
Master 2 2017

Homotopies and fundamental group
Unless otherwise stated, all spaces are topological spaces and maps are continuous maps.

I. General topology

Exercice 1. � Let X and Y be topological spaces. Let (Ui)i∈I be a family of open sets that covers X
and fi : Ui → Y a family of (continuous) maps such that :

∀ i, j ∈ I, fi|Ui∩Uj
= fj|Uj∩Ui

.

a) Prove that there exists a unique �global� (continuous) function f : X → Y such that :

∀i ∈ I, f|Ui
= fi.

b) Prove an analogous statement when X is covered by a �nite family of closed sets (Fi)i∈I .

Exercice 2. � a) Prove that a space X is connected if every continuous function f from X to the
discrete space {0, 1} is constant.

b) Let X = [0, 1] be the unit interval. Show that X is connected.

c) Deduce that every path connected space is connected.

d) Give an example of a connected space that is not path connected.

e) Show that in a locally path connected space (1), each path-connected component is open and closed.
Deduce that a connected space which is locally path-connected is actually path-connected.

Exercice 3. � Given a space X, we denote by π0(X) its set of path-connected components. For every

map f : X → Y , de�ne a (set-theoretical) function f∗ : π0(X) → π0(Y ) such that

X

��

f // Y

��
π0(X)

f∗
// π0(Y )

commutes. Show that for composable maps (g ◦ f)∗ = g∗ ◦ f∗.

II. Homotopies

Exercice 4. � [The importance of the base point]
Let X be a topological space and γ : I → X be any continuous path. Show that γ is homotopic (without
any condition on the endpoints) to a constant path.

Exercice 5. � Let C := S1 × [0, 1] be the cylinder and S be its subspace S1 × {0}.
a) Prove that the quotient C/S is homeomorphic to the disk D2 := D(0; 1) ⊂ R2.

b) Let X be a topological space and γ : S1 → X be a loop in X. Prove the equivalence between :

(i) γ is homotopic (not necessarily path-homotopic) to a constant map ;

(ii) The map γ extends to a map D2 → X.

Exercice 6. � Let X, Y and Z be topological spaces. When two maps ϕ and ψ (with same source
and target spaces) are homotopic, we use the notation ϕ ' ψ.
a) Show that ' is an equivalence relation.

b) Let f0, f1 : X → Y and g0, g1 : Y → Z be some maps. Show that :

f0 ' f1 =⇒ f0 ◦ g0 ' f1 ◦ g0 and g0 ' g1 =⇒ f0 ◦ g0 ' f0 ◦ g1 .

c) Let f : X → Y and g, h : Y → X be maps such that f ◦ g ' idY and h ◦ f ' idX .
Show that f is a homotopy equivalence.
[Indication: Consider the composite map h ◦ f ◦ g ◦ f .]

1. That is to say a space where every point has a fundamental system of open neighbourhoods which are path-connected.
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Exercice 7. � [Homotopy equivalences]
Construct homotopy equivalences between the following pairs of spaces (you don't need to write the
exact formula ; a picture may be enough) :

a) Rn \ {0} and the sphere Sn−1 :=
{
(x1, . . . , xn) ∈ Rn,

∑n
1 x

2
i = 1

}
,

b) R3 minus a line and R2 \ {0},
c) C \ ]−∞, 0] and {1},
d) C \ {−1, 1} and the union of the two circles of radius 1 centered at −1 and 1.

III. Fundamental group

Exercice 8. � Let (X,x0) be a pointed space. Check carefully that π1(X,x0) is a group.

Exercice 9. � Let (X,x0), (Y, y0) be two pointed spaces. Show that the natural projection maps
induce a group isomorphism :

p1∗ × p2∗ : π1(X × Y, (x0, y0))→ π1(X,x0)× π1(Y, y0).
Le T be a 2-dimensional torus (the surface at the exterior of a donut). Compute its fundamental group
and draw on a picture loops generating it.

Exercice 10. � Let q : S1 → S1 be the map z 7→ z2.

a) What is the induced homomorphism q∗ : π1(S
1, 1)→ π1(S

1, 1) ?

b) Show that there is no continuous map r : S1 → S1 such that

∀z ∈ S1, r(z)2 = z.

c) Deduce that that there is no continuous square-root function de�ned on C \ {0}.

Exercice 11. � Let G be a topological group (2). Let α and β be two loops in G based at e.

a) Let γ(t) = α(t)β(t) (using the product in G). Show that γ is a loop based at e.

b) Show that the loops α · β, γ and β · α are homotopic with endpoints �xed.
[Indication: Consider the map : [0, 1]× [0, 1]→ G , (t, u) 7→ α(t)β(u).]

c) Deduce that the group π1(G, e) is commutative.

Exercice 12. � [The hairy ball theorem]
A vector �eld on S2 is a continuous map V : S2 → R3 such that for all x in S2 the scalar product
x.V (x) = 0. The goal of the exercise is to prove that for every such vector �eld there exists a point
x0 ∈ S2 such that V (x0) = 0.

Let i : SO(2)→ SO(3) be the map
[
a −b
b a

]
7→

a −b 0
b a 0
0 0 1

 .
a) Let α be the loop of SO(2) based at Id2, t 7→

[
cos 2πt − sin 2πt
sin 2πt cos 2πt

]
.

Show that the two loops of SO(3) (based at Id3) i∗(α) and i∗(α
−1) are homotopic.

b) Prove that there exists no continuous map r : SO(3)→ SO(2) such that r ◦ i = idSO(2) .

Let assume by contradiction that there exists a nowhere-vanishing vector �eld V on S2. Up to scaling,
one can assume that ∀x ∈ S2, ‖V (x)‖ = 1.

Let M̃ : S2 → SO(3) be the map x 7→ [V (x), x×V (x), x]. (Here x is seen as a column vector in R3 and
× denotes the vector product usually denoted by a ∧ in French).

Let e3 :=

00
1

 and set M(x) := M̃(x)M̃(e3)
−1.

c) Prove that for the usual action of SO(3) on S2 we have

∀x ∈ S2, M(x) · e3 = x and M(e3) = Id3.

d) Use question b) to conclude.

2. That is a topological space with a group structure where multiplication and inverse operation are continuous.
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