$, the sequence $a_{n,m} = \delta_{n,m}$ is not in the image.]

IV. Orientation and integration. Poincaré duality

Exercise 20. — Let $\mathbf{P}^2(\mathbf{R})$ be the real projective plane.

- a) Prove that $\mathbf{P}^2(\mathbf{R})$ is a manifold that is not orientable.
- **b**) Prove that the Möbius band is non orientable.
- c) How does b) implies a)?

Exercise 21. — Prove that a complex analytic manifold is orientable.

Exercise 22. — a) Prove that the two manifolds $S^2 \times S^4$ and $P^3(\mathbf{C})$ have isomorphic de Rham cohomology groups in each degree.

b) Prove that these two manifolds are not homotopy equivalent. [Hint: Compare the algebra structure.]

Exercise 23. — Let M be a connected, compact oriented n-dimensional manifold. Prove that a form $\omega \in \Omega^n(M)$ is closed iff $\int_M \omega = 0$.

Exercise 24. — The goal of this exercise is to present the "correct" proof of Poincaré duality. Let M be an oriented manifold of dimension n. We fix $k \leq n$. For every open $O \subset M$, let $\iota_O : H^k(O) \to (H^{n-k}_c(O))^*$ be the map defined by integration. The goal is thus to prove that ι_M is an isomorphism.

Let \mathcal{O} be a set of opens subsets of \mathcal{M} which is closed under intersections (*i.e.* if O_1, O_2 are opens in \mathcal{O} then $O_1 \cap O_2$ also). Let \mathcal{O}_f be the set of opens in \mathcal{M} which are finite unions of opens in \mathcal{O} and let \mathcal{O}_d be the set of opens in \mathcal{M} which are arbitrary disjoint unions of opens in \mathcal{O} .

a) Prove that if for every $O \in \mathcal{O}$, ι_O is an isomorphism, then ι_U is also an isomorphism for every open $U \in \mathcal{O}_f$ (resp. $U \in \mathcal{O}_d$).

[Hint: Note that the dual of a direct sum $\bigoplus_{i\in I} E_i$ is isomorphic to the product $\prod_{i\in I} E_i^*.]$

The crux of the proof is the following fact on the topology of a manifold.

Suppose that \mathcal{O} as above is a basis of the topology of M such that the closure of each $O \in \mathcal{O}$ is compact. Then there exist two opens $V_1, V_2 \in (\mathcal{O}_f)_d$ such that $M = V_1 \cup V_2$.

To prove this: start with a cover $U_1 \subset U_2 \subset \ldots$ of M such that every U_i has compact closure $\overline{U_i} \subset U_{i+1}$.

b) Construct new opens W_i of M satisfying:

(i)
$$\forall i, \overline{U_i} \subset \bigcup W_j \subset U_{i+1}$$
.

(ii)
$$\forall i, W_i \in \mathcal{O}_f.$$

(iii)
$$\forall i, W_i \in \mathcal{O}_i$$
.
(iii) $\forall i, W_i \cap W_{i+2} = \emptyset$.

[**Hint:** Construct the W_i by induction, covering $\overline{U_i} - \bigcup_i W_j$ by a finite number of opens in $U_{i+1} - \overline{U_{i-1}}$.]

c) Show that one can take
$$V_1 := \bigcup_{i \text{ odd}} W_i$$
 and $V_2 := \bigcup_{i \text{ even}} W_i$.

Conclude, proving that:

- d) ι_0 is an isomorphism for every open in $O \subset \mathbf{R}^n$.
- [Hint: One can take as basis \mathcal{O} the set of all open "boxes".]
- e) Then that ι_M is an isomorphism.

Exercise 25. — a) Using the same lemma as in Exercise 24, give a "correct proof" of the Kunneth isomorphism for compactly supported de Rham cohomology.

- **b**) Where does the proof goes wrong for de Rham cohomology?
- c) How can we save it when one of the manifolds has finite dimensional cohomology?