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On a certain filtration of the universal bundle of a finite Coxeter group

Coxeter arrangements

A hyperplane arrangement A in euclidean space V is a finite family
(Hα)α∈A of hyperplanes of V containing the origin. The
arrangement is essential if its center

⋂
α∈AHα is trivial.

The complement M(A) = V \(
⋃
α∈AHα) decomposes into path

components, called chambers: CA = π0(M(A)).

Denote by sα the orthogonal symmetry with respect to Hα. If
(Hα)α∈A is stable under sβ for all β ∈ A, the arrangement is called
a Coxeter arrangement. We write A = AW where W is the
subgroup W =< sα, α ∈ A > of On(R). This is justified by

Proposition (Coxeter,Tits)

There is a one-to-one correspondence between essential Coxeter
arrangements AW and finite Coxeter groups W .

The Coxeter group W acts simply transitively on CAW
.
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On a certain filtration of the universal bundle of a finite Coxeter group

Coxeter arrangements

Definition (higher complements)

The k-th complement of a hyperplane arrangement A is

Mk(A) = V k\
⋃
α∈A(Hα)k .

Example (braid arrangement)

V = Rn, A = (Hij)1≤i<j≤n where Hij = {x ∈ Rn|xi = xj}. This is
the Coxeter arrangement ASn for the symmetric group Sn.

The higher complements of ASn are configuration spaces:
Mk(ASn) = F (Rk , n) = {(x1, . . . , xn) ∈ Rkn|xi 6= xj}.

Theorem (Brieskorn ’71, Deligne ’72)

For any Coxeter arrangement A, M2(A) is aspherical. In
particular, π1(M2(AW )/W ) is the Artin group of W .
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On a certain filtration of the universal bundle of a finite Coxeter group

Coxeter arrangements

Purpose of the talk

Construct simplicial models for the homotopy type of Mk(A).

Fox-Neuwirth ’62 and Milgram ’66 construct poset models for
Mk(ASn) for any k and any n.

Salvetti ’87 constructs poset models for M2(A) for any
hyperplane arrangement A.

Smith ’89 constructs simplicial models for Mk(ASn) for any
k and n.

This induces simplicial models for En-operads for 1 ≤ n ≤ ∞,
cf. Barratt-Eccles, B. ’96.
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On a certain filtration of the universal bundle of a finite Coxeter group

Face monoid of a hyperplane arrangement

Orient a hyperplane arrangement A in V , by choosing for each Hα
two half-spaces H±α such that H+

α ∩ H−α = Hα and H+
α ∪ H−α = V .

Then each point x ∈ V defines a sign vector sgnx ∈ {0,±}A by

sgnx(α) =

{
0 if x ∈ Hα;

± if x ∈ H±α \Hα.

The face monoid FA ⊂ {0,±}A is the set of sign vectors
P ∈ {0,±}A such that there exists x ∈ V with sgnx = P.
For P,Q ∈ FA the product PQ ∈ FA is defined by

(PQ)(α) =

{
P(α) if P(α) 6= 0;

Q(α) if P(α) = 0.

The facets cP = {x ∈ V |sgnx = P} are convex subsets of V .

Lemma (Green order of left regular band FA)

cP ⊆ cQ
dfn⇐⇒ P ≤ Q ⇐⇒ PQ = Q
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On a certain filtration of the universal bundle of a finite Coxeter group

Salvetti complex of a hyperplane arrangement

Throughout, A denotes a hyperplane arrangement in V .

The chamber system CA is the discrete subposet of FA consisting
of the maximal facets. In particular, |CA| ' M(A).

FA ×FA = FA⊕A where A⊕A = (A× V ) ∪ (V ×A) in V × V .

Definition (Orlik ’91)

C(2)
A := {(P,Q) ∈ FA ×FA |PQ ∈ CA}op

(P,Q) 6∈ C(2)
A iff ∃α ∈ A : P(α) = Q(α) = 0.

For subcomplexes K1,K2 of a simplicial complex L sth.
Vert(L) = Vert(K1) t Vert(K2), one has: |L|\|K1| ' |K2|. Thus,

Proposition (Orlik ’91)

|C(2)
A | ' M2(A)
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Salvetti complex of a hyperplane arrangement

Definition (Salvetti ’87)

S(2)
A = {(P,C ) ∈ FA × CA |P ≤ C}

(P,C ) ≥ (P ′,C ′) iff P ≤ P ′ and P ′C = C ′.

Definition (Higher Orlik and Salvetti complexes)

C(k)
A = {(P1, . . . ,Pk) ∈ (FA)k |P1 · · ·Pk ∈ CA}op

S(k)
A = {(P1, . . . ,Pk−1,C ) ∈ (FA)k−1×CA |P1 ≤ · · · ≤ Pk−1 ≤ C}

(P1, . . . ,Pk−1,C ) ≥ (P ′1, . . . ,P
′
k−1,C

′) iff ∀i : Pi ≤ P ′i ∧ P ′iC = C ′

Theorem (cf. Mori-Salvetti ’11)

|C(k)
A | ' Mk(A) and (P1, . . . ,Pk) 7→ (P1,P1P2, . . . ,P1P2 · · ·Pk)

defines a homotopy equivalence of posets C(k)
A

∼−→ S(k)
A .
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On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of symmetric groups

Definition

The universal bundle EG of a group G is the simplicial set with
d-simplices (g0, . . . , gn) ∈ Gn+1 and diagonal G -action.
The classifying space BG is the quotient EG/G .

Proposition

H∗(G ;Z) = H∗(|BG |;Z)

Remark

The symmetric group Sn embeds into a product
∏

1≤i<j≤n Sij :

Sij = Bij({i , j}) ∼= S2.

S→ Sij : σ 7→ σij =

{
id{i ,j} if σ(i) < σ(j)

(i j) if σ(i) > σ(j)
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Proposition

H∗(G ;Z) = H∗(|BG |;Z)

Remark

The symmetric group Sn embeds into a product
∏

1≤i<j≤n Sij :

Sij = Bij({i , j}) ∼= S2.

S→ Sij : σ 7→ σij =

{
id{i ,j} if σ(i) < σ(j)

(i j) if σ(i) > σ(j)
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On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of symmetric groups

Lemma

ES2 is an ∞-dimensional sphere, hemispherically decomposed,
with the antipodal S2-action. Convention: EdS2 = Sd−1

Corollary (Smith filtration ’89)

ESn embeds into a product
∏

1≤i<j≤n ESij and inherits a
canonical filtration EdSn by restriction of the product filtration.

Theorem (Smith ’89, Kashiwabara ’93, B. ’96)

|Ed(Sn)| ' Md(ASn) ' F (Rd , n)

Corollary

The permutation operad (Sn)n≥0 induces Ed -suboperads
(Ed(Sn))n≥0 of the Barratt-Eccles E∞-operad (ESn)n≥0.
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On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

For each A, the adjacency graph GA has vertex set CA and edge
set {(C ,C ′) ∈ CA × CA | ∃P ∈ FA : P ≺ C and P ≺ C ′}. Since
P(α) = 0 for a unique α ∈ A, the edges of GA are labelled by A.

Let S(C ,C ′) = {α ∈ A |C (α)C ′(α) = −1}. Then:

The edge-path of any geodesic joining C and C ′ in GA is
labelled by S(C ,C ′), in particular d(C ,C ′) = #S(C ,C ′);

For any C ,C ′,C ′′ : S(C ,C ′′) = S(C ,C ′)∆S(C ′,C ′′).

Proposition (Björner-Edelman-Ziegler ’90)

The face monoid FA is determined by the adjacency graph GA.

Definition

Let EA be the simplicial set whose n-simplices are (n + 1)-tuples

(C0,C1, . . . ,Cn) of chambers. (C0,C1, . . . ,Cn) ∈ E
(d)
A iff

(S(C0,C1), . . . ,S(Cn−1,Cn)) contains < d times each α ∈ A.



On a certain filtration of the universal bundle of a finite Coxeter group

Universal bundle of finite Coxeter groups

EA is contractible, filtered by simplicial subsets E
(k)
A ;

EAW
= EW and EAW

/W = BW ;

There is a simplicial map nerve(S(k)
A )→ E

(k)
A defined by

projection onto the chamber component.

EA⊕B ∼= EA × EB compatible with filtrations.

Remark

E
(d)
ASn

= Ed(Sn)

Conjecture

For any finite Coxeter group W , one has |E (d)
AW
| ' Md(AW ).

This would extend the operad structure of the B/C/D-Coxeter
groups to the higher complements of their Coxeter arrangement.
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