Homotopies and fundamental group

Unless otherwise stated, all spaces are topological spaces and maps are continuous maps.

I. General topology

Exercice 1. — Let X and Y be topological spaces. Let $(U_i)_{i \in I}$ be a family of open sets that covers X and $f_i : U_i \to Y$ a family of (continuous) maps such that :

$$\forall i, j \in I, \ f_{i|U_i \cap U_j} = f_{j|U_j \cap U_i}$$

a) Prove that there exists a unique "global" (continuous) function $f: X \to Y$ such that :

$$\forall i \in I, \ f_{|U_i} = f_i.$$

- b) Prove an analogous statement when X is covered by a finite family of closed sets $(F_i)_{i \in I}$.
- *Exercice 2.* a) Prove that a space X is connected if every continuous function f from X to the discrete space $\{0,1\}$ is constant.
 - b) Let X = [0, 1] be the unit interval. Show that X is connected.
 - c) Deduce that every path connected space is connected.
 - d) Give an example of a connected space that is not path connected.
 - e) Show that in a locally path connected space ⁽¹⁾, each path-connected component is open and closed. Deduce that a connected space which is locally path-connected is actually path-connected.

Exercice 3. — Given a space X, we denote by $\pi_0(X)$ its set of path-connected components. For every

map $f: X \to Y$, define a (set-theoretical) function $f_*: \pi_0(X) \to \pi_0(Y)$ such that $\bigvee_{\substack{f \to Y \\ \pi_0(X) \xrightarrow{f} \pi_0(Y)}} \chi_{\pi_0(Y)}$

commutes. Show that for composable maps $(g \circ f)_* = g_* \circ f_*$.

II. Homotopies

Exercice 4. — [The importance of the base point]

Let X be a topological space and $\gamma: I \to X$ be any continuous path. Show that γ is homotopic (without any condition on the endpoints) to a constant path.

Exercice 5. — Let $\mathcal{C} := S^1 \times [0, 1]$ be the cylinder and \mathcal{S} be its subspace $S^1 \times \{0\}$.

- a) Prove that the quotient \mathcal{C}/\mathcal{S} is homeomorphic to the disk $D^2 := D(0;1) \subset \mathbf{R}^2$.
- b) Let X be a topological space and $\gamma: S^1 \to X$ be a loop in X. Prove the equivalence between :
 - (i) γ is homotopic (not necessarily path-homotopic) to a constant map;
 - (ii) The map γ extends to a map $D^2 \to X$.

Exercice 6. — Let X, Y and Z be topological spaces. When two maps φ and ψ (with same source and target spaces) are *homotopic*, we use the notation $\varphi \simeq \psi$.

- a) Show that \simeq is an equivalence relation.
- **b)** Let $f_0, f_1 : X \to Y$ and $g_0, g_1 : Y \to Z$ be some maps. Show that :

$$f_0 \simeq f_1 \implies f_0 \circ g_0 \simeq f_1 \circ g_0$$
 and $g_0 \simeq g_1 \implies f_0 \circ g_0 \simeq f_0 \circ g_1$

c) Let $f: X \to Y$ and $g, h: Y \to X$ be maps such that $f \circ g \simeq \operatorname{id}_Y$ and $h \circ f \simeq \operatorname{id}_X$. Show that f is a homotopy equivalence. [Indication: Consider the composite map $h \circ f \circ g \circ f$.]

^{1.} That is to say a space where every point has a fundamental system of open neighbourhoods which are path-connected.

Exercice 7. – [Homotopy equivalences]

Construct homotopy equivalences between the following pairs of spaces (you don't need to write the exact formula; a picture may be enough) :

- a) $\mathbf{R}^n \setminus \{0\}$ and the sphere $\mathbf{S}^{n-1} := \{(x_1, \dots, x_n) \in \mathbf{R}^n, \sum_{i=1}^n x_i^2 = 1\},\$
- **b)** \mathbf{R}^3 minus a line and $\mathbf{R}^2 \setminus \{0\}$,
- c) $\mathbf{C} \setminus] \infty, 0]$ and $\{1\}$,
- d) $\mathbf{C} \setminus \{-1, 1\}$ and the union of the two circles of radius 1 centered at -1 and 1.

III. Fundamental group

Exercice 8. — Let (X, x_0) be a pointed space. Check carefully that $\pi_1(X, x_0)$ is a group.

Exercice 9. — Let (X, x_0) , (Y, y_0) be two pointed spaces. Show that the natural projection maps induce a group isomorphism :

$$p_{1*} \times p_{2*} : \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Le T be a 2-dimensional torus (the surface at the exterior of a donut). Compute its fundamental group and draw on a picture loops generating it.

Exercice 10. — Let $q: S^1 \to S^1$ be the map $z \mapsto z^2$.

- a) What is the induced homomorphism $q_*: \pi_1(S^1, 1) \to \pi_1(S^1, 1)$?
- **b**) Show that there is no continuous map $r: S^1 \to S^1$ such that

$$\forall z \in S^1, \ r(z)^2 = z.$$

c) Deduce that there is no continuous square-root function defined on $\mathbf{C} \setminus \{0\}$.

Exercice 11. — Let G be a topological group ⁽²⁾. Let α and β be two loops in G based at e.

- a) Let $\gamma(t) = \alpha(t)\beta(t)$ (using the product in G). Show that γ is a loop based at e.
- b) Show that the loops $\alpha \cdot \beta$, γ and $\beta \cdot \alpha$ are homotopic with endpoints fixed. [Indication: Consider the map : $[0, 1] \times [0, 1] \rightarrow G$, $(t, u) \mapsto \alpha(t)\beta(u)$.]
- c) Deduce that the group $\pi_1(G, e)$ is commutative.

Exercice 12 — [The hairy ball theorem]

A vector field on S^2 is a continuous map $V : S^2 \to \mathbb{R}^3$ such that for all x in S^2 the scalar product x.V(x) = 0. The goal of the exercise is to prove that for every such vector field there exists a point $x_0 \in S^2$ such that $V(x_0) = 0$.

Let $i: SO(2) \to SO(3)$ be the map $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mapsto \begin{bmatrix} a & -b & 0 \\ b & a & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

a) Let α be the loop of SO(2) based at Id₂, $t \mapsto \begin{bmatrix} \cos 2\pi t & -\sin 2\pi t \\ \sin 2\pi t & \cos 2\pi t \end{bmatrix}$.

Show that the two loops of SO(3) (based at Id₃) $i_*(\alpha)$ and $i_*(\alpha^{-1})$ are homotopic.

b) Prove that there exists no continuous map $r: SO(3) \to SO(2)$ such that $r \circ i = id_{SO(2)}$.

Let assume by contradiction that there exists a nowhere-vanishing vector field V on S^2 . Up to scaling, one can assume that $\forall x \in S^2$, ||V(x)|| = 1.

Let $\tilde{M}: S^2 \to SO(3)$ be the map $x \mapsto [V(x), x \times V(x), x]$. (Here x is seen as a column vector in \mathbb{R}^3 and \times denotes the vector product usually denoted by a \wedge in French).

Let
$$e_3 := \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
 and set $M(x) := \tilde{M}(x)\tilde{M}(e_3)^{-1}$

c) Prove that for the usual action of SO(3) on S^2 we have

$$\forall x \in S^2, \ M(x) \cdot e_3 = x$$
 and $M(e_3) = \mathrm{Id}_3.$

d) Use question b) to conclude.

^{2.} That is a topological space with a group structure where multiplication and inverse operation are continuous.