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De Rham Cohomology

I. Di�erential forms on U ⊂ Rn

De�nition 1. � Let U ⊂ Rn be an open subset and ω a 1-form on U. Let γ : [0, 1] → U be
a smooth path on U. We set ∫

γ

ω =

∫ 1
0

ωγ(t)(γ
′(t)) dt .

Exercise 1. � Let U ⊂ Rn be a connected open subset and ω a 1-form on U.

a) Show that if ω = df for some smooth function f on U, then
∫
γ
ω = f(γ(1)) − f(γ(0)).

b) Show that ω = df for some smooth function f if and only if
∫
γ
ω = 0 for all loops in U.

Hint: Fix a point x0 ∈ U and for x ∈ U chose a path γx in U from x0 to x. Consider the
function f(x) =

∫
γx
ω. Show that f(x) does not depend on the choice of the path γx, then

calculate ∇f.

Exercise 2. � In this exercise we will describe H1DR(R
2 \ (0, 0)). Consider the di�erential

1-form

ω0 =
−y

x2 + y2
dx+

x

x2 + y2
dy

a) Show that dω0 = 0.
b) Let γ : [0, 1] → S1 ⊂ C ' R2 be the loop de�ned by γ(t) = e2πit. Calculate

∫
γ
ω0.

Deduce that ω0 cannot be equal to df for some smooth function f on U.
c) Let ω be a 1-form ω satisfying dω = 0 and

∫
γ
ω = 0. Show that ω = df for some smooth

function on R2 \ (0, 0). Hint: Consider the open subsets U1 = {x > 0}, U2 = {x < 0},
U3 = {y > 0}, U4 = {y < 0} and a 1-form ω satisfying dω = 0. Show that we can �nd
smooth functions fi on Ui such that we have ω = dfi and f1 = f3 on U1 ∩U3, f2 = f3 on
U2 ∩U3, f2 = f4 on U2 ∩U4 and f1 − f4 = c is constant on U1 ∩U4. Calculate

∫
γ
ω using

this description of ω to deduce that c = 0.
d) Deduce that integration along γ de�nes an isomorphism∫

γ

: H1DR(R
2 \ (0, 0)) −→ R.

Hence H1DR(R
2 \ (0, 0)) is a 1-dimensional vector space with basis {[ω0]}.

e) Describe H1DR(R
2 \ (0, 0), (1, 0)).

Exercise 3. � In this exercise we will show that H2DR(R
2 \ (0, 0)) ' 0. Consider the smooth

maps
Φ : R>0 ×R −→ R2 \ {(0, 0)} (r, θ) 7→ ϕ(r, θ) = (r cos(θ), r sin(θ))

a) Show that Φ∗ : Ωk(R2 \ (0, 0)) → Ωk(R>0 × R) is injective and identi�es a k-form on
R2 \ (0, 0) with a k-form on R>0 ×R whose coe�cients 2π-periodic with respect to θ.

b) Deduce that H2DR(R
2 \ (0, 0)) ' 0. Hint: To show that a closed form is exact consider

integration with respect to r.

Exercise 4. � Consider the smooth map

S : R3 \ {(0, 0, 0)} −→ R3 S(x, y, z) =
1

‖(x, y, z)‖
(x, y, z)

and the di�erential 2-form ω0 = zdx∧ dy− ydx∧ dz+ xdy∧ dz. de�ne

Ψ : R×R −→ R3 \ {0, 0} ; Ψ(ϕ, θ) = (cos(θ) sin(ϕ), cos(θ) cos(ϕ), sin(θ))

a) Calculate the explicit formula of S∗ω0 and show that S∗ω0 is closed (note that ω0 is not
closed).
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b) Calculate ∫ π
2

−π
2

∫ 2π
0

(S∗ω0)Ψ(ϕ,θ)(JΨ(ϕ, θ))dϕdθ

c) Let ω be an exact 2-form on R3 \ {(0, 0, 0)}. Use Green's theorem to prove that∫ π
2

−π
2

∫ 2π
0

ωΨ(ϕ,θ)(JΨ(ϕ, θ))dϕdθ = 0.

d) Show that integration with respect to Ψ de�nes an isomorphism∫
Ψ

: H2DR(R
3 \ (0, 0, 0)) −→ R.

e) Let ω be a closed 1-form, using Greens theorem and a slight adaptation of exercise 1 prove
that ω is exact, hence H1DR(R

3 \ (0, 0, 0)) ' {0}.

II. Homological algebra

Exercise 5 (The 5 Lemma). � Consider a commutative diagram of vector spaces

V2 //

f1
��

V2 //

f2
��

V3 //

f3
��

V4 //

f4
��

V5

f5
��

W1
//W2

//W3
//W4

//W5

Suppose that both lines are exact sequences, f2, f4 are isomorphisms, f1 is surjective and f5 is
injective. Show that f3 is an isomorphism.

Exercise 6. � Consider a bounded complex (V∗, d), that is Vk ' 0 for all but a �nite number
of k. Let χ(V) =

∑∞
−∞(−1)k dim(Vk).

a) Suppose that V∗ is a short exact sequence. Show that χ(V) = 0.
b) Use induction to show that if V∗ is exact then χ(V) = 0.

Exercise 7. � Consider an exact sequence

V1
f // V2 // V3 // V4

g // V5

a) Show that the sequence induces a short exact sequence

0 // V2/ im(f) // V3 // ker(g) // 0

Deduce that dim(V3) = dim(V2/ im(f)) + dim(ker(g)).
b) Fix V1 = V2 = V4 = V5 = R2. Suppose �rst that f = g = id. Verify that dim(V3) = 0.

Explain why dim(V3) 6 4, then give examples of f, g such that dim(V3) = 1, 2, 3, 4.

Exercise 8. � Consider a short exact sequence

0 // V
f //W

g // Z // 0

Let L be another vector space and consider the complexes

0 // V ⊗ L f⊗1 //W ⊗ L g⊗1 // Z⊗ L // 0

0 // Hom(Z, L)
◦g // Hom(W,L)

◦f // Hom(V, L) // 0

0 // Hom(L, V)
f◦ // Hom(L,W)

g◦ // Hom(L, Z) // 0

Show that these complexes are short exact sequences.
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Exercise 9. � Let A∗1, B
∗
1, C

∗
1, A

∗
2, B

∗
2 and C

∗
2 be six cochain complexes. Assume that we have

maps of cochains complexes:

0 // A∗1
//

��

B∗1
//

��

C∗1
//

��

0

0 // A∗2
// B∗2

// C∗2
// 0

such that the two rows are exact and the two squares commute.
Prove that there are induced maps between the long exact sequences :

. . . // Hp(A1) //

��

Hp(B1) //

��

Hp(C1) //

��

Hp+1(A1)

��

// . . .

. . . // Hp(A2) // Hp(B2) // Hp(C2) // Hp+1(A2) // . . .

such that all the squares commute.

III. De Rham cohomology of manifolds

Exercise 10. � Let S1 be the circle, and U,V be two �thick� open half circle that cover it.

a) Write down the Mayer-Vietoris sequence for de Rham cohomology associated to this cover.
Deduce the de Rham cohomology of S1.
Following the de�nition of the connecting morphism, give an explicit generator of H1(S1).

b) Same question, but using de Rham cohomology with compact support instead.
c) Generalize to Sn, showing that a generator of Hn(Sn) can be chosen with support arbitrary

small.

Exercise 11. � The open Möbius stripM is the quotient of the semi-open square [0, 1]×]0, 1[
via the following identi�cations: ∀y ∈]0, 1[, (0, y) ' (1, 1− y).

a) Compute the de Rham cohomology of M.
b) Compute the de Rham cohomology with compact support of M.

Exercise 12. � a) Compute the de Rham cohomology of Rn − {k points}.
b) Same question for de Rham cohomology with compact support.
c) Same questions for C− Z.

Exercise 13. � Prove the Brouwer �x point theorem for smooth maps, i.e. prove that any
smooth f : Dn → Dn has a �xed point.

Exercise 14. � Let f : Sn → Sn be a smooth map and f∗ : Hn(Sn) → Hn(Sn) the induced
map.

a) Prove that f∗ is a homothety. We denote by d(f) its scale factor.
b) For two maps f, g, prove that d(f ◦ g) = d(f)d(g).
c) Prove that if f is not surjective, then d(f) = 0.

[Hint: Use Exercise 10c).]
d) What is the degree of the map induced by an element of O(n+ 1)?

[Hint: Treat first the case of a reflexion: (x1, x2, . . . , xn+1) 7→ (−x1, x2, . . . , xn+1) by induction on n.]
e) Same question for the map S1 → S1, z 7→ zn?
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Exercise 15. � Let n be an even integer. The goal is to prove that there is no non-vanishing
smooth vector �eld on Sn. Suppose by contradiction that there exists such a vector �eld
X : Sn → Rn+1 such that X(x) · x = 0.
a) Construct out of X a homotopy from idSn to −idSn .
b) Conclude.
c) Does the extend to odd-dimensional spheres?

Exercise 16. � Let p : Y → X be a smooth Galois cover of manifolds, with Galois group G.
Note that the group G acts on Ω∗(Y) and on H∗(Y). We denote by Ω∗(Y)G the subalgebra of
di�erential forms that are �xed by all the elements in G.

a) Prove that p∗ sends Ω∗(X) into Ω∗(Y)G.
b) Show that p∗ : Ω∗(X) → Ω∗(Y)G is an isomorphism of di�erential graded algebras.

[Hint: Construct explicitly its inverse.]
c) The inclusion Ω∗(Y)G ⊂ Ω∗(Y) induces a map ι : H∗(Ω∗(Y)G) → H∗(Y)G. Prove that if G

is �nite, ι is an isomorphism.
[Hint: Whenever you have a finite group acting on some ω, it’s a good idea to consider 1

|G|

∑
g∈G

g.ω].

d) Apply this to compute the cohomology of the projective space Pn(R).

Exercise 17. � Let Pn(C) be the complex projective space.

a) Prove that Pn(C) is compact. Prove that P1(C) is di�eomorphic to S2.
b) Let x := [0 : · · · : 0 : 1] and U := Pn(C) − {x}. Prove that U is homotopy equivalent to
Pn−1(C).

c) Use an inductive Mayer-Vietoris sequence to compute H∗(Pn(C)).

Exercise 18. � Compute the de Rham cohomology of the following product manifolds:

a) (S1)n b) S1 × S2 × S3

Exercise 19. � Let Z be the discrete space of integers.

a) Compute the de Rham cohomology of Z. In particular, prove that H0(Z) ∼= RZ has
uncountable dimension.

b) Prove that the natural Kunneth map H∗(Z)⊗H∗(Z) → H∗(Z×Z) is not an isomorphism.
[Hint: Prove that in RZ×Z, the sequence an,m = δn,m is not in the image.]

IV. Orientation and integration. Poincaré duality

Exercise 20. � Let P2(R) be the real projective plane.

a) Prove that P2(R) is a manifold that is not orientable.
b) Prove that the Möbius band is non orientable.
c) How does b) implies a)?

Exercise 21. � Prove that a complex analytic manifold is orientable.

Exercise 22. � a) Prove that the two manifolds S2 × S4 and P3(C) have isomorphic de
Rham cohomology groups in each degree.

b) Prove that these two manifolds are not homotopy equivalent.
[Hint: Compare the algebra structure.]

Exercise 23. � Let M be a connected, compact oriented n-dimensional manifold.
Prove that a form ω ∈ Ωn(M) is closed i�

∫
M
ω = 0.
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Exercise 24. � The goal of this exercise is to present the �correct� proof of Poincaré duality.
Let M be an oriented manifold of dimension n. We �x k 6 n. For every open O ⊂ M, let
ιO : Hk(O) → (Hn−kc (O))∗ be the map de�ned by integration. The goal is thus to prove that
ιM is an isomorphism.

Let O be a set of opens subsets of M which is closed under intersections (i.e. if O1, O2 are
opens in O then O1∩O2 also). Let Of be the set of opens inM which are �nite unions of opens
in O and let Od be the set of opens in M which are arbitrary disjoint unions of opens in O.
a) Prove that if for every O ∈ O, ιO is an isomorphism, then ιU is also an isomorphism for

every open U ∈ Of (resp. U ∈ Od).
[Hint: Note that the dual of a direct sum

⊕
i∈I
Ei is isomorphic to the product

∏
i∈I
E∗i .]

The crux of the proof is the following fact on the topology of a manifold.
Suppose that O as above is a basis of the topology of M such that the closure of each O ∈ O
is compact. Then there exist two opens V1, V2 ∈ (Of)d such that M = V1 ∪ V2.
To prove this: start with a cover U1 ⊂ U2 ⊂ . . . of M such that every Ui has compact closure
Ui ⊂ Ui+1.
b) Construct new opens Wi of M satisfying:

(i) ∀i, Ui ⊂
⋃
j6i
Wj ⊂ Ui+1.

(ii) ∀i, Wi ∈ Of.
(iii) ∀i, Wi ∩Wi+2 = ∅.
[Hint: Construct theWi by induction, covering Ui−

⋃
j<i

Wj by a finite number of opens in Ui+1−Ui−1.]

c) Show that one can take V1 :=
⋃
i odd

Wi and V2 :=
⋃

i even

Wi.

Conclude, proving that:

d) ιO is an isomorphism for every open in O ⊂ Rn.
[Hint: One can take as basis O the set of all open “boxes”.]

e) Then that ιM is an isomorphism.

Exercise 25. � a) Using the same lemma as in Exercise 24, give a �correct proof� of the
Kunneth isomorphism for compactly supported de Rham cohomology.

b) Where does the proof goes wrong for de Rham cohomology?
c) How can we save it when one of the manifolds has �nite dimensional cohomology?
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