On a certain filtration of the universal bundle of a finite Coxeter group

Clemens Berger

Université Côte d'Azur

Algebraic Combinatorics of
Symmetric Groups and Coxeter Groups
Cetraro, 5-9 July, 2021

(1) Coxeter arrangements
(2) Face monoid of a hyperplane arrangement
(3) Salvetti complex of a hyperplane arrangement

4 Universal bundle of symmetric groups
(5) Universal bundle of finite Coxeter groups

A hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.

> The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\cup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers: $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.

> Denote by \boldsymbol{s}_{α} the orthogonal symmetry with resnect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W

The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

A hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers: $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.
Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

A hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers: $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.
Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by
\qquad
The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$

A hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers: $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.
Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W.

$$
\text { The Coxeter group } W \text { acts simply transitively on } \mathcal{C}_{\mathcal{A}_{W}} \text {. }
$$

A hyperplane arrangement \mathcal{A} in euclidean space V is a finite family $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ of hyperplanes of V containing the origin. The arrangement is essential if its center $\bigcap_{\alpha \in \mathcal{A}} H_{\alpha}$ is trivial.
The complement $\mathcal{M}(\mathcal{A})=V \backslash\left(\bigcup_{\alpha \in \mathcal{A}} H_{\alpha}\right)$ decomposes into path components, called chambers: $\mathcal{C}_{\mathcal{A}}=\pi_{0}(\mathcal{M}(\mathcal{A}))$.
Denote by s_{α} the orthogonal symmetry with respect to H_{α}. If $\left(H_{\alpha}\right)_{\alpha \in \mathcal{A}}$ is stable under s_{β} for all $\beta \in \mathcal{A}$, the arrangement is called a Coxeter arrangement. We write $\mathcal{A}=\mathcal{A}_{W}$ where W is the subgroup $W=<s_{\alpha}, \alpha \in \mathcal{A}>$ of $O_{n}(\mathbb{R})$. This is justified by

Proposition (Coxeter, Tits)

There is a one-to-one correspondence between essential Coxeter arrangements \mathcal{A}_{W} and finite Coxeter groups W.

The Coxeter group W acts simply transitively on $\mathcal{C}_{\mathcal{A}_{W}}$.

Definition (higher complements)

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example (braid arrangement)

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is
the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}. The higher complements of $\mathcal{A}_{\mathfrak{S}_{n}}$ are configuration spaces:

Theorem (Brieskorn '71, Deligne '72)

For any Coxeter arrangement $\mathcal{A}, \mathcal{M}_{2}(\mathcal{A})$ is aspherical. In particular, $\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right) / W\right)$ is the Artin group of W

Definition (higher complements)

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example (braid arrangement)

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}.

The higher complements of $\mathcal{A}_{\mathfrak{S}_{n}}$ are configuration spaces:
$\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=F\left(\mathbb{R}^{k}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{k n} \mid x_{i} \neq x_{j}\right\}$.
Theorem (Brieskorn '71, Deligne '72)
For any Coxeter arrangement $\mathcal{A}, \mathcal{M}_{2}(\mathcal{A})$ is aspherical. In particular, $\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right) / W\right)$ is the Artin group of W

Definition (higher complements)

The k-th complement of a hyperplane arrangement \mathcal{A} is

$$
\mathcal{M}_{k}(\mathcal{A})=V^{k} \backslash \bigcup_{\alpha \in \mathcal{A}}\left(H_{\alpha}\right)^{k}
$$

Example (braid arrangement)

$V=\mathbb{R}^{n}, \mathcal{A}=\left(H_{i j}\right)_{1 \leq i<j \leq n}$ where $H_{i j}=\left\{x \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}$. This is the Coxeter arrangement $\mathcal{A}_{\mathfrak{S}_{n}}$ for the symmetric group \mathfrak{S}_{n}.

The higher complements of $\mathcal{A}_{\mathfrak{S}_{n}}$ are configuration spaces:
$\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)=F\left(\mathbb{R}^{k}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{k n} \mid x_{i} \neq x_{j}\right\}$.

Theorem (Brieskorn '71, Deligne '72)

For any Coxeter arrangement $\mathcal{A}, \mathcal{M}_{2}(\mathcal{A})$ is aspherical. In particular, $\pi_{1}\left(\mathcal{M}_{2}\left(\mathcal{A}_{W}\right) / W\right)$ is the Artin group of W.

Purpose of the talk

Construct simplicial models for the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct poset models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and any n.
- Salvetti '87 constructs poset models for $\mathcal{M}_{2}(\mathcal{A})$ for any hyperplane arrangement \mathcal{A}.
- Smith '89 constructs simplicial models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and n.
- This induces simplicial models for E_{n}-operads for $1 \leq n \leq \infty$, cf. Barratt-Eccles, B. '96.

Purpose of the talk

Construct simplicial models for the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct poset models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and any n.
- Salvetti '87 constructs poset models for $\mathcal{M}_{2}(\mathcal{A})$ for any hyperplane arrangement \mathcal{A}.
- Smith '89 constructs simplicial models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and n.
- This induces simplicial models for E_{n}-operads for $1 \leq n \leq \infty$, cf. Barratt-Eccles, B. '96.

Purpose of the talk

Construct simplicial models for the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct poset models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and any n.
- Salvetti ' 87 constructs poset models for $\mathcal{M}_{2}(\mathcal{A})$ for any hyperplane arrangement \mathcal{A}.
- Smith '89 constructs simplicial models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and n.
- This induces simplicial models for E_{n}-operads for $1 \leq n$ cf. Barratt-Eccles, B. '96.

Purpose of the talk

Construct simplicial models for the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct poset models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and any n.
- Salvetti ' 87 constructs poset models for $\mathcal{M}_{2}(\mathcal{A})$ for any hyperplane arrangement \mathcal{A}.
- Smith '89 constructs simplicial models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and n.
- This induces simplicial models for E_{n}-operads for 1 cf. Barratt-Eccles, B. '96

Purpose of the talk

Construct simplicial models for the homotopy type of $\mathcal{M}_{k}(\mathcal{A})$.

- Fox-Neuwirth '62 and Milgram '66 construct poset models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and any n.
- Salvetti ' 87 constructs poset models for $\mathcal{M}_{2}(\mathcal{A})$ for any hyperplane arrangement \mathcal{A}.
- Smith '89 constructs simplicial models for $\mathcal{M}_{k}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right)$ for any k and n.
- This induces simplicial models for E_{n}-operads for $1 \leq n \leq \infty$, cf. Barratt-Eccles, B. '96.

On a certain filtration of the universal bundle of a finite Coxeter group
Face monoid of a hyperplane arrangement
Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The face monoid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of sign vectors $P \in\{0, \pm\}^{\mathcal{A}}$ such that there exists $x \in V$ with $s g n_{x}=P$. For $P, Q \in \mathcal{F}_{\mathcal{A}}$ the product $P Q \in \mathcal{F}_{\mathcal{A}}$ is defined by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The facets $c_{P}=\left\{x \in V \mid s g n_{x}=P\right\}$ are convex subsets of V.
Lemma (Green order of left regular hand \mathcal{F}_{4})
$\bar{c}_{P} \subseteq \bar{c}_{Q} \stackrel{d f n}{\Longleftrightarrow} P \leq Q \Longleftrightarrow P Q=Q$

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

\square

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The face monoid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of sign vectors $P \in\{0, \pm\}^{\mathcal{A}}$ such that there exists $x \in V$ with $\operatorname{sgn}_{x}=P$.

The facets $c_{P}=\left\{x \in V \mid \operatorname{sgn} n_{x}=P\right\}$ are convex subsets of V
\square

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The face monoid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of sign vectors $P \in\{0, \pm\}^{\mathcal{A}}$ such that there exists $x \in V$ with $\operatorname{sgn}_{x}=P$. For $P, Q \in \mathcal{F}_{\mathcal{A}}$ the product $P Q \in \mathcal{F}_{\mathcal{A}}$ is defined by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The facets $c_{P}=\left\{x \in V \mid \operatorname{sgn} n_{x}=P\right\}$ are convex subsets of V
\square Lemma (Green order of left regular band

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The face monoid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of sign vectors $P \in\{0, \pm\}^{\mathcal{A}}$ such that there exists $x \in V$ with $\operatorname{sgn}_{x}=P$. For $P, Q \in \mathcal{F}_{\mathcal{A}}$ the product $P Q \in \mathcal{F}_{\mathcal{A}}$ is defined by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The facets $c_{P}=\left\{x \in V \mid \operatorname{sgn} n_{x}=P\right\}$ are convex subsets of V.
\square

Orient a hyperplane arrangement \mathcal{A} in V, by choosing for each H_{α} two half-spaces $H_{\alpha}^{ \pm}$such that $H_{\alpha}^{+} \cap H_{\alpha}^{-}=H_{\alpha}$ and $H_{\alpha}^{+} \cup H_{\alpha}^{-}=V$. Then each point $x \in V$ defines a sign vector $\operatorname{sgn}_{x} \in\{0, \pm\}^{\mathcal{A}}$ by

$$
\operatorname{sgn}_{x}(\alpha)= \begin{cases}0 & \text { if } x \in H_{\alpha} \\ \pm & \text { if } x \in H_{\alpha}^{ \pm} \backslash H_{\alpha}\end{cases}
$$

The face monoid $\mathcal{F}_{\mathcal{A}} \subset\{0, \pm\}^{\mathcal{A}}$ is the set of sign vectors $P \in\{0, \pm\}^{\mathcal{A}}$ such that there exists $x \in V$ with $s g n_{x}=P$. For $P, Q \in \mathcal{F}_{\mathcal{A}}$ the product $P Q \in \mathcal{F}_{\mathcal{A}}$ is defined by

$$
(P Q)(\alpha)= \begin{cases}P(\alpha) & \text { if } P(\alpha) \neq 0 \\ Q(\alpha) & \text { if } P(\alpha)=0\end{cases}
$$

The facets $c_{P}=\left\{x \in V \mid s g n_{x}=P\right\}$ are convex subsets of V.
Lemma (Green order of left regular band $\mathcal{F}_{\mathcal{A}}$)
$\bar{c}_{P} \subseteq \bar{c}_{Q} \stackrel{\text { dfn }}{\Longleftrightarrow} P \leq Q \Longleftrightarrow P Q=Q$

Throughout, \mathcal{A} denotes a hyperplane arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$

Definition (Orlik '91)

For subcomplexes K_{1}, K_{2} of a simplicial complex L sth.
$\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik '91)

Throughout, \mathcal{A} denotes a hyperplane arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.

Definition (Orlik '91)

$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth $\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik '91)

Throughout, \mathcal{A} denotes a hyperplane arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.
\square
Definition (Orlik ${ }^{1} 91$)
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth $\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik '91)

Throughout, \mathcal{A} denotes a hyperplane arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Definition (Orlik '91)

$\mathcal{C}_{\mathcal{A}}^{(2)}:=\left\{(P, Q) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} \mid P Q \in \mathcal{C}_{\mathcal{A}}\right\}^{\text {op }}$
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$.
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth $\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik -91)

Throughout, \mathcal{A} denotes a hyperplane arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Definition (Orlik '91)

$\mathcal{C}_{\mathcal{A}}^{(2)}:=\left\{(P, Q) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} \mid P Q \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}}$
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$.
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth.
$\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Throughout, \mathcal{A} denotes a hyperplane arrangement in V.
The chamber system $\mathcal{C}_{\mathcal{A}}$ is the discrete subposet of \mathcal{F}_{A} consisting of the maximal facets. In particular, $\left|\mathcal{C}_{\mathcal{A}}\right| \simeq \mathcal{M}(\mathcal{A})$.
$\mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}}=\mathcal{F}_{\mathcal{A} \oplus \mathcal{A}}$ where $\mathcal{A} \oplus \mathcal{A}=(\mathcal{A} \times V) \cup(V \times \mathcal{A})$ in $V \times V$.

Definition (Orlik '91)

$\mathcal{C}_{\mathcal{A}}^{(2)}:=\left\{(P, Q) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{F}_{\mathcal{A}} \mid P Q \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}}$
$(P, Q) \notin \mathcal{C}_{\mathcal{A}}^{(2)}$ iff $\exists \alpha \in \mathcal{A}: P(\alpha)=Q(\alpha)=0$.
For subcomplexes K_{1}, K_{2} of a simplicial complex L sth. $\operatorname{Vert}(L)=\operatorname{Vert}\left(K_{1}\right) \sqcup \operatorname{Vert}\left(K_{2}\right)$, one has: $|L| \backslash\left|K_{1}\right| \simeq\left|K_{2}\right|$. Thus,

Proposition (Orlik '91)

$\left|\mathcal{C}_{\mathcal{A}}^{(2)}\right| \simeq \mathcal{M}_{2}(\mathcal{A})$

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$ $(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.

Definition (Higher Orlik and Salvetti complexes)

Theorem (cf. Mori-Salvetti '11)

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.

Definition (Higher Orlik and Salvetti complexes)

$$
\begin{aligned}
& \mathcal{C}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k}\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k} \mid P_{1} \cdots P_{k} \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}} \\
& \mathcal{S}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k-1}, C\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_{1} \leq \cdots \leq P_{k-1} \leq C\right\} \\
& \left(P_{1}, \ldots, P_{k-1}, C\right) \geq\left(P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}, C^{\prime}\right) \text { iff } \forall i: P_{i} \leq P_{i}^{\prime} \wedge P_{i}^{\prime} C=C^{\prime}
\end{aligned}
$$

Theorem (cf. Mori-Salvetti '11)

Definition (Salvetti '87)

$\mathcal{S}_{\mathcal{A}}^{(2)}=\left\{(P, C) \in \mathcal{F}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid P \leq C\right\}$
$(P, C) \geq\left(P^{\prime}, C^{\prime}\right)$ iff $P \leq P^{\prime}$ and $P^{\prime} C=C^{\prime}$.
Definition (Higher Orlik and Salvetti complexes)

$$
\begin{aligned}
& \mathcal{C}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k}\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k} \mid P_{1} \cdots P_{k} \in \mathcal{C}_{\mathcal{A}}\right\}^{\mathrm{op}} \\
& \mathcal{S}_{\mathcal{A}}^{(k)}=\left\{\left(P_{1}, \ldots, P_{k-1}, C\right) \in\left(\mathcal{F}_{\mathcal{A}}\right)^{k-1} \times \mathcal{C}_{\mathcal{A}} \mid P_{1} \leq \cdots \leq P_{k-1} \leq C\right\} \\
& \left(P_{1}, \ldots, P_{k-1}, C\right) \geq\left(P_{1}^{\prime}, \ldots, P_{k-1}^{\prime}, C^{\prime}\right) \text { iff } \forall i: P_{i} \leq P_{i}^{\prime} \wedge P_{i}^{\prime} C=C^{\prime}
\end{aligned}
$$

Theorem (cf. Mori-Salvetti '11)

$\left|\mathcal{C}_{\mathcal{A}}^{(k)}\right| \simeq \mathcal{M}_{k}(\mathcal{A})$ and $\left(P_{1}, \ldots, P_{k}\right) \mapsto\left(P_{1}, P_{1} P_{2}, \ldots, P_{1} P_{2} \cdots P_{k}\right)$ defines a homotopy equivalence of posets $\mathcal{C}_{\mathcal{A}}^{(k)} \xrightarrow{\sim} \mathcal{S}_{\mathcal{A}}^{(k)}$.

Definition

The universal bundle $E G$ of a group G is the simplicial set with d-simplices $\left(g_{0}, \ldots, g_{n}\right) \in G^{n+1}$ and diagonal G-action. The classifying space $B G$ is the quotient $E G / G$.

Proposition

$H_{*}(G ; \mathbb{Z})=H_{*}(|B G| ; \mathbb{Z})$

Remark

The symmetric group \mathbb{S}_{n} embeds into a product $\prod_{1<i<j<n} G_{i j}$

Definition

The universal bundle $E G$ of a group G is the simplicial set with d-simplices $\left(g_{0}, \ldots, g_{n}\right) \in G^{n+1}$ and diagonal G-action. The classifying space $B G$ is the quotient $E G / G$.

Proposition

$H_{*}(G ; \mathbb{Z})=H_{*}(|B G| ; \mathbb{Z})$
Remark
The symmetric group \mathfrak{S}_{n} embeds into a product Π I

Definition

The universal bundle $E G$ of a group G is the simplicial set with d-simplices $\left(g_{0}, \ldots, g_{n}\right) \in G^{n+1}$ and diagonal G-action. The classifying space $B G$ is the quotient $E G / G$.

Proposition

$$
H_{*}(G ; \mathbb{Z})=H_{*}(|B G| ; \mathbb{Z})
$$

Remark

The symmetric group \mathfrak{S}_{n} embeds into a product $\prod_{1 \leq i<j \leq n} \mathfrak{S}_{i j}$:

Definition

The universal bundle $E G$ of a group G is the simplicial set with d-simplices $\left(g_{0}, \ldots, g_{n}\right) \in G^{n+1}$ and diagonal G-action. The classifying space $B G$ is the quotient $E G / G$.

Proposition

$H_{*}(G ; \mathbb{Z})=H_{*}(|B G| ; \mathbb{Z})$

Remark

The symmetric group \mathfrak{S}_{n} embeds into a product $\prod_{1 \leq i<j \leq n} \mathfrak{S}_{i j}$:

- $\mathfrak{S}_{i j}=\operatorname{Bij}(\{i, j\}) \cong \mathfrak{S}_{2}$.

Definition

The universal bundle $E G$ of a group G is the simplicial set with d-simplices $\left(g_{0}, \ldots, g_{n}\right) \in G^{n+1}$ and diagonal G-action.
The classifying space $B G$ is the quotient $E G / G$.

Proposition

$H_{*}(G ; \mathbb{Z})=H_{*}(|B G| ; \mathbb{Z})$

Remark

The symmetric group \mathfrak{S}_{n} embeds into a product $\prod_{1 \leq i<j \leq n} \mathfrak{S}_{i j}$:

- $\mathfrak{S}_{i j}=\operatorname{Bij}(\{i, j\}) \cong \mathfrak{S}_{2}$.
- $\mathfrak{S} \rightarrow \mathfrak{S}_{i j}: \sigma \mapsto \sigma_{i j}= \begin{cases}i d_{\{i, j\}} & \text { if } \sigma(i)<\sigma(j) \\ (i j) & \text { if } \sigma(i)>\sigma(j)\end{cases}$

Lemma

$E \mathfrak{S}_{2}$ is an ∞-dimensional sphere, hemispherically decomposed, with the antipodal \mathfrak{S}_{2}-action. Convention: $E_{d} \mathfrak{S}_{2}=S^{d-1}$

Corollary (Smith filtration '89)

$E \mathfrak{S}_{n}$ embeds into a product $\prod_{1<i<j<n} E \mathfrak{S}_{i j}$ and inherits a canonical filtration $E_{d} \mathfrak{S}_{n}$ by restriction of the product filtration

Theorem (Smith '89, Kashiwabara '93, B. '96)

Corollary

The permutation operad $\left(S_{n}\right)_{n>0}$ induces $E_{d \text {-suboperads }}$
$\left(E_{d}\left(S_{n}\right)\right)_{n \geq 0}$ of the Barratt-Eccles E_{∞}-operad $\left(E \mathbb{S}_{n}\right)_{n \geq 0}$

Lemma

$E \mathfrak{S}_{2}$ is an ∞-dimensional sphere, hemispherically decomposed, with the antipodal \mathfrak{S}_{2}-action. Convention: $E_{d} \mathfrak{S}_{2}=S^{d-1}$

Corollary (Smith filtration '89)

$E \mathfrak{S}_{n}$ embeds into a product $\prod_{1 \leq i<j \leq n} E \mathfrak{S}_{i j}$ and inherits a canonical filtration $E_{d} \mathfrak{S}_{n}$ by restriction of the product filtration.

Theorem (Smith '89, Kashiwabara

$\left|E_{d}\left(\mathfrak{S}_{n}\right)\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{\mathfrak{G}_{n}}\right) \simeq F\left(\mathbb{R}^{d}, n\right)$

Corollary
The permutation operad $\left(S_{n}\right)_{n>0}$ induces E_{d}-suboperads
$\left(E_{d}\left(S_{n}\right)\right)_{n \geq 0}$ of the Barratt-Eccles E_{∞}-operad $\left(E S_{n}\right)_{n \geq 0}$.

Lemma

$E \mathfrak{S}_{2}$ is an ∞-dimensional sphere, hemispherically decomposed, with the antipodal \mathfrak{S}_{2}-action. Convention: $E_{d} \mathfrak{S}_{2}=S^{d-1}$

Corollary (Smith filtration '89)

$E \mathfrak{S}_{n}$ embeds into a product $\prod_{1 \leq i<j \leq n} E \mathfrak{S}_{i j}$ and inherits a canonical filtration $E_{d} \mathfrak{S}_{n}$ by restriction of the product filtration.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$$
\left|E_{d}\left(\mathfrak{S}_{n}\right)\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right) \simeq F\left(\mathbb{R}^{d}, n\right)
$$

The permutation operad $\left(\mathfrak{S}_{n}\right)_{n>0}$ induces E_{d}-suboperads $\left(E_{d}\left(\mathbb{S}_{n}\right)\right)_{n \geq 0}$ of the Barratt-Eccles E_{∞}-operad $\left(E \mathbb{S}_{n}\right)_{n \geq 0}$.

Lemma

$E \mathfrak{S}_{2}$ is an ∞-dimensional sphere, hemispherically decomposed, with the antipodal \mathfrak{S}_{2}-action. Convention: $E_{d} \mathfrak{S}_{2}=S^{d-1}$

Corollary (Smith filtration '89)

$E \mathfrak{S}_{n}$ embeds into a product $\prod_{1 \leq i<j \leq n} E \mathfrak{S}_{i j}$ and inherits a canonical filtration $E_{d} \mathfrak{S}_{n}$ by restriction of the product filtration.

Theorem (Smith '89, Kashiwabara '93, B. '96)

$$
\left|E_{d}\left(\mathfrak{S}_{n}\right)\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{\mathfrak{S}_{n}}\right) \simeq F\left(\mathbb{R}^{d}, n\right)
$$

Corollary

The permutation operad $\left(\mathfrak{S}_{n}\right)_{n \geq 0}$ induces E_{d}-suboperads $\left(E_{d}\left(\mathfrak{S}_{n}\right)\right)_{n \geq 0}$ of the Barratt-Eccles E_{∞}-operad $\left(E \mathfrak{S}_{n}\right)_{n \geq 0}$.

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.

Proposition (Björner-Edelman-Ziegler '90)

The face monoid $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

Let E_{A} be the simplicial set whose n-simplices are $(n+1)$-tuples $\left(C_{0}, C_{1}, \ldots, C_{n}\right)$ of chambers. $\left(C_{0}, C_{1}, \ldots, C_{n}\right) \in E_{\mathcal{A}}^{(d)}$ iff $\left(S\left(C_{0}, C_{1}\right), \ldots, S\left(C_{n-1}, C_{n}\right)\right)$ contains $<d$ times each $\alpha \in \mathcal{A}$.

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.

Proposition (Björner-Edelman-Ziegler '90)

\square

Definition

Let F_{A} be the simplicial set whose n-simplices are $(n+1)$-tuples

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

Proposition (Björner-Edelman-Ziegler '90)
 The face monoid $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$

Definition

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex set $\mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;

Proposition (Björner-Edelman-Ziegler '90)
 The face monoid $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$

Definition

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.
\square
\square

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}.
Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.

Proposition (Björner-Edelman-Ziegler '90)

The face monoid $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

For each \mathcal{A}, the adjacency graph $\mathcal{G}_{\mathcal{A}}$ has vertex $\operatorname{set} \mathcal{C}_{\mathcal{A}}$ and edge set $\left\{\left(C, C^{\prime}\right) \in \mathcal{C}_{\mathcal{A}} \times \mathcal{C}_{\mathcal{A}} \mid \exists P \in \mathcal{F}_{\mathcal{A}}: P \prec C\right.$ and $\left.P \prec C^{\prime}\right\}$. Since $P(\alpha)=0$ for a unique $\alpha \in \mathcal{A}$, the edges of $\mathcal{G}_{\mathcal{A}}$ are labelled by \mathcal{A}. Let $S\left(C, C^{\prime}\right)=\left\{\alpha \in \mathcal{A} \mid C(\alpha) C^{\prime}(\alpha)=-1\right\}$. Then:

- The edge-path of any geodesic joining C and C^{\prime} in $\mathcal{G}_{\mathcal{A}}$ is labelled by $S\left(C, C^{\prime}\right)$, in particular $d\left(C, C^{\prime}\right)=\# S\left(C, C^{\prime}\right)$;
- For any $C, C^{\prime}, C^{\prime \prime}: S\left(C, C^{\prime \prime}\right)=S\left(C, C^{\prime}\right) \Delta S\left(C^{\prime}, C^{\prime \prime}\right)$.

Proposition (Björner-Edelman-Ziegler '90)

The face monoid $\mathcal{F}_{\mathcal{A}}$ is determined by the adjacency graph $\mathcal{G}_{\mathcal{A}}$.

Definition

Let $E_{\mathcal{A}}$ be the simplicial set whose n-simplices are $(n+1)$-tuples $\left(C_{0}, C_{1}, \ldots, C_{n}\right)$ of chambers. $\left(C_{0}, C_{1}, \ldots, C_{n}\right) \in E_{\mathcal{A}}^{(d)}$ iff $\left(S\left(C_{0}, C_{1}\right), \ldots, S\left(C_{n-1}, C_{n}\right)\right)$ contains $<d$ times each $\alpha \in \mathcal{A}$.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

$E^{(d)}$
$=\Sigma_{d}\left(S_{n}\right)$

Conjecture

For any finite Coxeter group W, one has $\left|E_{A_{w}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(A_{W}\right)$.
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(S_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A O B}} \simeq E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

$\Sigma^{(d)}$
$=\Sigma_{d}\left(S_{n}\right)$

Conjecture

For any finite Coxeter group W, one has $\left|E_{A_{w}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(A_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

$=E_{d}\left(G_{n}\right)$Conjecture
For any finite Coxeter group W, one has $\left|E_{A_{w}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(A_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

Conjecture
For any finite Coxeter group W, one has $\left|E_{A_{w}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

$E_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(d)}=E_{d}\left(\mathfrak{S}_{n}\right)$

Conjecture
For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{W}\right)$
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement

- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

$E_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(d)}=E_{d}\left(\mathfrak{S}_{n}\right)$
Conjecture
For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{W}\right)$.

This would extend the operad structure of the B/C/D-Coxeter

 groups to the higher complements of their Coxeter arrangement.- $E_{\mathcal{A}}$ is contractible, filtered by simplicial subsets $E_{\mathcal{A}}^{(k)}$;
- $E_{\mathcal{A}_{W}}=E W$ and $E_{\mathcal{A}_{W}} / W=B W$;
- There is a simplicial map nerve $\left(\mathcal{S}_{\mathcal{A}}^{(k)}\right) \rightarrow E_{\mathcal{A}}^{(k)}$ defined by projection onto the chamber component.
- $E_{\mathcal{A} \oplus \mathcal{B}} \cong E_{\mathcal{A}} \times E_{\mathcal{B}}$ compatible with filtrations.

Remark

$E_{\mathcal{A}_{\mathfrak{S}_{n}}}^{(d)}=E_{d}\left(\mathfrak{S}_{n}\right)$

Conjecture

For any finite Coxeter group W, one has $\left|E_{\mathcal{A}_{W}}^{(d)}\right| \simeq \mathcal{M}_{d}\left(\mathcal{A}_{W}\right)$.
This would extend the operad structure of the B/C/D-Coxeter groups to the higher complements of their Coxeter arrangement.
W. Arvola - Complexified real arrangements of hyperplanes, Manuscripta Math. 71(1991), 295-306.
C. Berger - Opérades cellulaires et espaces de lacets itérés, Ann. Inst. Fourier 46(1996), 1125-1157.

圊 A. Björner, P.H. Edelman, G.M. Ziegler - Hyperplane arrangements with a lattice of regions, Discr. Comp. Geom. 5(1990), 263-288.
E. Brieskorn - Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12(1971), 57-61.
固 P. Deligne - Les immeubles des groupes de tresses généralisés, Invent. Math. 17(1972), 273-302.
T. Kashiwabara - On the Homotopy Type of Configuration Complexes, Contemp. Math. 146(1993), 159-170.
居 P. Orlik - Complements of subspace arrangements, J. Alg. Geom. 1(1992), 147-156.
(M. Salvetti - Topology of the complement of real hyperplanes in \mathbb{C}^{n}, Invent. Math. 88(1987), 603-618.
雷 J.H. Smith - Simplicial Group Models for $\Omega^{n} S^{n} X$, Israel J. of Math. 66(1989), 330-350.

